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We have constructed a new sequence of positive linear operators with two variables by using Szasz-Kantorovich-Chlodowsky
operators and Brenke polynomials. We give some inequalities for the operators by means of partial and full modulus of continuity
and obtain a Lipschitz type theorem. Furthermore, we study the convergence of Szasz-Kantorovich-Chlodowsky-Brenke operators
in weighted space of function with two variables and estimate the rate of approximation in terms of the weighted modulus of

continuity.

1. Introduction

The well-known Mirakjan-Favard-Szasz type operators of
one variable are defined as

Sn(f;x)=Zw;f<£>, neN, xe€[0,00), (1)
=0

where

1

W, (x) = e_"x(ni—)f) )
and f : [0,00) — R is such that the above exist series. For
the convergence of S,(f;x) to f(x), usually f is supposed
to be the exponential growth, that is, | f(x)| < ael*, for all
x € [0,00), with a, 5 > 0 (see [1]). Later, in 1969, Jakimovski
and Leviatan [2] investigated approximation properties of
the generalization of Szasz operators by means of the Appell
polynomials p;(x) = Zf:o a,-(xk_i/ (k — )!) which satisfy the
identity

gt)e™ = p(x)t* 3)
k=0

where g(z) = Y2, @251zl < R, (R > 1) and g(1) # 0.
Varma and Tasdelen [3] constructed positive linear operators

based on orthogonal polynomials, e.g., Brenke polynomials.
Suppose that

H () =Y az, H(0)#0,
k=0

N (4)
Z(t)= Y bz, Z(0)#0
k=0

is analytic functions in the disk |z| < R, (R > 1), where a;
and by are real. The generating function for these polynomials
is given by

H W)L (tx) = Y pe(x)t* )

k=0

from which the explicit form of p,(x) is as follows:

k
pe(x) = Ya bx, k=012.... (6)

i=0
We suppose that
(1) H(1) #0,a,_b/H1) =1, k=0,1,2,...,
(2) £ : [0,00) — (0, 00),
(3) (5) and (6) converge for [t| < R, (R > 1),
(4) lim,,_, (L% (w)/L(u)) = 1, for k € {1,2,3,4}.
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Atakut and Buyukyazici in [4] introduced the Kantorovich-
Szasz variant based on Brenke type polynomials defined as

Sy (fi %)

7)

(G+)/cp
mim buy) J f @) dt,

where (b,,), (c,,) are strictly increasing sequences of positive
numbers such that lim,,_, (1/¢,,) =0,b,,/c,, = 1+0(1/c,,).
The classical Bernstein-Chlodowsky polynomials are defined
by

5.9 You(2)r(5e)  ©

where p,  (x/a,) = (}) (x/a)*(1-x/a)"*, 0<x<a, and
(a,) is a sequence of positive numbers with lim,_, . a, = co
and lim,_ ., (a,/n) = 0. In the last few decades the con-
vergence estimation for linear positive operators is an active
area of research amongst researchers. Several new operators
have been introduced and their convergence behavior has
been discussed (see [5-8]). In [9, 10] authors introduced a
bivariate blending variant of the Szdsz type operators and
studied local approximation properties for these operators.
Also, they estimated the approximation order in terms of
Peetre’s K-functional and partial moduli of continuity.

In the present paper, we define new bivariate opera-
tors associated with a combination of Szasz-Kantorovich-
Chlodowsky operators based on Brenke polynomials as

follows:
azf(l)g( yzzp’”‘< )

k 0j=0

(+D/en ((k+1)/m)a,

ACEN
Jlm (k/n)a,,

nmu (f’ ’y)
9)
f(t,s)dtds,

where the sequences (a,), (b,,), (c,,) are defined as above and
satisfy the following conditions:

lim (i)—o
m—o0 \ ¢ - (10)

For operators defined in (36) we have

T (3%, 9)

“x C: (;an

where

(11)
“(fi%9)) =, S (,C

((k+1)/n)ay,
ank< ) J f
A =0 (k/m)a,,

. (fixy))

C,(fix.y) (t,y)dt (12)
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and

S (f; %, )

J+1)/cn (13)

mzl’f mY)J f (x,s)ds.

