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We study the Cauchy problem of the Chern-Simons-Schrödinger equations with a neutral field, under the Coulomb gauge
condition, in energy space 𝐻1(R2). We prove the uniqueness of a solution by using the Gagliardo-Nirenberg inequality with the
specific constant. To obtain a global solution, we show the conservation of total energy and find a bound for the nondefinite term.

1. Introduction

In this paper, we are interested in the Cauchy problem of the
Chern-Simons-Schrödinger equations coupledwith a neutral
field (CSSn) in R1+2:

𝑖𝐷0𝜓 + 𝐷𝑗𝐷𝑗𝜓 = 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 𝜓 + 2𝑁𝜓, (1)

𝜕00𝑁 − Δ𝑁 +𝑁 = −2 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 , (2)

𝜕0𝐴1 − 𝜕1𝐴0 = 2 Im (𝜓𝐷2𝜓) , (3)

𝜕0𝐴2 − 𝜕2𝐴0 = −2 Im (𝜓𝐷1𝜓) , (4)

𝜕1𝐴2 − 𝜕2𝐴1 = 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 . (5)

Here,𝜓(𝑡, 𝑥) : R1+2 → C is the matter field,𝑁(𝑡, 𝑥) : R1+2 →
R is the neutral field, and 𝐴𝜇(𝑡, 𝑥) : R1+2 → R is the gauge
field.𝐷𝜇 = 𝜕𝜇 − 𝑖𝐴𝜇 is the covariant derivative, 𝑖 = √−1, 𝜕0 =𝜕𝑡, 𝜕𝑗 = 𝜕𝑥𝑗 , and Δ = 𝜕𝑗𝜕𝑗. We use notation A = (𝐴0, 𝐴𝑗) =(𝐴0, 𝐴1, 𝐴2). From now on, Latin indices are used to denote1, 2 and the summation convention will be used for summing
over repeated indices.

The CSSn system exhibits both conservation of the
charge,

𝑄 (𝑡) fl 󵄩󵄩󵄩󵄩𝜓 (𝑡, ⋅)󵄩󵄩󵄩󵄩𝐿2 = 𝑄 (0) , (6)

and conservation of the total energy

𝐸 (𝑡) fl 2 ∑
𝑗=1,2

󵄩󵄩󵄩󵄩󵄩𝐷𝑗𝜓 (𝑡, ⋅)󵄩󵄩󵄩󵄩󵄩2𝐿2 + ‖∇𝑁 (𝑡, ⋅)‖2𝐿2

+ 󵄩󵄩󵄩󵄩𝜕𝑡𝑁(𝑡, ⋅)󵄩󵄩󵄩󵄩2𝐿2 + ‖𝑁 (𝑡, ⋅)‖2𝐿2 + 󵄩󵄩󵄩󵄩𝜓 (𝑡, ⋅)󵄩󵄩󵄩󵄩4𝐿4
+ 4∫

R2
𝑁 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 (𝑡, 𝑥) 𝑑𝑥 = 𝐸 (0) .

(7)

The CSSn system is invariant under the following gauge
transformations:

𝜓 󳨀→ 𝜓𝑒𝑖𝜒,
𝑁 󳨀→ 𝑁,
𝐴𝜇 󳨀→ 𝐴𝜇 + 𝜕𝜇𝜒,

(8)

where 𝜒 : R1+2 → R is a smooth function. Therefore, a
solution to the CSSn system is formed by a class of gauge
equivalent pairs (𝜓,𝑁,A). In this paper, we fix the gauge
by adopting the Coulomb gauge condition 𝜕𝑗𝐴𝑗 = 0,
which provides elliptic features for gauge fields A. Under the
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Coulomb gauge condition, the Cauchy problem of the CSSn
system is reformulated as follows:

𝑖𝜕𝑡𝜓 + Δ𝜓 = −𝐴0𝜓 + 𝐴2𝑗𝜓 + 2𝑖𝐴𝑗𝜕𝑗𝜓 + 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 𝜓
+ 2𝑁𝜓, (9)

𝜕𝑡𝑡𝑁 − Δ𝑁 +𝑁 = −2 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 , (10)

Δ𝐴0 = 2 Im (𝜕2𝜓𝜕1𝜓 − 𝜕1𝜓𝜕2𝜓)
+ 2𝜕2 (𝐴1 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2)
− 2𝜕1 (𝐴2 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2) ,

(11)

Δ𝐴1 = −𝜕2 (󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2) , (12)

Δ𝐴2 = 𝜕1 (󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2) , (13)

with the initial data 𝜓(0, 𝑥) = 𝜓0(𝑥), 𝑁(0, 𝑥) =𝑛0(𝑥), 𝜕𝑡𝑁(0, 𝑥) = 𝑛1(𝑥). Note that 𝜓, 𝑁 are dynamical
variables and A are determined by 𝜓 through (11)–(13).

The CSSn system is derived from the nonrelativistic
Maxwell-Chern-Simons model in [1] by regarding Maxwell
term in the Lagrangian as zero. Compared with the Chern-
Simons-Schrödinger (CSS) system which comes from the
nonrelativistic Maxwell-Chern-Simons model by taking the
Chern-Simons limit in [1], the CSSn system has the interac-
tion between the matter field 𝜓 and the neutral field 𝑁. The
CSS system reads as

𝑖𝐷0𝜓 + 𝐷𝑗𝐷𝑗𝜓 = − 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 𝜓,
𝜕0𝐴1 − 𝜕1𝐴0 = 2 Im (𝜓𝐷2𝜓) ,
𝜕0𝐴2 − 𝜕2𝐴0 = −2 Im (𝜓𝐷1𝜓) ,
𝜕1𝐴2 − 𝜕2𝐴1 = 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2

