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We obtain exact expressions for the first three moments of the heat conductance of a quantum chain that crosses over from
a superconducting quantum dot to a superconducting disordered quantum wire. Our analytic solution provides exact detailed
descriptions of all crossovers that can be observed in the system as a function of its length, which include ballistic-metallic and
metallic-insulating crossovers.The twoBogoliubov-deGennes (BdG) symmetry classeswith time-reversal symmetry are accounted
for. The striking effect of total suppression of the insulating regime in systems with broken spin-rotation invariance is observed at
large length scales. For a single channel system, this anomalous effect can be interpreted as a signature of the presence of the elusive
Majorana fermion in a condensed matter system.

1. Introduction

Random-matrix theory (RMT) has been widely used in the
study of phase-coherent complex quantum systems and has
been particularly successful in uncovering universal proper-
ties of quantum transport in chaotic and disordered systems
[1]. Much of the success of RMT in quantum transport is
due to the strong correspondence between the statistical
properties of random-matrix ensembles and the fluctuations
of measured observables of complex quantum systems as a
function of some control parameter, such as energy or mag-
netic field. The universality of transport properties, such as
the moments of the conductance, lies in their independence
of microscopic details of the scattering source. Nevertheless,
random-matrix ensembles are sensitive to certain intrinsic
symmetries of the system, such as time-reversal (TR), spin-
rotation (SR), electron-hole (e-h), and chiral (Ch). It has been
established that these symmetries lead to a classification of
RMT ensembles into ten universal classes (the tenfold way)
[2, 3], which are divided into three categories: (i) Wigner-
Dyson (WD, three classes), appropriate to describe normal
disordered conductors, (ii) chiral (Ch, three classes), appro-
priate for systemswith a purely off-diagonal disorder, and (iii)

Bogoliubov-de Gennes (BdG, four classes), appropriate for
normal-superconducting (NS) hybrid systems.

From the perspective of quantum transport, phase-
coherent mesoscopic systems can be classified into two types:
(I) disordered conductors, in which impurities generate
multiple elastic scatterings with an associated mean free path𝑙 that is less than the system’s dimensions, and (II) ballistic
cavities, where 𝑙 is greater than the system’s dimensions
and thus the dominant scattering mechanism is reflection
at the border of the cavity. Remarkably, RMT can efficiently
describe both types of systems since universal transport
properties do not depend on the details of either the impurity
potential (for disordered systems) or the shape of the cavity
(for ballistic systems) [1]. This insensitivity to microscopic
details goes as far as to allow an identification, under certain
conditions, of a multichannel disordered quantum wire with
a chain of ballistic cavities [4].

Besides RMT, there are other well-developed approaches
to quantum transport in both disordered wires and chaotic
ballistic cavities: the field-theoretic nonlinear sigma model
[5] and the trajectory-based semiclassical approach [6] are
the most well known. These three approaches have many
advantages and pitfalls, but since they are constructed from
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different and somewhat unrelated statistical hypothesis on
the behavior of the underlying degrees of freedom, they
may be considered a complementary, albeit equivalent,
physical description of the system. Notwithstanding, a full
fledged mathematical proof of the equivalence of these three
approaches is still missing, in spite of much effort and some
successes in particular systems, such as quantum dots with
ideal couplings to external leads [7].

In superconducting systems, quantum transport has very
striking and different features in comparison with their
normal counterpart, which in part is due to what is known as
Andreev reflections (AR).Themost remarkable phenomenon
is probably the possibility of a condensed matter realization
ofMajorana fermions as protected bound states at the ends of
topological superconductingwires [8]. Transport observables
in these systems, such as the electrical conductivity, can
give information about topological invariants and topological
quantum numbers. The thermal conductivity, on the other
hand, despite maybe not containing direct information of
topological invariants, as can be seen from their random-
matrix description [9], can still provide valuable information
about topological phase transitions [10]. It was, however,
in the study of disordered quantum wires that evidence of
the presence of condensed matter Majorana modes emerged
most clearly. These can be traced back to the prediction [11]
that for quantum wires in the chiral classes (for odd 𝑁 open
scattering channels) and in the superconducting D and DIII
classes there is no exponential localization, since, unlike its
behavior in the standard classes, the average conductance falls
off in the limit of long distances 𝐿 ≫ 𝑁𝑙 as 1/√𝐿, which is a
kind of super-ohmic behavior. They also found that in these
special classes the average density of states (DOS) diverges
logarithmically, 𝜌(𝜀) ∼ 1/|𝜀𝜏 ln3(𝜀𝜏)|, as energy 𝜀 󳨀→ 0
(where 𝜏 = 𝑁2𝑙 and the Fermi velocity has been set to unity).
A similar singularity had already been found by Dyson in the
analysis of disordered linear chains [12]. On the other hand,
[13] found through a general analysis using strong-disorder
renormalization group (RG) that systems of classes D and
DIII exhibit localization and an average DOS that vanishes as
a power law 𝜌(𝜀) ∼ |𝜀𝜏|�훿−1 with 𝛿 > 0, as 𝜀 󳨀→ 0. Remarkably,
at certain critical points obtained by fine-tuning the disorder,
both delocalization and Dyson’s divergence can be present.
The authors of [13] were also among the first to relate this
special type of criticality to transitions between topological
phases and also to point out that it could be a signature of the
existence of Majorana zero modes. Reference [14] confirmed
these results and presented evidence that the delocalization
at critical points is well described by the DMPK equation
of superconductors. Furthermore, they claimed that there
may be “superuniversality” combining the chiral class and the
superconducting classes D and DIII, since they have certain
similar characteristics in regard to these critical points. Later,
the authors of [15] argued that the diverging nature of the
average density of states at the band center is a signature of
topologically protected zero modes bound to point defects.