In this study, we give some basic convergence properties for
the operators defined by (9) and study local approximation
properties for these operators. Furthermore, we study the
linear positive operators in a weighted space of function with
two variables and estimate the rate of approximation of the
operators Tn";nc*; in the terms of the weighted modulus of
continuity.

2. Notations and Auxiliary Results

We will subsequently need the following basic results to prove
the main results. o

In what follows, let ¢;;(x, y) = x'y’, (i,j) € N® x N,
where i + j < 4 is the two dimensional test functions.

By simple calculations we get the following lemma.

Lemma 1. Let TS:;;E*; be the bivariate of Szasz-Kantorovich-

Chlodowsky-Brenke operators defined by (9). For allm,n € N,
Tb o satisfy the following results:

(i)
Tf”;n’; (egos %, ¥) = 1; (14)
(i)
T (e10x, y) = x + 2
n,m,a,, (610 X y) X+ 21’1 (15)
(iii)
T (6013 %, ) = by (By) 27 W +1 o
wn Y S By) | 2 (DG
(iv)

2
b, 1 2 a a
Tnmca (€05, y) = <1 - ;)x + 27"96+ 3—:2; (17)

)

b,,
Tn mcy; (602; X, y)

_ 5,2 (b)Y
cn (bny)
26, (%' (1)+H (1) L'
i (1) Z (b,,y)

(b,y) y 18)

3F" (1) + 6% (1) +H (1)
32 F (1) ’
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(vi) by, (6" (1) + 18" (1) +7% (1)) Z' (B,y) ¥
' 2035 (1) Z (bry)

BpsCom 3
Tnma (603’x’y)
4,7{”’ (D) +16%' (1) + 12%" (1) + 7% (1)

_ bfn"(f”’ (bmy)y3 463%(1) ;
3
n (b,,y) (19)
30, (2" (1) +3K (1)) Z" (b,y) ¥
+
n (1) Z (b,) (vid)
- bW (b,y) vt 4l (' (1) +2% (1) Z" (by) ¥’
Tnma (604;X,)/)= 4 + 4
ct (1) Z (b,y)
3b2 (2" (1) +8%' (1) +5% (1)) Z" (b,y) ¥
2 (1) Z (b,
(bny) 20)
by (4" (1) +24%" (1) + 30" (1) + 6K (1)) £ (b,y) y
' A (D7 (6,)
Y1)+ 407" (1) +75F" (1) + 30F" (1) + %(1)
ct x (1)
Proof. In view of definition of operators defined by (9) we B 2 b, 2" (b,y)
have T, ((601 y) y) B Z (byy)
Tﬁ'ﬁf’; (e00s > ¥) =:C,, (€03 %, J’); Sfﬁ"’% (egs X, ») _ 2b,,%' (b,y) 1) 2
n (bny)
nma (EIO’X )’) X (el’xy)y m (EO’xy)
o 2b,, (H' (V) + K (1)) Z' (by)
nma (EOI’X y) x (eO;x’y)ySrrrlwm(el;x’y) + C,ny%(l)g(me)
Tbm " ; b = b S o m b
7,1, (EZOxy) x (ezx)’) (eox)’) (21) _2%/(1)+1> 3%”(1)+6%’(1)+%(1)
T, (002 3) = C (0 ), S (e, ) ¥ (1) e (1)
(22)
Tt (€033 %, 7) =, Cy (egs %, ), S (e3i %, y)
Tn";n C*; (eoss %, ¥) =, C. (€3 x, y); srzl’“m (esx,y) Proof. The results follow from linearity of the operators
Tfl’m'; and Lemma 1.
with the help of these equalities, we can easily prove required For sufficiently large n,m, for all (x,y) € I, , by taking
results. O into consideration Lemma 1, and condition (10) we have the
following equalities:
Lemma 2. It follows from Lemma 1 that
Tnbf'r';f,';n (erg — X%, y) = 2_n A= Tn";nc*; ((e10 -x);x, y)
C g” b ) * 2 a, 2 i (23)
Tnbj’;y’l)';n(elo—x;x,y) ( 27y 1))/ =.C, ((€1o—x) H@J’)zO(;)iﬂx;
w. A, _an:ncz ((elo_x)4;x’)’)
2¢, K (1) °
(o) =0(2) 3w
- 2 =.C ((ejp—x) 5%,y =O(—”> X
Ton (ego = 2) s, y) = =) | G0 <G (e )2
n,m,a, ((610 ‘x) X )/) n + 31’12 i=1
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TaBLE 1: Error estimation for operator (9) to the function f(x, y) = x*y — xy* for n = m = 100.