(14)

and has conservation of the total energy

𝐸 (𝑡) fl 2 ∑
𝑗=1,2

󵄩󵄩󵄩󵄩󵄩𝐷𝑗𝜓 (𝑡, ⋅)󵄩󵄩󵄩󵄩󵄩2𝐿2 − 󵄩󵄩󵄩󵄩𝜓 (𝑡, ⋅)󵄩󵄩󵄩󵄩4𝐿4 = 𝐸 (0) . (14)

We remark that ‖𝜓(𝑡, ⋅)‖4𝐿4 has opposite sign in (7) compared
with (14). In fact, this difference causes different global
behavior of solution. The local well-posedness of the CSS
system in 𝐻2, 𝐻1 was shown in [2, 3], respectively. We can
prove the existence of a local solution of the CSSn system by
applying similar argument. On the other hands, due to the
nondefiniteness of total energy, the CSS system has a finite-
time blow-up solution constructed in [2, 4].TheCSSn system
also has difficulty with nondefiniteness of 𝑁|𝜓|2 in the total
energy, but we could obtain a global solution by controlling it
with𝐻1-norm.

Considering conservation of the energy (7), it is natural
to study the Cauchy problem with the initial data 𝜓0, 𝑛0, 𝑛1 ∈𝐻1×𝐻1×𝐿2. Our first result is concernedwith a local solution
in energy space.

Theorem 1. For the initial data (𝜓0, 𝑛0, 𝑛1) ∈ 𝐻1(R2) ×𝐻1(R2) × 𝐿2(R2), there are 𝑇 > 0 and a unique local-in-time
solution (𝜓,𝑁,A) to (9)–(13) such that

𝜓 ∈ 𝐿∞ ([0, 𝑇) ;𝐻1 (R2)) ∩ 𝐶 ([0, 𝑇) ; 𝐿2 (R2)) ,
𝑁 ∈ 𝐿∞ ([0, 𝑇) ;𝐻1 (R2)) ∩ 𝐶 ([0, 𝑇) ; 𝐿2 (R2)) ,

𝜕𝑡𝑁 ∈ 𝐿∞ ([0, 𝑇) ; 𝐿2 (R2)) ,
𝐴0 ∈ 𝐿∞ ([0, 𝑇) ; 𝐿𝑞 (R2) ∩ 𝐿∞ (R2) ∩ 𝐻̇1 (R2)) ,
𝐴𝑗 ∈ 𝐿∞ ([0, 𝑇) ; 𝐿𝑞 (R2) ∩ 𝐻̇1 (R2)) ,

(15)

where 2 < 𝑞 < ∞. Moreover, the solution has continuous
dependence on initial data.

Our second result is concerned with a global solution in
energy space.

Theorem 2. For the initial data (𝜓0, 𝑛0, 𝑛1) ∈ 𝐻1(R2) ×𝐻1(R2) × 𝐿2(R2), there exists a unique global solution(𝜓,𝑁,A) to (9)–(13) such that
𝜓 ∈ 𝐿∞ ([0,∞) ;𝐻1 (R2)) ∩ 𝐶 ([0,∞) ; 𝐿2 (R2)) ,
𝑁 ∈ 𝐿∞ ([0,∞) ;𝐻1 (R2)) ∩ 𝐶 ([0,∞) ; 𝐿2 (R2)) ,

𝜕𝑡𝑁 ∈ 𝐿∞ ([0,∞) ; 𝐿2 (R2)) ,
𝐴0 ∈ 𝐿∞ ([0,∞) ; 𝐿𝑞 (R2) ∩ 𝐿∞ (R2) ∩ 𝐻̇1 (R2)) ,
𝐴𝑗 ∈ 𝐿∞ ([0,∞) ; 𝐿𝑞 (R2) ∩ 𝐻̇1 (R2)) ,

(16)

where 2 < 𝑞 < ∞. Moreover, the solution has continuous
dependence on initial data.

Note that, considering (11)–(13),𝐴𝑗 can be determined by𝜓 as

𝐴𝑗 = (−1)𝑗+1
2𝜋 ( 𝑥𝑗󸀠

|𝑥|2 ∗
󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2) , (17)

and then 𝐴0 can be determined as

𝐴0 =
2∑
𝑗=1

(−1)𝑗+1
𝜋 ( 𝑥𝑗

|𝑥|2 ∗ Im (𝜓𝜕𝑗󸀠𝜓))

+ 2∑
𝑗=1

(−1)𝑗+1
𝜋 ( 𝑥𝑗

|𝑥|2 ∗ (𝐴𝑗󸀠 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2)) ,
(18)

where 𝑗󸀠 = 2 if 𝑗 = 1, and 𝑗󸀠 = 1 if 𝑗 = 2. We present estimates
for A and refer to [3, 5] for proof.
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Proposition 3. Let 𝜓 ∈ 𝐻1(R2) and let A be the solution of
(11)-(13). Then, we have, for 2 < 𝑞 < ∞,

󵄩󵄩󵄩󵄩󵄩𝐴𝑗󵄩󵄩󵄩󵄩󵄩𝐿𝑞 ≲ 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩1+2/𝑞𝐿2 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩1−2/𝑞𝐿2 ,
󵄩󵄩󵄩󵄩󵄩∇𝐴𝑗󵄩󵄩󵄩󵄩󵄩𝐿2 ≲ 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩𝐿2 ,
󵄩󵄩󵄩󵄩𝐴0󵄩󵄩󵄩󵄩𝐿𝑞 ≲ (1 + 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2) 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2/𝑞𝐿2 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2−2/𝑞𝐿2 ,

󵄩󵄩󵄩󵄩𝐴0󵄩󵄩󵄩󵄩𝐿∞ + 󵄩󵄩󵄩󵄩∇𝐴0󵄩󵄩󵄩󵄩𝐿2 ≲ (1 + 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2) 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2 .

