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One of the technological challenges for hydrogen materials science is the currently active search for structural materials with
important applications (including the ITER project and gas-separation plants). One had to estimate the parameters of diffusion
and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme
ones). The article presents boundary value problems of hydrogen permeability and thermal desorption with dynamical boundary
conditions. A numerical method is developed for TDS spectrum simulation, where only integration of a nonlinear system of low
order ordinary differential equations is required. The main final output of the article is a noise-resistant algorithm for solving
the inverse problem of parametric identification for the aggregated experiment where desorption and diffusion are dynamically
interrelated (without the artificial division of studies into the diffusion limited regime (DLR) and the surface limited regime (SLR)).

1. Introduction

Studies on the interaction of hydrogen isotopes with struc-
tural materials are mainly necessitated by problems in the
energy industry, metal protection from hydrogen corrosion,
and the design of chemical reactors [1–10]. The limiting fac-
tors are diffusion processes as well as physical and chemical
phenomena at the surface. The transfer parameters depend
on the technological features of material batch production. It
is therefore unreasonable to target at “tabular data”. Instead,
effective algorithms for solving the inverse problems of
parametric identification of adequate mathematical models
by experimental curves (data) are necessary. In this study,
we consider the permeability model taking into account the
main factors and the self-descriptiveness of the experiment.
We shall focus on the methods of permeability and thermal
desorption taking into account only the main limiting factors
for the applied membrane filtering problem and the infor-
mative capabilities of the considered experimental methods.
The mathematical research is based on the articles [11–13],
which provide descriptions of the experimental techniques
and experimental material on promising alloys for hydrogen
separation and purification.

One had to estimate the parameters of diffusion and
sorption to numerically model the different scenarios and
experimental conditions of the material usage (including
extreme ones) and identify the limiting factors. Some par-
ticular problems of the hydrogen materials science related to
the topic of this study were presented and investigated in [14–
23]. This work is a continuation of [24–27], where the results
of modelling hydrogen thermal desorption under various
limiting factors are presented. This article deals with the
inverse problem of parametric identification based on the
suggested “cascade” experiment.

Experimental practices usually employ various modifica-
tions of the penetrationmethod and TDS.The results of mea-
surements depend both on the unit design features and on the
procedure of preparing samples for hydrogen permeability
testing. A successive use of various methods often causes, for
example, impurities to appear on the sample surface, which
significantly affects the reproducibility of the results. These
data are the input for the inverse problems of parametric
identification, which are sensitive to the level of different
errors. It is therefore advisable to aggregate experiments
to improve the accuracy and informative value of the
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measurements. We suggest the following set-up of the “cas-
cade” experiment.

A membrane heated to a fixed temperature served as the
partition in the vacuum chamber. Degassing was performed
in advance. A sufficiently high pressure of hydrogen gas was
built up in steps at the inlet side. The penetrating flux was
determined bymass-spectrometry in the vacuummaintained
at the outlet side. This is the penetration method. Its advan-
tage is a reliable determination of the diffusion coefficient
by the Daines–Berrer method (based on the so-called lag
time). It allows distinguishing between the bulk and the
surface processes in the model, keeping in mind that surface
parameters are significantly more difficult to estimate. When
the steady state level of the penetrating flux is registered, we
increase the inlet pressure and wait until a new steady state
value is established. Using (at least) three pressure jumps at
the inlet side we record the steady state flux values at the
outlet side, thus determining “the degree of rectilinearity”
of the isotherm. Then the pumping for vacuum building is
stopped and the experiment proceeds as the “communicating
vessels” method. When pressure values become nearly equal
(the sample is almost uniformly saturated with hydrogen)
it is possible to turn off the heating, create the vacuum at
both sides of the membrane, and begin slowly reheating the
sample (TDS-experiment). In addition, there is no depressur-
ization of the diffusion cell and the sample surface remains
uncontaminated by additional impurities. We will clarify the
details of the aggregated experiment stages as we describe
the method of solving the inverse problem of parametric
identification. An important consideration is the unique-
ness of the parameter estimates of the investigated model.
Mathematicians are often reproached for “fascination with
uniqueness theorems”. But after all, in justifying the choice
of, for example, structural materials for the ITER project, the
results obtained on thin laboratory samples are extrapolated
to “walls”. Uniqueness allows for a correct recomputation.