In this paper we employ random-matrix theory to study
two classes of superconducting dot-wire systems. We obtain,
in the continuum limit of a quantum chain with TR sym-
metry, an exact description of the crossover in thermal

conduction between a superconducting chaotic ballistic cav-
ity (a quantum dot) and a disordered multichannel super-
conducting quantum wire. The calculations were guided by
a recent classification scheme of RMT Brownian motion
ensembles [16] and were performed by means of a multi-
variate integral transform method proposed in [16, 17]. More
specifically, we obtain exact expressions for the first three
moments of the heat conductance of two classes of disordered
superconducting quantum wires with time-reversal symme-
try and with a crossover to a quantum dot in the small length
limit.The analytic solution describes in detail various types of
crossovers as a function of the systems’ length, which include
ballistic-metallic and metallic-insulating crossovers. If the
system is realized as a single channel topological supercon-
ductor with broken spin-rotation invariance, we can interpret
the total suppression of the insulating regime as a signature of
the presence of a condensed matter Majorana fermion.

2. The Scattering Problem

Consider a confined quantum system ideally coupled to two
electron reservoirs via point contacts with 𝑁1 and 𝑁2 open
scattering channels, respectively. According to the Landauer-
Büttiker scattering formalism [18], coherent particle transfer
through such a device can be efficiently described by its
scattering matrix, which can be generically written as

𝑆 = [𝑟�푁1×�푁1 𝑡�푁1×�푁2𝑡�耠�푁2×�푁1 𝑟�耠�푁2×�푁2] , (1)

where 𝑟 and 𝑟�耠 are reflection matrices and 𝑡 and 𝑡�耠 are
transmission matrices. The subscripts denote the matrix
dimensions and the matrices 𝑡𝑡† and 𝑡�耠𝑡�耠† are Hermitian
and although they have different spectra, the spectrum of
the smaller matrix coincides with the nonzero eigenvalues
(transmission eigenvalues) of the bigger one (𝜏1, . . . , 𝜏�푁) ∈[0, 1]�푁. Transport observables can be conveniently written
in terms of these transmission eigenvalues. For instance, the
thermal conductance of a superconducting system, at low
temperature 𝑇, is given by [19],

𝐺 = 𝐺0𝑑 �푁∑
�푖

𝜏�푖, (2)

where 𝐺0 = 𝜋2𝑘2�퐵𝑇/6ℎ, 𝑁 = min(𝑁1,𝑁2), and 𝑑 is the spin
and/or particle-hole degeneracy.

In ballistic chaotic cavities the transmission eigenvalues
are strongly correlated random variables, which because of
assumption of ergodic dynamics are well described by RMT.
According to RMT, the scattering matrix of a ballistic chaotic
cavity with ideal contacts is uniformly distributed over its
manifold, and thus the probability density is only restricted by
the presence or absence of certain symmetries. For the BdG
classes the corresponding joint distribution of transmission
eigenvalues is given by [19]

𝑃 ({𝜏}) = 𝐶�푁∏
�푖<�푗

󵄨󵄨󵄨󵄨󵄨𝜏�푖 − 𝜏�푗󵄨󵄨󵄨󵄨󵄨�훽∏
�푖

𝜏�훽(�휇+1)/2−1�푖 (1 − 𝜏�푖)�훾/2 , (3)

where 𝜇 = |𝑁1 − 𝑁2| and 𝐶�푁 is a normalization constant.
The values of the parameters 𝛽 and 𝛾 are solely determined



Advances in Mathematical Physics 3

L

superconductor

+Δ

-Δ

T0T0+T

Figure 1: By varying the sample’s length 𝐿, we can go from a
quantum dot to a chain of dots, which in the continuous limit is
a quantum wire. The conducting device is bounded by supercon-
ductors with a phase difference of 𝜋 (order parameters given by ±Δ)
and connected to electron reservoirs with different temperatures via
ideal contacts.

by the symmetries, as shown in Table II of [19]. Here we
shall consider only systems in the presence of TR symmetry,
which implies 𝛽 = 2. Moreover, we must set 𝛾 = 1 for
systems in the presence of SR symmetry and 𝛾 = −1 for
systems with broken SR symmetry. According to the tenfold
way of classifying random-matrix ensembles, these classes
are denoted by CI and DIII, respectively. We remark that the
system described by (3) differs from a normal ballistic cavity,
because, in addition to the two normal contacts coupling
to the reservoirs, the cavity is geometrically defined by a
normal-superconducting interface, which generates Andreev
reflections [1]. As a matter of fact, this type of cavity is also
known as an Andreev quantum dot [19]. We remark that if
we set 𝛾 = 0 in (3) we recover the Wigner-Dyson A class for
normal systems with broken TR symmetry, which turns out
to be a useful way to compare our exact expressions for the
moments of the thermal conductance with known results of
the literature.

We proceed by combining Andreev quantum dots in a
chain geometry, as shown in Figure 1. In such a setup the
excitation gap induced by the proximity effect in the inner
region is closed by adjusting the superconducting boundaries
to have a phase difference of 𝜋, which also ensures that there
is no breaking of TR symmetry [10, 19].The RMTdescription
of the system can be obtained by appropriately combining
the scattering matrices of the Andreev quantum dots, or
from the corresponding product of random transfermatrices;
see [20] for more details. An equivalent description using
the supersymmetric nonlinear sigma model is also possible
[21]. Since we want to obtain exact analytical results, we
follow [22, 23] and take the continuum limit which leads to
a Fokker-Planck equation for the evolution, with the sample’s
length, of the joint probability distribution of transmission
eigenvalues with a zero-length initial condition given by
the RMT description of an Andreev quantum dot. See [21,
23] for the corresponding problem with normal quantum
dots.

The Fokker-Planck equation of a disordered Andreev
quantum wire of length 𝐿, with 𝑁 open scattering channels
and localization length 𝜉, is given by [11]

𝜕𝑃𝜕𝑠 = �푁∑
�푖

𝜕𝜕𝑞�푖 𝐽 𝜕𝜕𝑞�푖 𝑃𝐽 , (4)

where 𝑠 = 𝐿/[2𝑙(𝛽𝑁 − 𝛽 + 𝛼 + 1)] is an adimensional length
and

𝐽 = ∏
�푖<�푗

󵄨󵄨󵄨󵄨󵄨cosh (2𝑞�푖) − cosh (2𝑞�푗)󵄨󵄨󵄨󵄨󵄨�훽 �푁∏
�푖

sinh�훼 (2𝑞�푖) . (5)

The variables 𝑞�푖 are related to the transmission eigenvalues
through the relation 𝜏�푖 = sech2(𝑞�푖) and since we are consid-
ering superconducting TR-symmetric systems, we must set𝛽 = 2. The parameter 𝛼 can take the values 𝛼 = 2 (in the
presence of SR symmetry) and 𝛼 = 0 (in the absence of SR
symmetry). The WD class is obtained by setting 𝛼 = 1 and
assuming that TR symmetry is broken.