x (0.01,0.5) (0.1,0.5) (0.4,0.5) (0.5,0.5) (0.6,0.5) (0.8,0.5) (0.9,0.5)
n=m= 1000 0.0037 0.0011 0.0076 0.0105 0.0135 0.0196 0.0226
n =m=100 0.0118 0.0052 0.0187 0.0273 0.0361 0.0548 0.0645

I Operators I Operators

8 Function I8 Function

() (b)
FIGURE 1
and lim, Tﬁj’;;f’; = f(x, y) uniformly on the compact set
I,

Ay =T (e - )" 5% 9)
. ] . (25)
=S ((ero—y) 3%, y) =0 (C—>

A, = Tff:r’zcﬁn ((610 - J’)4 3% )’)
- . R (26)
= S ((310 -) ;x,y) = O<_> Zyt.

Further, let §,,(x) = A, 6,,(y) = A],and §,,,(x, ¥) = (A, +
A2, O

3. Main Results

To study the convergence of the sequence {TS:’;;:’; } we shall

use the following Korovkin type theorem, established by
Volkov [11]. Next, the degree of approximation of the operator

{Tbmm } given by (36) will be established in the space of

n,m,a,
continuous function on compact set I, = [0,a] x [0,b] C I o
For I, = [0,a] x [0, b], let C(I,,), denote the space of all real
valued continuous functions on I, endowed with the norm

I/ lca,) = SUPe,per, | f (% VI

Theorem 3. Let {T'" } be the sequences of linear positive

n,m,a,

operators defined by (36). Then foreach f € C(1,,), we have

Proof. From Lemma 1, we have

. b6, . _ _
phim T (e %) =e;=0,

(27)
(i, j) € {(0,0),(1,1),(2,2)}

and

. b, .
lim T =™
1,M—00 n,m,a,

(e20 + €023 %, ) = €30 + €qo» (28)
uniformly on I,. The result follows from the well-known
Volkov theorem. O

Example 4. Let us consider the function f(x, y) = x*y—xy*.
For n = m = 100,1000, % (t) = e*; Z(t) = ¢' and a, = n;
b,, = m;c,, = m+1/+/mthe convergence of TS:';;E’; to f(x,y)
is illustrated in Figures 1(a) and 1(b), respectively." Further, in
Table 1 we compute error estimation for operator (9) to the

function f.

Example 5. For #(t) = ¢, Z(t) = €' the convergence of

operators Tﬁj;fg to function f(x, y) is illustrated in Figures

2(a) and 2(b), respectively, where (x, y) = xy + xyz, n=m-=
100, 1000, and a, = vn; b,, = m; ¢,, = m + 1/+/m. In Table 2
there are are compute error estimations for operator (9) to the
function f.



Advances in Mathematical Physics 5
TABLE 2: Error estimation for operator (9) to the function f(x, y) = xy + xy* for n = m = 1000.
x (0.01,0.5) (0.1,0.5) (0.3,0.5) (0.4,0.5) (0.6,0.5) (0.8,0.5) (0.9,0.5)
n =m= 1000 0.0116 0.0121 0.0131 0.0136 0.0151 0.0156 0.0161
n=m=100 0.0390 0.0435 0.0535 0.0584 0.0734 0.0784 0.0834
I Operators I Operators
2.5 — I Function 2.5 I Function
2 -
1.5 4
1
0.5
0~

(a)

(b)

FIGURE 2

An estimation of the rate of convergence can be obtained
using the modulus of continuity for two dimensional real
valued functions. Let f € C(I,,) and § > 0. In what follows,
we shall use the following modulus of continuity for bivariate
real functions:

@ (f:8,8,) = up {1 69— f ()] (6550, ()
(29)
€y, lt-x] <68, |s—y|<6,}

Alternately, the complete modulus of continuity of f which
we denote by w( f; §) is defined as
(£:9)

= sup
V=2 +(s-y)?<6

ICORNICSIIHCONCSY

(30)

€ Iah’}'

Theorem 6. Forany f € C(1,,), then we have estimated

T (fixy) = f (5 9)| <20(£8,,) @D

where S, ,, =5, ,,(x, y).

Proof. From (9) and by definition of w(f; §), we can write

| (fx,9) = f (3 9)| < -

m

@ (DL (B,)
n oo x
DY MEPACH?
k=0 j=0 a,
(+D/6n ((k+1)/m)ay -
. w( fit-x7+(s-y)sxy))dtds
L/cm J(k/n)an ( (f\/ (s-») y))

1 - (32)
<w(£:8,,) {1 o () Z ()

DRYMEJPACH?

k=0 j=0
(+D/6n ((k+1)/n)ay,
. Jj/qﬂ I(k/n)an
Using the Cauchy-Schwarz inequality, we obtain

T (fix,y) - f (6 ) sw(f;an,m)(l

(t-x)+(s—y)dt ds]»

1 1/2
+8—( n,m,a, ((t x)2+(5—y)2;x,y))

(33)

@ (f; 8,1m) ( 1

1 a4\ - ;
+— O<—”> x'+0
8n,m< n Z‘

)5)")

Taking §,,,,, = 6,,,,(x, ), we obtain the desired result.



The partial modulus of continuity with respect to x and y
is given by

0 (fi8) = sup sup {|f (x1.y) - f (29}
0<y<b |x,—x,|<6 (34)
W2 (fi8) = sup sup {|f (. 31) - F (=)}
0<x<a |y, —y,|<8
[l

Theorem 7. For any f € C(I,,), then the inequalities satisfy

Ty (fix,y) - f (x, y)I
(w(l) (f:6,) + 0 (£:0,,))
where 8, = §,,(x), §,, = 5,,(¥).

(35)

Proof. Using the definition of partial modulus of continuity
w?(£8), i = 1,2, we may write

nc

By -
[T, ) =L < oy Gy
Z an k < ) pj ( )
k=0 j=0
(+D/en (((k+1)/n)a,
' J J |f (t,9) = f (¢, y)|dtds
ilom (k/n)a,

WZZPnk( )P;( 52,

mJ’ko;o

(+D/cn ((k+1)/n)ay,
)= f )
jlem (k/n)a,,

< St (o) o o)
(G+D/cn ((k+1)/n)ay, )

J J w” (fils—y|)dtds
Jlem (k/na,

7w zzp( ) s tny)
(j+D /e, ((k+1)/n)a,

S P
jlem (k/n)a,

=1 (% y) + 1, (x, ).

Consider #(x, y). Using Lemma 1 and the well-known prop-
erties of the modulus of continuity, we have

(36)

Y (fi|t - x|)dtds

nc,,

8,0, % (1) Z (b,,y)

m (x,y) < 0? (£6,,) {1 +

iZm( )pj( y) (37)

k=0 j=0

(G+D/ey [ ((k+1)/n)a,
. J J |s—y|dtds
Jlm (k/n)ay,
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By using Cauchy-Schwarz inequality, we get

m (% y) < 0

1 nc,,
o 175, {an%mg(bmy)

Z ank ( ) ) (38)

k=0 j=0
1/2
(j+D)/en ((kt1)/n)a, 5
X J J (s - y) dtds
jlem (k/n)ay,

So, by using (25), we obtain

2) (f;am)<1+ O(I/Crg) Z?_Iyi>. (39)

m

(% y) < o

In the same way we gain

2 i
w(l) (fr 871) (1 T O (an/’;;) Zi:I X > ) (40)

n

1y (%, y) <

Hence from (39), (40), and (32), we arrive at

T (fx,9) = f (%, 9)]

2 O(l/cm) 21'2:1 yi
()(f;am)<1+6—> (4)

m

n

1)(f;6n)<1 O(a, /V(;) iz X )

Finally, choosing §,, = A| = §,(x) and §,, = A = §,,(y), for
all (x, y) € 1, we reach the desired result.