(19)

We will prove Theorems 1 and 2 in Sections 2 and
3, respectively. We conclude this section by giving a few
notations. We use the standard Sobolev spaces 𝐻𝑠(R2) with
the norm ‖𝑓‖𝐻𝑠 = ‖(1 − Δ)𝑠/2𝑓‖𝐿2 . We will use 𝑐, 𝐶 to denote
various constants. When we are interested in local solutions,
we may assume that 𝑇 ≤ 1. Thus we shall replace smooth
function of 𝑇, 𝐶(𝑇) by𝐶. We use𝐴 ≲ 𝐵 to denote an estimate
of the form 𝐴 ≤ 𝐶𝐵.
2. Proof of Theorem 1

In this sectionwe address the local well-posedness of solution
to (9)–(13).We note that if we remove the gauge fields and the
term |𝜓|2𝜓 from the CSSn system, it is the same as the Klein-
Gordon-Schödinger system with Yukawa coupling (KGS).
There are many studies on the Cauchy problem of the KGS
system in the Sobolev spaces𝐻𝑠 [6–9].Moreover, if we ignore
the interaction with the neutral field𝑁 which does not cause
any difficulty in obtaining a local solution, a local solution
for the CSSn system can be obtained in a similar way to
the CSS system. We could obtain a local regular solution by
referring to [2, 8] and then construct a local energy solution
by using the compactness argument introduced in [2, 3, 5, 6].
In other words, a local𝐻1-solution is constructed by the limit
of a sequence of more smooth solutions and it satisfies CSSn
system in the distribution sense. For the proof, we follow the
same argument as in [2]. So we omit the detail of the local
existence here. Since the compactness argument does not
guarantee the uniqueness and the continuous dependence on
initial data of a local solution, we would rather contribute
this section to show the uniqueness and the continuous
dependence on initial data of a local solution.

Theorem 4. Let (𝜓,𝑁,A) and (𝜓̃, 𝑁̃, Ã) be solutions to
(9)–(13) on (0, 𝑇) × R2 in the distribution sense with the same
initial data (𝜓0, 𝑛0, 𝑛1) ∈ 𝐻1(R2)×𝐻1(R2)×𝐿2(R2) satisfying
𝜓, 𝜓̃,𝑁, 𝑁̃ ∈ 𝐿∞ ([0, 𝑇) ;𝐻1 (R2))

∩ 𝐶 ([0, 𝑇) ; 𝐿2 (R2)) ,
𝜕𝑡𝑁, 𝜕𝑡𝑁̃ ∈ 𝐿∞ ([0, 𝑇) ; 𝐿2 (R2)) ,
󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿∞𝑇𝐻1 , 󵄩󵄩󵄩󵄩𝜓̃󵄩󵄩󵄩󵄩𝐿∞𝑇𝐻1 , ‖𝑁‖𝐿∞𝑇𝐻1 , 󵄩󵄩󵄩󵄩󵄩𝑁̃󵄩󵄩󵄩󵄩󵄩𝐿∞𝑇𝐻1 , 󵄩󵄩󵄩󵄩𝜕𝑡𝑁󵄩󵄩󵄩󵄩𝐿∞𝑇 𝐿2 ,

󵄩󵄩󵄩󵄩󵄩𝜕𝑡𝑁̃󵄩󵄩󵄩󵄩󵄩𝐿∞𝑇 𝐿2 ≤ 𝑀,

(20)

for some𝑀 > 0. Then, we have
󵄩󵄩󵄩󵄩(𝜓 − 𝜓̃) (𝑡, ⋅)󵄩󵄩󵄩󵄩𝐿2 = 0,

󵄩󵄩󵄩󵄩󵄩(𝑁 − 𝑁̃) (𝑡, ⋅)󵄩󵄩󵄩󵄩󵄩𝐻1 = 0, (21)

for 0 ≤ 𝑡 ≤ 𝑇. Moreover, the solution depends on initial data
continuously.

Before beginning the proof, we gather lemmas used for
the proof ofTheorem 4.We use the following 𝐿𝑝–𝐿𝑝󸀠 estimate
proved in [10] which plays an important role to control the
difference of solutions. It was used in [6] for the uniqueness
of the KGS system.

Lemma 5. Let 𝑓(𝑡, 𝑥) : R1+2 → R be a solution to

𝜕𝑡𝑡𝑓 − Δ𝑓 + 𝑓 = 𝐹, (𝑡, 𝑥) ∈ R
1+2,

𝑓 (0, 𝑥) = 0, (22)

𝜕𝑡𝑓 (0, 𝑥) = 0, (23)

and 𝑇(𝑡) be the Klein-Gordon propagator. Then, we have

𝑓 (𝑡, 𝑥) = ∫𝑡
0
𝑇 (𝑡 − 𝑠) 𝐹 (𝑠) 𝑑𝑠, (24)

and

‖𝑇 (𝑡) 𝐹‖𝐿6(R2) ≲ |𝑡|−1/3 ‖𝐹‖𝐿6/5(R2) . (25)

The Hardy-Littlewood-Sobolev inequality is also used to
control the difference of solutions. For the proof, we refer to
Theorem 6.1.3 in [11].

Lemma 6. Let 𝐼1 be the operator defined by
𝐼1𝑓 (𝑥) = ∫

R2

𝑓 (𝑦)󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑦. (26)

If 1/𝑞 = 1/𝑝 − 1/2, 1 < 𝑝 < 2, then we have
󵄩󵄩󵄩󵄩𝐼1𝑓󵄩󵄩󵄩󵄩𝐿𝑞(R2) ≤ √2𝜋𝑞1/2 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝(R2) . (27)

The following Gagliardo-Nirenberg inequality with the
explicit constant depending on 𝑞 is used to show the unique-
ness. It was proved in [12, 13] and used in [3, 5, 12, 13] to show
the uniqueness of the nonlinear Schrödinger equations.