The problem has thus been reduced to solving (4) with
an initial condition given by (3), which is the joint proba-
bility distribution of transmission eigenvalues of an Andreev
quantum dot. Remarkably, an exact analytical solution can
be constructed using an integral transform method [16]
which provides a complete description of the crossover of the
thermal conductance moments as a function of the system’s
length, covering all transport regimes: ballistic, metallic, and
insulating. For a related study of a normal dot-wire system
(WD class) with broken TR symmetry, see [22].

3. The Integral Transform Method

A powerful way to represent the probability distributions of
theRMTensembles is to employ a classification schemebased
on matrix-valued Brownian motion ensembles [16]. For the
BdG classes with TR symmetry (DIII and CI) we may define
the following functions:

𝐽�훽 ({𝑥}) = �푁∏
�푖<�푗

󵄨󵄨󵄨󵄨󵄨𝑥�푖 − 𝑥�푗󵄨󵄨󵄨󵄨󵄨�훽 ,
𝜔�푁 ({𝑥}) = �푁∏

�푖

𝜔 (𝑥�푖) ,
(6)

where the random variables 𝑥�푖 are related to the transmission
eigenvalues 𝜏�푖 via a simple procedure described in [16]. For
a ballistic cavity we may follow [24] and take 𝑥�푖 = 𝜏�푖 and
write the joint distribution as the stationary solution of the
corresponding Brownian motion. We thus get

𝑃(0) ({𝑥}) = 𝐶�푁𝐽�훽 ({𝑥}) 𝜔�푁 ({𝑥}) , (7)

where the function 𝜔(𝑥) is given in Table 1. Equation (7) will
be used as the initial condition of our crossover problem. On
the other hand, for a quasi-one-dimensional quantum wire
we may follow [25] and take 𝑥�푖 = cosh(2𝑞�푖) = (2 − 𝜏�푖)/𝜏�푖 and
write the corresponding Fokker-Planck equation as

𝜕𝑃𝜕𝑠 = �푁∑
�푖

𝜕𝜕𝑥�푖 𝑠 (𝑥�푖) 𝜔�푁𝐽�훽 𝜕𝜕𝑥�푖 𝑃𝜔�푁𝐽�훽 , (8)

where the functions 𝜔(𝑥) and 𝑠(𝑥) are also given in Table 1.
Instead of directly solving Fokker-Plank equation (8)

with initial condition (7), we employ an integral transform
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Table 1: Classification of Brownian motion ensembles for the BdG class.

RMT random variable 𝜔(𝑥) 𝑠(𝑥) a b
dot 𝑥�푖 = 𝜏�푖 𝑥�훽(�휇+1)/2−1 (1 − 𝑥)�훾/2 𝑥 (1 − 𝑥) 0 1
wire 𝑥�푖 = 2𝜏�푖 − 1 (𝑥2 − 1)(�훼−1)/2 𝑥2 − 1 1 ∞

method that effectivelymaps (8) onto amuch simpler Fokker-
Planck problem in an image space of smaller dimension. The
multidimensional integral transform is defined as [16]

𝑊({𝜗} , 𝑠) = ∫ 𝑑�푁𝑥Ω�훽 ({𝑥} , {𝜗}) 𝑃 ({𝑥} , 𝑠) , (9)

where the kernel Ω�훽 is chosen to have only two {𝜗} variables,
which is the minimal number of image variables that allows
the exact calculation of the first three heat conductance
moments. We remark that the integral transform cannot be
inverted in general and thus our method cannot produce
the full joint distribution of the transmission eigenvalues𝑃({𝑥}, 𝑠). However, in [16] a more general choice of the kernelΩ�훽 is presented and from it one could in principle calculate
all moments of the conductance. We proceed by defining

Ω�훽 ({𝑥} , {𝜗}) = �푁∏
�푖

𝑥�푖 − 𝜗0,1𝑥�푖 − 𝜗1,1 . (10)

The Fokker-Planck equation in image space {𝜗} is then given
by

( 𝜕𝜕𝑠 − M
†
�휗)𝑊({𝜗} , 𝑠) = 0, (11)

where

M
†
�휗 = 1𝑉𝐵

1∑
�푖=0

(−1)1+�푖 𝜕𝜕𝜗�푖,1 (𝑠 (𝜗�푖,1) 𝑉𝐵 𝜕𝜕𝜗�푖,1) (12)

and we defined

𝑉 = 𝜔 (𝜗0,1)𝜔 (𝜗1,1) ,
𝐵 = 1(𝜗0,1 − 𝜗1,1)2 .

(13)

We can now perform the transformation

𝑊({𝜗} , 𝑠) = 1 + 𝜔 (𝜗1,1) 𝐵−1/2Ψ ({𝜗} , 𝑠) (14)

that maps (11) onto a Schrödinger equation in imaginary time
(𝑠 󳨀→ 𝑖𝑡); thus

𝜕Ψ𝜕𝑡 +HΨ = 0, (15)

where

H = 1∑
�푖=0

(−1)�푖 1𝜔 (𝜗�푖) 𝜕𝜕𝜗�푖 (𝜔 (𝜗�푖) 𝑠 (𝜗�푖) 𝜕𝜕𝜗�푖) (16)

is a free particle Hamiltonian in image space.