For 0 < y < 1, we define the Lipschitz class Lip; (y) for
bivariate case as follows:

Lip (y)
JATHY (42)
. {f: (bt~ f9)] < L”—”/} ,
(Irll + x + )
where r = (t,,t,),s = (x, y) in I, and [[r — s|| = {(¢, - x)? +
(t, - y)z}l/ 2 is the Euclidean norm. O

Theorem 8. Supposethat f € Lip; (y). Then, forevery (x, y) €

I, we have

1/2

LS,
nmu (fX y) f X, y)| 7’ (43)

where 8,, = §,,(x, y).
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Proof. First, we prove theorem for case y = 1. Then, for f €
Lip; (y) and for each x, y € I, using the monotonicity and
linearity of operators, we may write

[T (fix ) = f (x,9)]

< Ty (If (t1ts) = f (5 9)]5%, )

< LTV (“f;sﬂm;x, y> (44)
NI+ X+ y)
L

b,,
< anmCZ (Ir =slsx, ),

where r = (t,,t,) and s = (x, y).
Using the Cauchy- Shwarz inequality and Lemma 2, the
above inequality implies that

Ty (fi% ) = f (%)

L 1/2
e {rmer (Jr = sIP %, y)}

L

T)” ()

L€ (=2 ) 45 S (6 )}
(Lo (xy)
(k)"

Thus, the result holds for y = 1. Secondly, let 0 < y < 1. Then,
for f € Lip;(y) and for each x, y € I, we get

lTn'Zf*; (fixy) - f(xy)|
= nma (|f tl’t2) f x’y)| x’y)
. ( Ir=sl” y> (46)
P\ (I + x o+ )
L

/2 nma (”r_S”y X y)

“ery)

Now, applying Holder’s inequality with u, = 2/y,u, = 2/(2 -
y), and Lemma 2, we get

T (fixy) = f (% )|

“ +Ly)y/2 [T (b= x )™

L N .
T )" G (=2 y) 45 (=9 oxy

/2
L fo()5 vo(L) 0]

C(x+y

)}Y/Z (47)

which leads us to the required result. O

Theorem 9. If f(x, y) has continuous partial derivatives f.
and fJ’, and W (f1;8) and w(z)(f}',; 0) denote the partial

moduli of continuity of f. and f}', respectively. Then we have
estimate

Ty (fx,9) = f (%))

<A
2n
N b, L" (bny) 2% (1) +1
27 (b,y) 2, % (1) 48)

1) (f;;én)<1 + \/57)
2 (f;;am)<1+\/§>,

where A,Y are the positive constants such that |0f [0x| <
A of [oyl <Y, (x,y € I).

Proof. From the mean value theorem we have

fltot) - f(xy)
=f(tny) = foy)+ ftnt) = f (8 y)