Lemma 7. For 2 ≤ 𝑞 < ∞, we have

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑞(R2) ≤ (4𝜋)1/𝑞−1/2 (𝑞2)
1/2 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2/𝑞𝐿2(R2) 󵄩󵄩󵄩󵄩∇𝑓󵄩󵄩󵄩󵄩1−2/𝑞𝐿2(R2) . (28)

We need the following Grönwall type inequality.

Lemma 8. Let 𝑓(𝑡) be a continuous nonnegative function
defined on 𝐼 = [0, 𝑎) and has zero only at 0. Suppose that 𝑓
satisfies

𝑓 (𝑡) ≤ 𝛼(∫𝑡
0
𝑓 (𝑠) 𝑑𝑠)1−2/𝑞 + 𝛽∫𝑡

0
𝑓 (𝑠) 𝑑𝑠

for 𝑡 ∈ 𝐼,
(29)
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where 𝛼, 𝛽 > 0 and 𝑞 > 2. Then we have

∫𝑡
0
𝑓 (𝑠) 𝑑𝑠 ≤ (𝛼𝑒2𝛽𝑡/𝑞 − 𝛼

𝛽 )
𝑞/2

for 𝑡 ∈ 𝐼. (30)

Proof. Define

ℎ (𝑡) = 𝑞
2 (∫
𝑡

0
𝑓 (𝑠) 𝑑𝑠)2/𝑞 + 𝑞𝛼

2𝛽 . (31)

Then, the assumption (29) implies

ℎ󸀠 (𝑡) = (∫𝑡
0
𝑓 (𝑠) 𝑑𝑠)2/𝑞−1 𝑓 (𝑡)

≤ 𝛼 + 𝛽(∫𝑡
0
𝑓 (𝑠) 𝑑𝑠)2/𝑞 = 2𝛽

𝑞 ℎ (𝑡) ,
(32)

and the standard Grönwall’ inequality gives

ℎ (𝑡) ≤ ℎ (0) 𝑒2𝛽𝑡/𝑞 = 𝑞𝛼
2𝛽𝑒2𝛽𝑡/𝑞. (33)

Considering the definition of ℎ(𝑡) in the above inequality, we
have (30).

We also need the following inequality to show that the
solution is continuously dependent on initial data. We refer
to [14].

Lemma 9. Let 𝑞 > 1 and 𝑎, 𝑏 > 0. Let 𝑓 : [0,∞) → [0,∞)
satisfy

𝑓 (𝑡) ≤ 𝑎 + 𝑏∫𝑡
0
𝑓1−1/𝑞 (𝑠) 𝑑𝑠 (34)

for all 𝑡 ≥ 0. Then, 𝑓(𝑡) ≤ (𝑎1/𝑞 + 𝑏𝑞−1𝑡)𝑞 for all 𝑡 ≥ 0.
Nowwe are ready to proveTheorem 4.The basic rationale

is borrowed from [3, 5, 15]. Let (𝜓,𝑁,A) and (𝜓̃, 𝑁̃, Ã) be
solutions of (9)–(13) with the same initial data. If we set

𝑢 = 𝜓 − 𝜓̃ and V = 𝑁 − 𝑁̃, (35)

then the equations for 𝑢 and V satisfy

𝑖𝜕𝑡𝑢 + Δ𝑢 = (𝐴0 − 𝐴0) 𝜓 − 𝐴0𝑢
+ 2𝑖 (𝐴𝑗 − 𝐴𝑗) 𝜕𝑗𝜓 + 2𝑖𝐴𝑗𝜕𝑗𝑢
+ (𝐴2𝑗 − 𝐴2𝑗) 𝜓 + 𝐴2𝑗𝑢
+ (󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝜓̃󵄨󵄨󵄨󵄨2) 𝜓 + 󵄨󵄨󵄨󵄨𝜓̃󵄨󵄨󵄨󵄨2 𝑢 + 2V𝜓
+ 2𝑁̃𝑢,

(36)

𝜕𝑡𝑡V − ΔV + V = −2 (󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝜓̃󵄨󵄨󵄨󵄨2) , (37)

where

𝑢, V ∈ 𝐿∞ ([0, 𝑇) ;𝐻1 (R2)) ∩ 𝐶 ([0, 𝑇) ; 𝐿2 (R2)) ,
𝜕𝑡V ∈ 𝐿∞ ([0, 𝑇) ; 𝐿2 (R2)) . (38)

First of all, we will derive, for 𝑞 > 2,
sup
[0,𝑡]

‖𝑢‖2𝐿2 ≤ 𝛼(∫𝑡
0
sup
[0,𝑠]

‖𝑢‖2𝐿2 𝑑𝑠)
1−2/𝑞

+ 𝛽∫𝑡
0
sup
[0,𝑠]

‖𝑢‖2𝐿2 𝑑𝑠,
(39)

where

𝛼 = 𝑇2/𝑞𝑞𝑀2 (1 +𝑀4/𝑞 +𝑀2+4/𝑞) and 𝛽 = 𝑀2. (40)

Once we obtain (39), considering ‖𝑢(0, ⋅)‖𝐿2 = 0, Lemma 8
gives

∫𝑡
0
sup
[0,𝑠]

‖𝑢‖2𝐿2 𝑑𝑠

≤ 𝑇 (1 +𝑀4/𝑞 +𝑀2+4/𝑞)𝑞/2 [𝑞 (𝑒2𝑀2𝑇/𝑞 − 1)]𝑞/2 ,
(41)

for 0 ≤ 𝑡 ≤ 𝑇. We note that

lim
𝑡→0+

𝑒𝑏𝑡 − 1
𝑡 = 𝑏. (42)

Let us take the time interval 𝑇󸀠 ≤ 𝑇 satisfying (2 +𝑀2)(2𝑀2𝑇󸀠) < 1/2. Letting 𝑞 → ∞we have that ‖𝑢(𝑡, ⋅)‖𝐿2 =0 for 0 ≤ 𝑡 ≤ 𝑇󸀠. Using this argument repeatedly, we conclude
that ‖𝑢(𝑡, ⋅)‖𝐿2 = 0 for 0 ≤ 𝑡 ≤ 𝑇.