We proceed by calculating 𝑊({𝜗}, 0) using the joint
distribution of the Andreev quantum dot (7). Here we may
again use the integral transform method with the following
modified kernel:

Ω(0)�훽 ({𝜏} , {𝜗}) = (1 − 𝜗01 − 𝜗1)
�푁 �푁∏
�푖

𝜏�푖 − 2/ (1 − 𝜗0)𝜏�푖 − 2/ (1 − 𝜗1) , (17)

where 𝜏�푖 = 𝑥�푖. The choice of kernel is motivated from the
connection between the supersymmetric nonlinear sigma
model and RMT [22]. From the stationary solution of the cor-
responding Fokker-Planck equation, we find (Appendix A)

𝑊({𝜗} , 0) = 1 + (𝜗0 − 𝜗1)
⋅ �푁−1∑
�푙=0

(1 − 𝜗0)�푙(1 − 𝜗1)�푙+1 (𝑓�푁−�푙−1 (𝜗0) 𝑔�푁−�푙−1 (𝜗1) − 1) , (18)

where

𝑓�푛 (𝜗0) = 𝐹 [−𝑛, −𝑛 − 𝜇; −2𝑛 − 𝜇 − 𝛾2 ; 1 − 𝜗02 ] ,
𝑔�푛 (𝜗1)

= 𝐹 [𝑛 + 1, 𝑛 + 1 + 𝜇; 2𝑛 + 𝜇 + 𝛾2 + 2; 1 − 𝜗12 ] ,
(19)

and 𝐹[𝑎, 𝑏; 𝑐; 𝑧] denotes the hypergeometric function.
We are now in position to unify the notations for the

symmetry indices 𝛾 and 𝛼 of the quantum dot and the
quantum wire, respectively. For that, we introduce the new
index

] = 𝛼 − 12 = 𝛾2 , (20)

which can have two values: ] = 1/2 (system with TR and SR
symmetry) or ] = −1/2 (systems with TR symmetry and no
SR symmetry). In the tenfold way of 𝑆-matrix classification,
these classes correspond to CI and DIII, respectively. We
remark that ] = 0 corresponds to the Wigner-Dyson A class
(systems with no TR symmetry).

4. Exact Solution for the Dot-Wire System

We can now address the full problem and solve (11), which
describes a multichannel superconducting quantum wire,
with a quantum dot initial condition given by (18). It will
prove convenient to use kernel (10) with the choices 𝜗0,1 =−𝜗0 and 𝜗1,1 = −𝜗1, so that we may write

Ω�훽 ({𝑥} , {𝜗}) = �푁∏
�푖

𝑥�푖 + 𝜗0𝑥�푖 + 𝜗1 . (21)
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Note that after using the relation 𝑥�푖 = 2/𝜏�푖−1we recover (17),
as expected.

Following the procedure introduced in [16, 22] we can
find the eigenvalues of the HamiltonianH shown in (16). We
start by specifying the domains of the variables 𝜗0 and 𝜗1.
Inspired by the supersymmetry calculations of [22], we set−1 ≤ 𝜗0 ≤ 1 and 1 ≤ 𝜗0 ≤ ∞. In this domain the eigenvalues
of H are 𝜀�푛�푘 = 𝑘2 + (𝑛 + ] + 1/2)2 and the corresponding
eigenfunctions are (Appendix B)

𝜑�푛�푘 (𝜗0, 𝜗1) = 𝐴(−])
�푘(ℎ(])�푛 )1/2𝑃(])�푛 (𝜗0) 𝐹(−])

�푘
(𝜗1)𝜔 (𝜗1) , (22)

where ℎ(])�푛 ≡ ℎ(],])�푛 and 𝐴(])�푘 are appropriate normalization
constants of the Jacobi polynomials 𝑃(])�푛 (𝜗0) ≡ 𝑃(],])�푛 (𝜗0) and
the hypergeometric function

𝐹(])�푘 (𝜗1) = 𝐹 [] + 12 + 𝑖𝑘, ] + 12 − 𝑖𝑘; ] + 1; 1 − 𝜗12 ] , (23)

respectively (see Appendices A and B).
We can now construct Green’s function of the problem by

means of its spectral resolution in terms of the eigenfunctions
and the eigenvalues ofH. We find

𝐺 ({𝜗} , {𝜗�耠} , 𝑡) = (1 − 𝜗�耠20 )] (𝜗�耠21 − 1)]
⋅ ∞∑
�푛=0

∫∞
0

𝑑𝑘𝜑�푛�푘 (𝜗0, 𝜗1) 𝜑�푛�푘 (𝜗�耠0, 𝜗�耠1) 𝑒−�푖�휀𝑛𝑘�푡. (24)

From the completeness of the eigenfunctions, it follows
immediately that

𝐺({𝜗} , {𝜗�耠} , 0) = 𝛿 (𝜗0 − 𝜗�耠0) 𝛿 (𝜗1 − 𝜗�耠1) , (25)

as expected for a propagator. Using (24) we can write (14) as

𝑊({𝜗} , 𝑠) = 1 + (𝜗0 − 𝜗1) 𝜔 (𝜗1) ∫1
−1

𝑑𝜗�耠0
⋅ ∫∞
1

𝑑𝜗�耠1𝐺 ({𝜗} , {𝜗�耠} , 𝑠) 𝑊 (𝜗�耠, 0) − 1(𝜗�耠0 − 𝜗�耠1) 𝜔 (𝜗�耠1) .
(26)

Inserting (18) and (24) into (26), we get

𝑊({𝜗} , 𝑠) = 1 + (𝜗0 − 𝜗1)
⋅ ∞∑
�푛=0

∫∞
0

𝑑𝑘(𝐴(−])
�푘

)2
ℎ(])�푛 𝑒−�휀𝑛𝑘�푠𝑃(])�푛 (𝜗0) 𝐹(−])�푘 (𝜗1)

× �푁−1∑
�푙=0

(𝐼(1)�푛�푙 𝐽(1)�푘�푙 − 𝐼(0)�푛�푙 𝐽(0)�푘�푙 ) ,
(27)

where 𝐼(�푖)
�푛�푙

and 𝐽(�푖)
�푘�푙
, 𝑖 ∈ {0, 1}, are obtained from the following

integrals:

𝐼(0)�푛�푙 = ∫1
−1

𝑑𝜗0 (1 − 𝜗20)] 𝑃(])�푛 (𝜗0) (1 − 𝜗0)�푙 ,
𝐽(0)�푘�푙 = ∫∞

1
𝑑𝜗1 𝐹(−])

�푘
(𝜗1)(𝜗21 − 1)V (1 − 𝜗1)�푙+1 ,

𝐼(1)�푛�푙
= ∫1
−1

𝑑𝜗0 (1 − 𝜗20)] 𝑃(])�푛 (𝜗0) (1 − 𝜗0)�푙 𝑓�푁−�푙−1 (𝜗0) ,
𝐽(1)�푘�푙 = ∫∞

1
𝑑𝜗1 𝐹(−])

�푘
(𝜗1)(𝜗21 − 1)V (1 − 𝜗1)�푙+1𝑔�푁−�푙−1 (𝜗1) .