(-0 L2 (- ) LD
of (x. )
(-0 L .
(af (n.y) of (x y))
ox
+m—wwg”
(i) (L) - L)),

where x < 77 < t; and y < { < t,. By using the above identity,
we get

T (fixy) = f(xp)
1 (109 22 )
T <(t1 (af (n.y) aféi”);x,y) 0

+Tnma (tZ y ) x’}’>
+

o6 <
af (x,
T’l;mca <(t2 y (af(x () féy y)>;x,y>.
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Hence, ++o (f;i;é\n) {xCZ ((tl - x)z ) y)}llz
of (x,y) W(f.s
Tb o X, — . < w (fx’ n) %
n,m,a, (fxy) f(‘x y)|<| ax +87an ((tl__x)z;x’y)
[ (=) s )]+ T (I - O (f156,) st )
nama, \\EL = X)5%, Y npma, \ [F1 =% +tw (fy;ém){ysn’: m((tz—y) ;x,y)}
of (my) _9f (x) | ) 0 (£1380) + , }
| Ox - Ox 4 ay +Ty m ((tZ y) ;X,y)-
(53)
Tomon ((ty = y); %, )|+ + 0w (|t -
' miniy (02 = )% y)| b (l 2] Now choosing 8, = 8,,(x) and ,, = ,,(), we have
. laf 0 of (x.¥)]. y) [Tt (fix,5) ~ f (x.9)]
<A
< A[T (0= x)3% )] n
N ( b, 2" (byy) l 27 (1) +1 )
b By o i
+Y'Tn"rlncy; ((tZ_y);x’y)| Tnma <|t1 _xl Cfnff(bmy) 2¢, % (1) (54)
W) (4
t - +w 56, <1+ 8,,)
0 (10) (B 1) ) (fi50,) (14,
+ 0@ (£158,) <1+\/6 )
+ TS’;:*; ( t, -yl (f;8,,
2= (fy ) This completes the proof. (]
|t, - y| . . . . .
\ 5ty ) 4. Weighted Approximation Properties
_ The weighted Korovkin-type theorems are used for the
Since |f7 - x| < It, - x.| :‘md IC=yl <1ty =yl purpose of this study, which are previously proved by Gadjiev
Using last inequalities, we have [12, 13]. Therefore we need to introduce the notations of [13].
Let Ri ={(x,y): x>0,y > 0}and BP(Ri)be the space of all
T (fsx,y) = f (%, y)| functions having the property | f(x, y)| < Mp(x, y), where

(x,y) € R? and M, is a constant depending on function only.
< AJTEEn (1 - %)5% )| AN penaIns ’

1, ByC p(Ri) we denote the subspace of all continuous functions

. 2 . 2\ - .
+ Y |bn x belonging to B p(IR ). Itis clear that C p(IR ) is a linear normed
I (2= )5 y)' space with the no;m ||f||p = sup(x’y)eR;(If(x, I/ p(x, ).
FRPNC) (f;;anl) T:mcy; (ltl _ xl ix,9) Also, let C;(Ri) be the subspace of all functions f € CP(IRi),

(52) for which lim|(x,y)|_>oo(f(x,y)/(l + |(x, y)|2)) = kf < 00,

+ MTZ’ G (|t - |2- ) where |(x, )| = 1/x? + y?
5 n,m,a, 1 X 5% )Y > .

Theorem 10. Let f belong to C*(R?) and |f(x,y)| <
(2)(](),,;6 )Tsmca |t2—y|;x,y) f g p Sy f y

M;p(x, y). Then

(2) !
w?(f;0 .
+ (6}" ”2) nmu (ltz )/| xy) n,rl,lr_,noo nmu fx)’) f“ RZ = (55)
m
: . . if and only if
Now, applying the Cauchy-Schwarz inequality
b 6] ||Tnmc’; (L%, ) = ey gy = 0
sCm " _
Tnma (f,x,)’) f(x’y)| (11) ”Trl:ma (elo;x’y)_x"C;(Ri) :0’-
<AL ,,fa ((t - %)% )| (i) 172555 (e )~ Yoy, = 0

+Y|T

o ((t2 = ¥) 5%, y)| (iv) ||Tn";n2 (€305 %, y) — X ||c;(R3) =0
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W) [Ty (0o %0 ) = Vs ey = 0

asn,m — oo for (x, y) € I,

Proof. The necessity part is trivial; then we need only to prove

sufficiency. Let (x, y),(s,t) € I, and f € C;(Ri). Since

for each f ¢ C;(Ri) is uniformly on I, for each € > 0
there exists some & > 0, such that for each (s,t) € I, with

\(s = x)? + (t — y)? < & implies | f(s,t) — f(x, y)| < €. Now

let (x, y) € I, and (s,t) € R? and let (x;, y;) be an arbitrary
boundary point of I, such that 0 < x; < a, 0 < y,; <b. Since
f is continuous on the boundary points also, then for each

€ > 0 there exists > 0 such that \/(s—=x)?+ (t - y)? < §

implies
[f D= f oyl <|f (0~ f @, )

+f (k) = f(xp)| <e
On the other hand, if \/(s — x)? + (t — y)? > §, we have
|f(s,t)—f(x,y)lsC<w>, 57)

where C > 0 is constant and (x, y) € I, and (s,t) € [R{i. So,
we get the following inequality:

(56)

|f ()= f(x ) SG+C<%>, (58)

for (x,y) € I, (s,t) € R%. Now applying the operators
Thn (£, x, y) in the last inequality and taking relations (i)-

n,m,a,
(v) of Theorem 10, sufficiency is obtained easily.