To derive the estimate (39), multiplying (36) by 𝑢 and
integrating the imaginary part on [0, 𝑡] ×R2, we have

‖𝑢 (𝑡)‖2𝐿2 = ∫𝑡
0
∫
R2
2 (𝐴0 − 𝐴0) Im (𝜓𝑢)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(I)

+ 4 (𝐴𝑗 − 𝐴𝑗)Re (𝜕𝑗𝜓𝑢)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(II)

+ 2𝐴𝑗𝜕𝑗 |𝑢|2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(III)

+ 2 (𝐴𝑗2 − 𝐴2𝑗) Im (𝜓𝑢)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(IV)

+ 2 (󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝜓̃󵄨󵄨󵄨󵄨2) Im (𝜓𝑢)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(V)

+ 4V Im (𝜓𝑢)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(VI)

𝑑𝑥𝑑𝑠.

(43)

Considering 𝜕𝑗𝐴𝑗 = 0, we have (III) = 0. Except for the
integral (VI), the right-hand side of (43) is bounded, by
adopting the same manner described in [3, 5], as follows.

(I) + (II) + (IV) + (V)
≲ 𝑇2/𝑞𝑞𝑀2 (1 +𝑀4/𝑞 +𝑀2+4/𝑞)
⋅ (∫𝑡
0
sup
[0,𝑠]

‖𝑢‖2𝐿2 𝑑𝑠)
1−2/𝑞

.
(44)
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Wewill provide, for instance, the bound for (II) and (IV).The
rest can be proved in a similar way. Due to (17), Lemma 6 and
Lemma 7 lead to

󵄩󵄩󵄩󵄩󵄩𝐴𝑗󵄩󵄩󵄩󵄩󵄩𝐿6 ≲ 󵄩󵄩󵄩󵄩󵄩𝐼1 (󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2)󵄩󵄩󵄩󵄩󵄩𝐿6 ≲ 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿3 (45)

and

󵄩󵄩󵄩󵄩󵄩𝐴𝑗 − 𝐴𝑗󵄩󵄩󵄩󵄩󵄩𝐿𝑞 ≲ 󵄩󵄩󵄩󵄩󵄩𝐼1 (󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝜓̃󵄨󵄨󵄨󵄨2)󵄩󵄩󵄩󵄩󵄩𝐿𝑞
≲ 𝑞1/2 󵄩󵄩󵄩󵄩(󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜓̃󵄨󵄨󵄨󵄨) |𝑢|󵄩󵄩󵄩󵄩𝐿𝑝
≲ 𝑞1/2 (󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿𝑞 + 󵄩󵄩󵄩󵄩𝜓̃󵄩󵄩󵄩󵄩𝐿𝑞) ‖𝑢‖𝐿2
≲ 𝑞𝑀‖𝑢‖𝐿2 ≲ 𝑞𝑀1+2/𝑞 ‖𝑢‖1−2/𝑞

𝐿2
,

(46)

where𝑝 is determined by 1/𝑞 = 1/𝑝−1/2. For 1/𝑟+1/𝑞 = 1/2,
the Hölder’s inequality and Gagliardo-Nirenberg inequality
yield

∫
R2

󵄨󵄨󵄨󵄨󵄨4 (𝐴𝑗 − 𝐴𝑗)Re (𝜕𝑗𝜓𝑢)󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
≲ 󵄩󵄩󵄩󵄩󵄩𝐴𝑗 − 𝐴𝑗󵄩󵄩󵄩󵄩󵄩𝐿𝑞 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩𝐿2 ‖𝑢‖𝐿𝑟
≲ 𝑀2−2/𝑟 ‖𝑢‖2/𝑟

𝐿2
󵄩󵄩󵄩󵄩󵄩𝐴𝑗 − 𝐴𝑗󵄩󵄩󵄩󵄩󵄩𝐿𝑞 ≲ 𝑞𝑀2+4/𝑞 ‖𝑢‖2−4/𝑞

𝐿2
.

(47)

Thus, the Hölder’s inequality gives

∫𝑡
0
∫
R2

󵄨󵄨󵄨󵄨󵄨4 (𝐴𝑗 − 𝐴𝑗)Re (𝜕𝑗𝜓𝑢)󵄨󵄨󵄨󵄨󵄨 𝑑𝑥

≲ 𝑞𝑀2+4/𝑞 ∫𝑡
0
‖𝑢 (𝑠)‖2−4/𝑞

𝐿2
𝑑𝑠

≲ 𝑇2/𝑞𝑞𝑀2+4/𝑞 (∫𝑡
0
‖𝑢 (𝑠)‖2𝐿2 𝑑𝑠)

1−2/𝑞 .