(28)

The integrals are calculated in Appendix C for arbitrary 𝑁1
and 𝑁2. The final result is summarized in the following
theorem.

Theorem 1. The solution of Fokker-Planck equation (11) with
an initial condition given by (18), in the space of the coordinates{]}, is given by

𝑊({𝜗} , 𝑠) = 1 + 2 (𝜗0 − 𝜗1)�푁−1∑
�푛=0

𝑃(])�푛 (𝜗0) 𝑃(])�푛 (1)ℎ(])�푛
⋅ ∫∞
0

𝑑𝜇�푛�푘𝑐(])�푛�푘 (𝑁1) 𝑐(])�푛�푘 (𝑁2) 𝐹(−])�푘 (𝜗1) 𝑒−�휀𝑛𝑘�푠,
(29)

where

𝑑𝜇�푛�푘 = 𝑑𝑘 |Γ (1/2 − ] + 𝑖𝑘)|2|Γ (𝑖𝑘)|2 𝜀�푛�푘 (30)

and

𝑐(])�푛�푘 (𝑁) = |Γ (𝑁 + ] + 1/2 + 𝑖𝑘)|2(𝑁 − 𝑛 − 1)!Γ (𝑁 + 𝑛 + 2] + 1) . (31)

This theorem is the central result of this work. It can be
used as a generating function to find the first three moments
of the thermal conductance. Anoteworthy feature of the exact
result is the separation of the left-right boundary conditions
in the form of the product 𝑐(])

�푛�푘
(𝑁1)𝑐(])�푛�푘 (𝑁2), which as we will

see later allows a simple identification of different conducting
regimes.

5. Application: Moments of the
Heat Conductance

As an application of (29) we calculate the first three moments
of the heat conductance. The Landauer formula for the
dimensionless thermal conductance is

𝑔 = �푁∑
�푖

𝜏�푖 = �푁∑
�푖

21 + 𝑥�푖 . (32)

From (9), (21), and (32) it is straightforward to verify that the
first three moments of thermal conduction can be obtained
from the generating function as
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Figure 2:The first three cumulants of the thermal conductance for theWD (full line) and BdG classes DIII (dashed line) and CI (dotted line)
with a single open channel:𝑁1 = 𝑁2 = 1. The insets show the small 𝑠 behaviors. Note the qualitative difference of the class DIII BdG system.

⟨𝑔⟩ = 2𝜕𝑊𝜕𝜗0
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨�휗0=1=�휗1

⟨𝑔2⟩ = − 4𝜕2𝑊𝜕𝜗0𝜕𝜗1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨�휗0=1=�휗1 ,

⟨𝑔3⟩ = 4( 𝜕3𝑊𝜕𝜗0𝜕𝜗21 − 𝜕3𝑊𝜕𝜗1𝜕𝜗20)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨�휗0=1=�휗1 .

(33)

From (29) we get

⟨𝑔�푚⟩ = 4�푁−1∑
�푛=0

(𝑃(])�푛 (1))2
ℎ(])�푛

⋅ ∫∞
0

𝑑𝜇�푛�푘𝑔(�푚)�푛�푘 𝑐(])�푛�푘 (𝑁1) 𝑐(])�푛�푘 (𝑁2) 𝑒−�휀𝑛𝑘�푠,
(34)

where 𝑔(1)�푛�푘 = 1,
𝑔(2)�푛�푘 = 𝑘2 + (1/2 − ])2(1 − ]) + 𝑛 (𝑛 + 2] + 1)(1 + ]) ,
𝑔(3)�푛�푘 = (𝑘2 + (1/2 − ])2) (𝑘2 + (3/2 − ])2)2 (2 − ]) (1 − ])

+ 2𝑛 (𝑛 + 2] + 1) (𝑘2 + (1/2 − ])2)(1 + ]) (1 − ])
+ 𝑛 (𝑛 − 1) (𝑛 + 2] + 1) (𝑛 + 2] + 2)2 (1 + ]) (2 + ]) .

(35)
Equation (34) is a very general exact result. It is valid for
any number of channels 𝑁1 and 𝑁2 and for any value of
the dimensionless length of the quantum wire 𝑠. It is the
central application of this paper and as it stands it can
serve as a useful tool to compare with results from other
nonperturbative approaches, such as the trajectory-based
semiclassical technique and field-theoretic methods.

In Figure 2 we show the behavior of the first three
cumulants (denoted with double brackets) of the thermal
conductance, as a function of the system’s length, of both
the WD (full line) and BdG classes DIII (dashed line) and
CI (dotted line) for the case of a single channel in each
lead. This case is particularly interesting, since as shown
in [19] class DIII can be realized using Majorana modes of
topological superconductors.Therefore, the unusual shape of
the heat conductancemoments in this class can be interpreted
as a signature of the presence of Majorana fermions in the
system.
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In the long length limit, 𝑠 ≫ 1, we may use the
saddle-point method in (34) to obtain more explicit analytic
expressions for each class. For class A, we get

⟨𝑔⟩ = 4 ⟨𝑔2⟩ = 649 ⟨𝑔3⟩
= 2𝑐(0)00 (𝑁1) 𝑐(0)00 (𝑁2) (𝜋𝑠 )3/2 𝑒−�푠/4, (36)

whilst for classes DIII and CI we find, respectively,

⟨𝑔⟩ = 32 ⟨𝑔2⟩ = 158 ⟨𝑔3⟩ = 2√𝜋𝑠 , (37)

⟨𝑔⟩ = 𝑠 ⟨𝑔2⟩ = 3𝑠 ⟨𝑔3⟩
= 4𝑐(1/2)00 (𝑁1) 𝑐(1/2)00 (𝑁2) 𝑒−�푠√𝜋𝑠 .