Now we estimate the rate of approximation of the opera-
tors Tb » in the terms of the weighted modulus of continuity

Q(f; 5,,,6 ) (see [14]) defined by
Q(f:6,56,)
~ o sup |f (e +hiy+hy) - f (% 9)] (59
(r,y)eR2 |hy|<8,,lhy)<8, p(x,y)p(hl,h2)
feC(RY),

and it satisfied the following properties:
|f (&)= f (. y)l
<8Q(f;6,,6,,) (1 +x0+ yz)g (t,x)g(t,y)

where g(t,x) = (1 + |t — x|/3,)(1 + (t - x)?)) and g(s,y) =
((1+ s = p1/8,) (1 + (s = »)*)). O

Theorem 11. For each f € C;(R+), there exists a positive

(60)

constant B independent of a,,b,, and c,, such that the
inequality
by
[T, (fix, <BO(£:0,0,), (6

is satisfied for a sufficiently large n, m, where 8, = a,/n and
8,, = 1/c,,.

Proof. By the linearity and monotonicity of Tf o applied to
inequality (60) we obtain

[T (fi%,9) (fix ) = f (x5, 9)| <8

nc,

m . , ,
D oy o) (142 57

((k+1)/m)a, 0 (62)
sznk( >J( g(x’t)dtxz(:)pj(bmy)
i

k/n)a,
(j+1)/cm
: J g(s,y)ds.
ilen

2, 2 n
< SQ(f;(sn,am)(l +x"+y ) {1 + 5.a,
((k+1)/n)a,,
'ZPnk( >J ol
(k/m)a, nn
((k+1)/n)a, n
. t—x)2dt+
ZP"" ( > Jk/n)an (= Outy
" ((k+1)/n)ay, 2
2ou(5)], HoHea
= (k/m)ay,
x { szf () ©
(+1)/6p G
. J- |5 - yl ds+ ———F——
il 8 (1) Z (bny)
(+D)/6n )
2o [ sl
c (o)
m (b
T ZL( )Zopj(my)

where g(x,t) = (1 + |t — x|/5,)(1 + (t - x)?)) and g(s,y) =

(1 +1s = y1/8,)(1 + (s = »)*).
Applying Cauchy-Schwarz inequality, we have

| (fix, ) = f (3 9)]

<80 (£:8,,8,) (14 + )
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+6, +

VA’ZAZ}
S

n

(64)

where A, A7A,, and A are defined by Lemma 2.
Combining (64) and all identities in Lemma 2, we obtain

T (fix,9) - f (x,9)| < 8Q(£:6,,6,,) (1 +%°

o) 3 o) vo(2) 5

(65)

(D) (3 )o(L)(5)

Choosing §,, = a,/nand §,, = 1/c,,, and for sufficiently large
value of n and m, we obtain

|Tomen (fix,y) - f

where B is a constant independent of a,,, b,,, and c,,,. O

<BQ(f;6,,0,,),  (66)

P

5. Conclusion

We studied a new sequence generalization of the Szasz-
Kantorovich-Chlodowsky type operators defined by means of
the Brenke type polynomials defined by (9). This type of mod-
ification enables better error estimation for a certain function
in comparison to the Szasz-Kantorovich-Chlodowsky opera-
tors and Szasz-Chlodowsky-type operators. We find the rate
of convergence using weighted Korovkin-type theorem. We
give some inequalities for these operators means of partial
and full modulus of continuity and also obtain a Lipschitz
type theorem. At the end, we mentioned results on the
weighted modulus of continuity due to Ispir for the operators

,5Cm
nm,a,*
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