(48)

For the integral (IV), similar estimate shows

∫
R2

󵄨󵄨󵄨󵄨󵄨2 (𝐴𝑗2 − 𝐴2𝑗) Im (𝜓𝑢)󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
≲ 󵄩󵄩󵄩󵄩󵄩A𝑗 − 𝐴𝑗󵄩󵄩󵄩󵄩󵄩𝐿𝑞 (󵄩󵄩󵄩󵄩󵄩𝐴𝑗󵄩󵄩󵄩󵄩󵄩𝐿6 + 󵄩󵄩󵄩󵄩󵄩𝐴𝑗󵄩󵄩󵄩󵄩󵄩𝐿6) 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿3 ‖𝑢‖𝐿𝑟
≲ 𝑞𝑀1+2/𝑞 ‖𝑢‖1−2/𝑞

𝐿2
(󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿3 + 󵄩󵄩󵄩󵄩𝜓̃󵄩󵄩󵄩󵄩2𝐿3) 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿3 ‖𝑢‖𝐿𝑟

≲ 𝑞𝑀4+4/𝑞 ‖𝑢‖2−4/𝑞
𝐿2

,

(49)

which implies

∫𝑡
0
∫
R2

󵄨󵄨󵄨󵄨󵄨2 (𝐴𝑗2 − 𝐴2𝑗) Im (𝜓𝑢)󵄨󵄨󵄨󵄨󵄨 𝑑𝑥

≲ 𝑇2/𝑞𝑞𝑀4+4/𝑞 (∫𝑡
0
‖𝑢 (𝑠)‖2𝐿2 𝑑𝑠)

1−2/𝑞 .
(50)

For the integral (VI), we first apply Lemma 5 to (37) which
leads to

‖V (𝑠)‖𝐿6 ≲ ∫𝑠
0

󵄩󵄩󵄩󵄩󵄩𝑇 (𝑠 − 𝜏) (󵄨󵄨󵄨󵄨𝜓 (𝜏)󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝜓̃ (𝜏)󵄨󵄨󵄨󵄨2)󵄩󵄩󵄩󵄩󵄩𝐿6 𝑑𝜏
≲ ∫𝑠
0
|𝑠 − 𝜏|−1/3 ‖𝑢 (𝜏)‖𝐿2 (󵄩󵄩󵄩󵄩𝜓 (𝜏)󵄩󵄩󵄩󵄩𝐿3 + 󵄩󵄩󵄩󵄩𝜓̃ (𝜏)󵄩󵄩󵄩󵄩𝐿3) 𝑑𝜏

≲ 𝑀𝑠2/3sup
[0,𝑠]

‖𝑢‖𝐿2 .
(51)

Then, we have

∫𝑡
0
∫
R2

󵄨󵄨󵄨󵄨4V Im (𝜓𝑢)󵄨󵄨󵄨󵄨 𝑑𝑥𝑑𝑠

≲ ∫𝑡
0
‖V (𝑠)‖𝐿6 󵄩󵄩󵄩󵄩𝜓 (𝑠)󵄩󵄩󵄩󵄩𝐿3 ‖𝑢 (𝑠)‖𝐿2 𝑑𝑠

≲ 𝑀2 ∫𝑡
0
sup
[0,𝑠]

‖𝑢‖2𝐿2 𝑑𝑠.
(52)

Collecting these bounds (44), (52), we obtain (39) which
implies

‖𝑢 (𝑡, ⋅)‖𝐿2 = 0 for 0 ≤ 𝑡 ≤ 𝑇. (53)
On the other hand,multiplying (37) by 𝜕𝑡V and integrating

over [0, 𝑡] ×R2, we have󵄩󵄩󵄩󵄩𝜕𝑡V (𝑡)󵄩󵄩󵄩󵄩2𝐿2 + ‖∇V (𝑡)‖2𝐿2 + ‖V (𝑡)‖2𝐿2
= −4∫𝑡

0
∫
R2
(󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝜓̃󵄨󵄨󵄨󵄨) (󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜓̃󵄨󵄨󵄨󵄨) 𝜕𝑡V 𝑑𝑥𝑑𝑠,

(54)

for 0 ≤ 𝑡 ≤ 𝑇. The Hölder’s inequality and Gagliardo-
Nirenberg inequality give us
󵄩󵄩󵄩󵄩𝜕𝑡V (𝑡)󵄩󵄩󵄩󵄩2𝐿2 + ‖∇V (𝑡)‖2𝐿2 + ‖V (𝑡)‖2𝐿2

≲ ∫𝑡
0
‖𝑢 (𝑠)‖𝐿6 (󵄩󵄩󵄩󵄩𝜓 (𝑠)󵄩󵄩󵄩󵄩𝐿3 + 󵄩󵄩󵄩󵄩𝜓̃ (𝑠)󵄩󵄩󵄩󵄩𝐿3) 󵄩󵄩󵄩󵄩𝜕𝑡V (𝑠)󵄩󵄩󵄩󵄩𝐿2 𝑑𝑠

≲ 𝑀2 ∫𝑡
0
‖𝑢 (𝑠)‖1/3

𝐿2
‖∇𝑢 (𝑠)‖2/3

𝐿2
𝑑𝑠 = 0.

(55)

Finally, continuous dependence on initial data follows
from the same estimates above and the same argument in [14].
Let (𝜓,𝑁,A) and (𝜓̃, 𝑁̃, Ã) be solutions of (9)–(13) with the
initial data (𝜓0, 𝑛0, 𝑛1) and (𝜓̃0, 𝑛0, 𝑛1), respectively. If we set𝑢 = 𝜓 − 𝜓̃ and 𝑢0 = 𝜓0 − 𝜓̃0, the above estimates show

sup
[0,𝑡]

‖𝑢‖2𝐿2 ≤ 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝐿2 + 𝑞𝑀2 (1 +𝑀4/𝑞 +𝑀2+4/𝑞)

⋅ ∫𝑡
0
sup
[0,𝑠]

‖𝑢 (𝑠)‖2(1−2/𝑞)
𝐿2

𝑑𝑠.
(56)

Applying Lemma 9 to (56), we have

sup
[0,𝑡]

‖𝑢‖2𝐿2

≤ (󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩4/𝑞𝐿2 +𝑀2 (1 +𝑀4/𝑞 +𝑀2+4/𝑞) 𝑇)𝑞/2 ,
(57)

and this implies that the solution depends on initial data
continuously in 𝐿2 locally uniformly in time.
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3. Proof of Theorem 2

In this section we study the existence of a global solution to
(9)–(13). Firstly, we derive the conservation laws (6) and (7).
Multiplying (1) by 𝜓 and taking its conjugate, we have

𝑖𝜕𝑡𝜓𝜓 + Δ𝜓𝜓 = −𝐴0 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 + 𝐴2𝑗 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 + 2𝑖𝐴𝑗𝜕𝑗𝜓𝜓
+ 𝑖𝜕𝑗𝐴𝑗 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨4 + 2𝑁 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 ,

(58)

−𝑖𝜕𝑡𝜓𝜓 + Δ𝜓𝜓 = −𝐴0 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 + 𝐴2𝑗 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 − 2𝑖𝐴𝑗𝜕𝑗𝜓𝜓
− 𝑖𝜕𝑗𝐴𝑗 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨4 + 2𝑁 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 .