(38)

From these equations, we see that the BdG DIII class
shows anomalous power law behaviors in all three moments.
In contrast, the other two classes (WD and CI) show a rapid
exponential decay of the moments as a function of 𝑠, which is
a common signature of Anderson localization.The significant
attenuation in the decay of the moments for the DIII class as a
function of the system’s length is thus a kind of delocalization
effect, which can be interpreted as indicating a type of
anomalous metallic behavior. Since a normal disordered
quantum wire shows exponential localization when its length
exceeds the localization length, we must conclude that the
localization length diverges for a class DIII BdG system.
A similar conclusion has been reached in [26] for a thick
quantum wire in series with a quantum point contact, which
can be described by a DMPK Fokker-Planck equation with a
delta function initial condition.

Another noteworthy feature comes from the fact that𝑐(])
�푛�푘

(𝑁) = 1 when 𝑁 󳨀→ ∞. Using this property we can
recover several previous results of the literature. The most
interesting cases are the following: (a) thick wire: we take𝑁1 󳨀→ ∞ and 𝑁2 󳨀→ ∞, which reproduces the results
found in [27], and (b) the disordered quantum wire limit: we
take 𝑁1 󳨀→ ∞ with 𝑁2 fixed or 𝑁2 󳨀→ ∞ with 𝑁1 fixed,
which reproduces the results shown in [26].

It is also useful to investigate the system’s behavior close
to the ballistic limit, i.e., when 𝑠 ≪ 1/𝑔�푐, where 𝑔�푐 =𝑁1𝑁2/(𝑁1 + 𝑁2). For that, we expand (34) around 𝑠 = 0 to
obtain

⟨𝑔⟩ = 𝑁1𝑁2𝑁1 + 𝑁2 + ]
(1

− (𝑁1 + ]) (𝑁2 + ]) (𝑁1 + 𝑁2 + 2])(𝑁1 + 𝑁2 + ])2 − 1 𝑠 + ⋅ ⋅ ⋅)
(39)

and

⟨⟨𝑔2⟩⟩ = 𝑁1 (𝑁1 + ])𝑁2 (𝑁2 + ])(𝑁1 + 𝑁2 + ])2 ((𝑁1 + 𝑁2 + ])2 − 1) (1

+ 2 ((𝑁1 − 𝑁2)2 − ]2) (𝑁1 + 𝑁2 + 2])
(𝑁1 + 𝑁2 + ])2 − 4 𝑠 + ⋅ ⋅ ⋅) .

(40)

Note that the zero-order terms reproduce the results of the
quantum dot for the three classes [24], as expected. The
correction terms are new predictions that may be useful
for comparison with alternative techniques, such as the
trajectory-based semiclassical approach.

Finally, in Figure 3 we show the behavior of the first three
cumulants of the DIII class as a function of the number of
channels in each lead. We keep 𝑁1 = 𝑁2 and compare
the result with the thick-wire limit 𝑁 󳨀→ ∞. We observe
that said limit is reached quickly after an increase of a few
channels. The same is also true for the WD and CI classes.

6. Summary and Conclusions

We employed random-matrix theory and matrix-valued
Brownian motion models to study two classes of supercon-
ducting quantum chains. In the continuum dot-wire limit,
we find an exact description of the crossover in thermal con-
duction between a superconducting chaotic ballistic cavity
(a quantum dot) and a disordered multichannel supercon-
ducting quantum wire.We obtained exact expressions for the
first three moments of the heat conductance of two classes
of superconducting dot-wire systemswith time-reversal sym-
metry. The analytic solution describes in detail various types
of crossovers as a function of the systems’ length, which
include ballistic-metallic and metallic-insulating crossovers.
Interestingly, in the single channel case, if the system is
realized experimentally as a topological superconductor, we
can interpret the total suppression of the insulating regime in
class DIII as a signature of the presence of condensed matter
Majorana fermions.

Appendix

A.

The generating function of the Andreev quantum dot can be
calculated by means of (16) and the kernel shown in (17).
Using the variables 𝜂0 = (3+]�표)/(1−]�표) and 𝜂1 = (3+]1)/(1−
]1), we find the effective Hamiltonian

H = (1 − 𝜂20) 𝜕2𝜕𝜂20 + (𝜇 − 𝛾2 − (2 + 𝜇 + 𝛾2) 𝜂0) 𝜕𝜕𝜂0
− (1 − 𝜂21) 𝜕2𝜕𝜂21
− (𝜇 − 𝛾2 − (2 + 𝜇 + 𝛾2) 𝜂1) 𝜕𝜕𝜂1 .

(A.1)

The stationary solution of the corresponding Fokker-Planck
equation can be written in terms of the eigenfunctions
of (A.1), which are Jacobi polynomials 𝑃(�푎,�푏)�푛 and Jacobi
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Figure 3: Variation of the first three cumulants of the thermal conductance for the DIII class with different numbers of channels 𝑁. 𝑁1 =𝑁2 = 𝑁.

functions of the second type 𝑄(�푎,�푏)�푛 . Inserting this result into
(14) we get

𝑊({𝜗} , 0) = (1 − ]�표1 − ]1
)�푁

⋅ (1 + 23+2�휇+�훾/2 (]0 − ]1) (1 + ]1)�훾/2(1 − ]0) (1 − ]1)�휇+�훾/2+1𝑅) ,
(A.2)

where

𝑅 = �푁−1∑
�푛=0

1ℎ(�훾/2,�휇)�푛

𝑃(�훾/2,�휇)�푛 (3 + ]�표1 − ]�표
)𝑄(�훾/2,�휇)�푛 (3 + ]11 − ]1

) , (A.3)

and

ℎ(�훼,�훽)�푛 = 2�훼+�훽+1Γ (𝑛 + 𝛼 + 1) Γ (𝑛 + 𝛽 + 1)𝑛! (2𝑛 + 𝛼 + 𝛽 + 1) Γ (𝑛 + 𝛼 + 𝛽 + 1) , (A.4)

which after some simple algebraic manipulations yields
(18).

B.

The generating function of the Andreev quantum wire can be
calculated by using (16), which can be written as

H = (𝜗20 − 1) 𝜕2𝜕𝜗20 + 2 (] + 1) 𝜗0 𝜕𝜕𝜗0 − (𝜗21 − 1) 𝜕2𝜕𝜗21
− 2 (] + 1) 𝜗1 𝜕𝜕𝜗1 .

(B.1)

Note that the first two terms of this equation match with
the operator of the Jacobi differential equation with equal
parameters 𝑃(])�푛 (𝜗0) ≡ 𝑃(],])�푛 (𝜗0)

[(𝜗20 − 1) 𝜕2𝜕𝜗20 + 2 (] + 1) 𝜗0 𝜕𝜕𝜗0]𝑃(])�푛 (𝜗0)
= 𝑛 (𝑛 + 2] + 1) 𝑃(])�푛 (𝜗0) .

(B.2)

On the other hand, the last two terms of (B.1) match with
the operator of hypergeometric differential equation (23) for𝐹(])
�푘

(𝜗1)
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[− (𝜗21 − 1) 𝜕2𝜕𝜗21 − 2 (] + 1) 𝜗1 𝜕𝜕𝜗1]𝐹(])�푘 (𝜗1)
= (𝑘2 + ] (] + 1) + 14)𝐹(])�푘 (𝜗1) .

(B.3)

The orthogonality and completeness relations are, respec-
tively,

∫1
−1

𝑑𝜗0 (1 − 𝜗20)] 𝑃(])�푛 (𝜗0) 𝑃(])�푛󸀠 (𝜗0) = 𝛿�푛�푛󸀠ℎ(])�푛 (B.4)

∞∑
�푛=0

𝑃(])�푛 (𝜗0) 𝑃(])�푛 (𝜗�耠0)ℎ(])�푛 = 𝛿 (𝜗0 − 𝜗�耠0)(1 − 𝜗20)] (B.5)

and

∫∞
1

𝑑𝜗1 (𝜗21 − 1)] 𝐹(])�푘 (𝜗1) 𝐹(])�푘󸀠 (𝜗1) = 𝛿 (𝑘 − 𝑘�耠)
(𝐴(])�푘 )2 (B.6)

∫∞
0

𝑑𝑘 (𝐴(])�푘 )2 𝐹(])�푘 (𝜗1) 𝐹(])�푘 (𝜗�耠1) = 𝛿 (𝜗1 − 𝜗�耠1)(𝜗21 − 1)] , (B.7)

where

(𝐴(])�푘 )2 = |Γ (] + 1/2 + 𝑖𝑘)|222] (Γ (] + 1))2 |Γ (𝑖𝑘)|2 . (B.8)

Then the eigenfunctions and the eigenvalues of H are given
by

𝜑�푛�푘 (𝜗0, 𝜗1) = 𝐴(])
�푘(ℎ(])�푛 )1/2𝑃(])�푛 (𝜗0) 𝐹(])�푘 (𝜗1) ,

𝜀�푛�푘 = 𝑘2 + (𝑛 + ] + 12)2
(B.9)

with −1 ≤ 𝜗0 ≤ 1 and 1 ≤ 𝜗0 ≤ ∞. For the calculations of the
moments of the heat conductance it is convenient to replace𝐹(])
�푘

(𝜗1) by the following function in (B.3):

𝐹(])�푘 (𝜗1) ≡ 1𝜔 (𝜗1) ∫∞
0

𝑑𝑥𝜔 (𝑥) 𝐹(])�푘 (𝑥)𝑥 + 𝜗1
= 1𝜔 (𝜗1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ (12 − ] + 𝑖𝑘)󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝐹(−])�푘 (𝜗1) ,

(B.10)

so the new set of eigenfunctions 𝜑�푛�푘(𝜗0, 𝜗1) correspond to
(22).

C.

Let us now show the equivalence between (27) and (29). First,
we calculate the integrals shown in (27). We know from [25]
that

𝐼(0)�푛�푙 = (−1)�푛 2�푙+2]+1𝑙!Γ (𝑙 + ] + 1) Γ (𝑛 + ] + 1)(𝑙 − 𝑛)!𝑛!Γ (𝑛 + 𝑙 + 2] + 2) . (C.1)

Using the identity 𝐹(𝑎, 𝑏; 𝑐; 𝑧) = Γ(1 − 𝑎)Γ(𝑐)𝑃(�푐−1,�푎+�푏−�푐)−�푎 (1 −2𝑧)/Γ(𝑐 − 𝑎) we can write

𝐼(1)�푛�푙 = Γ (1 + 𝑛�耠) Γ (−2𝑛�耠 − 𝜇 − ])Γ (−𝑛�耠 − 𝜇 − ]) ∫1
−1

𝑑𝜗0 (1 − 𝜗0)]+�푙
⋅ (1 + 𝜗0)] 𝑃(V)�푛 (𝜗0) 𝑃(−2�푛󸀠−�휇−]−1,V)�푛󸀠

(𝜗0) ,
(C.2)

where 𝑛�耠 = 𝑁 − 𝑙 − 1. This integral can be solved by means of
(20) of Chapter 16.4 of [28]. We find

𝐼(1)�푛�푙 = 22]+�푙+1Γ (−𝑙 + 𝑛) Γ (𝑛 + ] + 1) Γ (𝑙 + ] + 1)𝑛!Γ (−𝑙) Γ (2] + 𝑛 + 𝑙 + 2)
× 4𝐹3 [−𝑛�耠, −𝑛�耠 − 𝜇, ] + 𝑙 + 1, 𝑙 + 1; −2𝑛�耠 − 𝜇
− ], 2] + 𝑙 + 𝑛 + 2, −𝑛 + 𝑙 + 1; 1]

(C.3)

or after using Γ(𝑎 − 𝑛) = (−1)�푛Γ(−𝑎)Γ(1 + 𝑎)/Γ(𝑛 + 1 − 𝑎)
𝐼(1)�푛�푙 = (−1)�푛 22]+�푙+1Γ (𝑙 + 1) Γ (𝑛 + ] + 1) Γ (𝑙 + ] + 1)Γ (𝑛 − 1) Γ (1 + 𝑙 − 𝑛) Γ (2] + 𝑛 + 𝑙 + 2)

× 4𝐹3 [−𝑛�耠, −𝑛�耠 − 𝜇, ] + 𝑙 + 1, 𝑙 + 1; −2𝑛�耠 − 𝜇
− ], 2] + 𝑙 + 𝑛 + 2, −𝑛 + 𝑙 + 1; 1] .