(59)

Subtracting (59) from (58), we obtain

𝑖𝜕𝑡 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 + Δ𝜓𝜓 − Δ𝜓𝜓 = 2𝑖𝜕𝑗 (𝐴𝑗 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2) . (60)

Then, integration by parts on R2 gives

𝑑
𝑑𝑡 󵄩󵄩󵄩󵄩𝜓 (𝑡, ⋅)󵄩󵄩󵄩󵄩𝐿2 = 0, (61)

which implies (6).
Multiplying (1) by 𝜕𝑡𝜓 and taking its conjugate, we have

𝑖𝜕𝑡𝜓𝜕𝑡𝜓 + Δ𝜓𝜕𝑡𝜓 = −𝐴0𝜓𝜕𝑡𝜓 + 𝐴2𝑗𝜓𝜕𝑡𝜓
+ 2𝑖𝐴𝑗𝜕𝑗𝜓𝜕𝑡𝜓 + 𝑖𝜕𝑗𝐴𝑗𝜓𝜕𝑡𝜓
+ 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 𝜓𝜕𝑡𝜓 + 2𝑁𝜓𝜕𝑡𝜓,
− 𝑖𝜕𝑡𝜓𝜕𝑡𝜓 + Δ𝜓𝜕𝑡𝜓

= −𝐴0𝜓𝜕𝑡𝜓 + 𝐴2𝑗𝜓𝜕𝑡𝜓
− 2𝑖𝐴𝑗𝜕𝑗𝜓𝜕𝑡𝜓 − 𝑖𝜕𝑗𝐴𝑗𝜓𝜕𝑡𝜓
+ 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 𝜓𝜕𝑡𝜓 + 2𝑁𝜓𝜕𝑡𝜓.

(62)

Summing the both sides and integrating by parts on R2, we
obtain

− ∫
R2
𝜕𝑡 󵄨󵄨󵄨󵄨∇𝜓󵄨󵄨󵄨󵄨2 𝑑𝑥 − ∫

R2
𝐴2𝑗𝜕𝑡 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(i)

+ ∫
R2
4𝐴𝑗 Im (𝜕𝑗𝜓𝜕𝑡𝜓) + 2𝜕𝑗𝐴𝑗 Im (𝜓𝜕𝑡𝜓) 𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(ii)

= −∫
R2
𝐴0𝜕𝑡 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 𝑑𝑥 + 1

2 ∫R2 𝜕𝑡
󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨4 𝑑𝑥

+ 2∫
R2
𝑁𝜕𝑡 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 𝑑𝑥.

(63)

Considering

(i) = ∫
R2
𝜕𝑡 [𝐴2𝑗 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2] − 𝜕𝑡𝐴2𝑗 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 𝑑𝑥,

(ii) = ∫
R2
2𝐴𝑗 Im (𝜕𝑗𝜓𝜕𝑡𝜓) + 2𝐴𝑗 Im (𝜓𝜕𝑗𝜕𝑡𝜓) 𝑑𝑥

= ∫
R2
2𝜕𝑡 [𝐴𝑗 Im (𝜓𝜕𝑗𝜓)]

− 2𝜕𝑡𝐴𝑗 Im (𝜓𝜕𝑗𝜓) 𝑑𝑥,

(64)

and

𝜕𝑡 󵄨󵄨󵄨󵄨󵄨𝐷𝑗𝜓󵄨󵄨󵄨󵄨󵄨2 = 𝜕𝑡 󵄨󵄨󵄨󵄨∇𝜓󵄨󵄨󵄨󵄨2 − 2𝜕𝑡 [𝐴𝑗 Im (𝜓𝜕𝑗𝜓)]
+ 𝜕𝑡 [𝐴2𝑗 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2] ,

(65)

the left side of (63) becomes

− 𝑑
𝑑𝑡 ∫R2

󵄨󵄨󵄨󵄨󵄨𝐷𝑗𝜓󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥
+ ∫

R2
𝜕𝑡𝐴2𝑗 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 − 2𝜕𝑡𝐴𝑗 Im (𝜓𝜕𝑗𝜓) 𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(iii)

. (66)

On the other hands, multiplying (3), (4) by 𝜕𝑡𝐴2, 𝜕𝑡𝐴1,
respectively, we have

𝜕𝑡𝐴2 (𝜕0𝐴1 − 𝜕1𝐴0)
= 2𝜕𝑡𝐴2 Im (𝜓𝜕2𝜓) − 2𝐴2𝜕𝑡𝐴2 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 ,

− 𝜕𝑡𝐴1 (𝜕0𝐴2 − 𝜕2𝐴0)
= 2𝜕𝑡𝐴1 Im (𝜓𝜕1𝜓) − 2𝐴1𝜕𝑡𝐴1 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 .

(67)

Adding the both sides, we have

𝜕𝑡𝐴2𝑗 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 − 2𝜕𝑡𝐴𝑗 Im (𝜓𝜕𝑗𝜓)
= 𝜕𝑡𝐴2𝜕1𝐴0 − 𝜕𝑡𝐴1𝜕2𝐴0.