(C.4)

The remaining integrals can be calculated representing the
hypergeometric functions as Meijer G functions by using the
identity𝐹 [𝑎, 𝑏, 𝑐, 𝑧]

= Γ (𝑐)Γ (𝑏) Γ (𝑎) 𝐺 1 22 2 ( 1 − 𝑎, 1 − 𝑏0, 1 − 𝑐 | −𝑧) (C.5)

and integration identities of the Meijer G functions [29].
Performing the change of variables −𝑥 = (1−𝜗1)/2 and using
the identity 𝐹[𝑎, 𝑏; 𝑐; 𝑧] = (1 − 𝑧)�푐−�푎−�푏𝐹[𝑐 − 𝑎, 𝑐 − 𝑏; 𝑐; 𝑧] [30],
we get

𝐽(0)�푘�푙 = 1(−1)�푙+1 22]+�푙 ∫
∞

0
𝑑𝑥 𝑥−]−�푙−1(𝑥 + 1)]

⋅ 𝐹 [−] + 12 + 𝑖𝑘, −] + 12 − 𝑖𝑘; −] + 1; −𝑥] = 1(−1)�푙+1 22]+�푙
⋅ ∫∞
0

𝑑𝑥𝐹 [12 + 𝑖𝑘, 12 − 𝑖𝑘; −] + 1; −𝑥]
𝑥]+�푙+1

= Γ (−] + 1)
(−1)�푙+1 22]+�푙 󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ (12 + 𝑖𝑘)󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
∫∞
0

𝑑𝑥

⋅ 𝐺 1 22 2 ( 1/2+�푖�푘,1/2−�푖�푘0,] | 𝑥)𝑥]+�푙+1 = Γ (−] + 1)(−1)�푙+1 22]+�푙 |Γ (1/2 + 𝑖𝑘)|2
⋅ ∫∞
0

𝑑𝑥 𝐺 1 22 2 ( −12 + 𝑖𝑘 − ] − 𝑙, −12 − 𝑖𝑘 − ] − 𝑙−] − 𝑙 − 1, −𝑙 − 1 | 𝑥)

= Γ (−] + 1) Γ (−] − 𝑙) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ (12 + 𝑖𝑘 + ] + 𝑙)󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

(−1)�푙+1 22]+�푙 󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ (12 + 𝑖𝑘)󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 Γ (𝑙 + 1) .

(C.6)
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Finally, similarly to (C.6), we get

𝐽(1)�푘�푙 = 1(−1)�푙+1 22]+�푙 ∫
∞

0
𝑑𝑥 𝑥−]−�푙−1(𝑥 + 1)]𝐹[−] + 12 + 𝑖𝑘, −] + 12 − 𝑖𝑘; −] + 1; −𝑥]

× 𝐹 [𝑛�耠 + 1, 𝑛�耠 + 1 + 𝜇; 2𝑛�耠 + 𝜇 + ] + 2; −𝑥]
= Γ (−] + 1)

(−1)�푙+1 22]+�푙 󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ (12 + 𝑖𝑘)󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

Γ (2𝑛�耠 + 𝜇 + ] + 2)Γ (𝑛�耠 + 1) Γ (𝑛�耠 + 𝜇 + 1)
× ∫∞
0

𝑑𝑥𝐺 1 22 2 ( −12 + 𝑖𝑘 − ] − 𝑙, −12 − 𝑖𝑘 − ] − 𝑙−] − 𝑙 − 1, −𝑙 − 1 | 𝑥)𝐺 1 22 2 ( −𝑛�耠, −𝑛�耠 − 𝜇
0, −2𝑛�耠 − 𝜇 − ] − 1 | 𝑥)

= Γ (−] + 1)
(−1)�푙+1 22]+�푙 󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ (12 + 𝑖𝑘)󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

Γ (2𝑛�耠 + 𝜇 + ] + 2)Γ (𝑛�耠 + 1) Γ (𝑛�耠 + 𝜇 + 1)

× 𝐺 3 34 4 ( ] + 𝑙 + 1, −𝑛�耠, −𝑛�耠 − 𝜇, 𝑙 + 112 − 𝑖𝑘 + ] + 𝑙, 12 + 𝑖𝑘 + ] + 𝑙, 0, −2𝑛�耠 − 𝜇 − ] − 1 | 1) .

(C.7)

Once the integrals have been obtained in terms of Meijer 𝐺
functions, Theorem 1 follows from using the simple identity

(𝐴(−V)�푘 )2 �푁−1∑
�푙=0

(𝐼(1)�푛�푙 𝐽(1)�푘�푙 − 𝐼(0)�푛�푙 𝐽(0)�푘�푙 )
= 2𝑃(V)�푛 (1) |Γ (1/2 − ] + 𝑖𝑘)|2|Γ (𝑖𝑘)|2 𝜀�푛�푘 𝑐(])�푛�푘 (𝑁1) 𝑐(])�푛�푘 (𝑁2)

(C.8)

or equivalently

�푁−1∑
�푙=0

(𝐼(1)�푛�푙 𝐽(1)�푘�푙 − 𝐼�푛�푙 (0) 𝐽�푘�푙 (0))
= Γ (𝑛 + ] + 1) (Γ (−] + 1))222]−1Γ (𝑛 + 1) Γ (] + 1) 𝑐(])

�푛�푘
(𝑁1) 𝑐(])�푛�푘 (𝑁2)𝑘2 + (𝑛 + ] + 1/2)2 .

(C.9)

which can be checked with the Meijer 𝐺 function representa-
tion of algebraic computer systems such as Mathematica [31].
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