(68)

Replacing (iii) with this, integration by parts gives

(iii) = −∫
R2
𝐴0𝜕𝑡 (𝜕1𝐴2 − 𝜕2𝐴1) 𝑑𝑥

= −∫
R2
𝐴0𝜕𝑡 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 𝑑𝑥,

(69)

where (5) is used. Inserting (66) and (69) into (63), we have

𝑑
𝑑𝑡 ∫R2 2

󵄨󵄨󵄨󵄨󵄨𝐷𝑗𝜓󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨4 𝑑𝑥 = −4∫
R2
𝑁𝜕𝑡 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 𝑑𝑥. (70)

Now, multiplying (2) by 𝜕𝑡𝑁 and integrating on R2 provide

𝑑
𝑑𝑡 ∫R2 |∇𝑁|2 + 󵄨󵄨󵄨󵄨𝜕𝑡𝑁󵄨󵄨󵄨󵄨2 + 𝑁2𝑑𝑥 = −4∫

R2
𝜕𝑡𝑁 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 𝑑𝑥. (71)
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Adding (70) and (71), we finally obtain

𝑑
𝑑𝑡𝐸 (𝑡) = 0, (72)

which leads to (7).
Now we are ready to prove the existence of global

solution. By the conservation laws (6) and (7), we have

𝑄 (𝑡) = 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩𝐿2 = 𝑄 (0) , (73)

and

𝐸 (𝑡) = 2 ∑
𝑗=1,2

󵄩󵄩󵄩󵄩󵄩𝐷𝑗𝜓 (𝑡)󵄩󵄩󵄩󵄩󵄩2𝐿2 + ‖∇𝑁 (𝑡)‖2𝐿2 + 󵄩󵄩󵄩󵄩𝜕𝑡𝑁(𝑡)󵄩󵄩󵄩󵄩2𝐿2
+ ‖𝑁 (𝑡)‖2𝐿2 + 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩4𝐿4
+ 4∫

R2
𝑁 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 (𝑡, 𝑥) 𝑑𝑥 = 𝐸 (0) .

(74)

Because we do not know the sign of the last term 𝑁|𝜓|2,
the energy conservation (74) does not imply a global energy
solution directly. Therefore we would find a bound for the
last term and then a uniform bound for𝐻1-norm of solution
which leads to global existence. We refer to [8].

Using the Hölder’s inequality, Lemma 7, and Young’s
inequality, we have

− 4∫
R2
𝑁 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 (𝑡, 𝑥) 𝑑𝑥

≤ 4 ‖𝑁 (𝑡)‖𝐿4 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩𝐿4 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩𝐿2
≤ 4 ‖𝑁 (𝑡)‖1/2

𝐿2
‖∇𝑁 (𝑡)‖1/2

𝐿2
󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩𝐿4 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩𝐿2

≤ 1
4 ‖∇𝑁 (𝑡)‖2𝐿2 + 1

4 ‖𝑁 (𝑡)‖2𝐿2 + 1
4 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩4𝐿4

+ 26 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩4𝐿2 .

(75)

From (75) and (74), it follows that

2 󵄩󵄩󵄩󵄩󵄩𝐷𝑗𝜓 (𝑡)󵄩󵄩󵄩󵄩󵄩2𝐿2 + ‖∇𝑁 (𝑡)‖2𝐿2 + 󵄩󵄩󵄩󵄩𝜕𝑡𝑁(𝑡)󵄩󵄩󵄩󵄩2𝐿2 + ‖𝑁 (𝑡)‖2𝐿2
+ 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩4𝐿4

≤ 𝐸 (0) + 26𝑄 (0)4 + 1
4 ‖∇𝑁 (𝑡)‖2𝐿2 + 1

4 ‖𝑁 (𝑡)‖2𝐿2
+ 1
4 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩4𝐿4

(76)

which implies

󵄩󵄩󵄩󵄩󵄩𝐷𝑗𝜓 (𝑡)󵄩󵄩󵄩󵄩󵄩2𝐿2 + ‖∇𝑁 (𝑡)‖2𝐿2 + 󵄩󵄩󵄩󵄩𝜕𝑡𝑁(𝑡)󵄩󵄩󵄩󵄩2𝐿2 + ‖𝑁 (𝑡)‖2𝐿2
+ 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩4𝐿4 ≤ 𝑐.

(77)

Referring to Proposition 3, the Hölder’s inequality and
Young’s inequality give

󵄩󵄩󵄩󵄩∇𝜓 (𝑡)󵄩󵄩󵄩󵄩2𝐿2 ≤ 2 󵄩󵄩󵄩󵄩󵄩𝐷𝑗𝜓 (𝑡)󵄩󵄩󵄩󵄩󵄩2𝐿2 + 2 󵄩󵄩󵄩󵄩󵄩𝐴𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩2𝐿4 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩2𝐿4
≤ 2 󵄩󵄩󵄩󵄩󵄩𝐷𝑗𝜓 (𝑡)󵄩󵄩󵄩󵄩󵄩2𝐿2

+ 2𝐶 󵄩󵄩󵄩󵄩∇𝜓 (𝑡)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩3𝐿2 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩2𝐿4
≤ 2 󵄩󵄩󵄩󵄩󵄩𝐷𝑗𝜓 (𝑡)󵄩󵄩󵄩󵄩󵄩2𝐿2 + 1

2 󵄩󵄩󵄩󵄩∇𝜓 (𝑡)󵄩󵄩󵄩󵄩2𝐿2
+ 2𝐶2 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩6𝐿2 󵄩󵄩󵄩󵄩𝜓 (𝑡)󵄩󵄩󵄩󵄩4𝐿4 ,

(78)

which yields

󵄩󵄩󵄩󵄩∇𝜓 (𝑡)󵄩󵄩󵄩󵄩2𝐿2 ≤ 4𝑐 (1 + 𝐶2𝑄 (0)6) . (79)
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