Papers [18–20, 27] were dedicated to interpretation of
TDS peaks. Analysis of the causes of various TDS surges
is crucial for the selection of reactor structural materials
contacting with hydrogen isotopes. A sufficiently detailed
review is presented in [19, 20]. Where modeling does not
take the dynamics of surface processes into account, TDS
peaks are inevitably interpreted as a result of capture of
diffusing atomic hydrogen by the structural defects (traps)
of the material with different binding energies and (or) as
a manifestation of multichannel diffusion [28]. The above
listing of causes is not exhaustive. In this article, modelling
shows that the appearance of a desorption peak can be caused
by some combinations of the rates of surface and diffusion
processes. This complicates the problem of TDS spectrum
interpretation even more.

The main result of the paper is the method of parametric
identification from experimental data. The difficulties of
inverse problems solving in mathematical physics are well
known. There is extensive mathematical literature and a
number of specialized journals (inverse problems, ill-posed
problems, etc.). In experimental practice, the inverse problem
of multiparameter estimation is reduced to the one-factor-
at-a-time method for DLR and SLR. In real life, however, a

material is used in the presence of a dynamic “surface-bulk”
interplay. Thoroughly elaborated techniques are available for
estimation of the diffusion coefficient. The determination of
desorption and dissolution parameters is far more complex
(unless the temperature is artificially lowered to “turn off”
processes in the bulk).Thepaper presents an algorithmallow-
ing the estimation of desorption and dissolution coefficients
where diffusion and surface processes interact intensively.

2. Hydrogen Permeability Model

2.1. Distributed Transfer Model. Let us briefly describe the
experiment. A sample of a structural material preheated to
a fixed temperature acts as a vacuum chamber barrier. The
sample degassing is performed in advance. At the initial time
moment, pressure is built up at the inlet side by puffing of a
portion of molecular hydrogen.The declining pressure in the
input chamber and increasing pressure in the output chamber
are measured.

Consider hydrogen transfer through the sample (ℓ is the
plate thickness and 𝑆 is its area). The temperature 𝑇 is con-
stant throughout the experiment. The concentration of dis-
solved diffusing hydrogen (in monatomic state) is sufficiently
low and the diffusion flux can be considered proportional
to the concentration gradient. The membrane is thin and
the material has a sufficiently high hydrogen permeability
coefficient, so we restrict ourselves to a standard diffusion
equation:

𝜕𝑡𝑐 (𝑡, 𝑥) = 𝐷 (𝑇) 𝜕2𝑥𝑐 (𝑡, 𝑥) ,
𝑡 > 0, 𝑐 (0, 𝑥) = 0, 𝑥 ∈ [0, ℓ] , (1)

where 𝑐(𝑡, 𝑥) is the concentration of diffusing hydrogen. The
diffusion coefficient 𝐷 depends on the sample temperature𝑇 in an Arrhenius way with preexponential factor 𝐷0 and
activation energy 𝐸𝐷: 𝐷 = 𝐷0 exp{−𝐸𝐷/[𝑅𝑇(𝑡)]}.

Initial data are determined by the fact that the sample had
been preliminarily degassed: 𝑐(0, 𝑥) = 0, 𝑧(0, 𝑥) = 0, 𝑥 ∈[0, ℓ].

Nonlinear boundary conditions are derived from the
material flux balance:

−𝑑𝑄in𝑑𝑡 = [2𝑠 (𝑇) 𝜇 (𝑇) 𝑝0 (𝑡) − 𝑏 (𝑇) 𝑐20 (𝑡)] 𝑆
= −𝑆𝐷𝜕𝑥𝑐 (𝑡, 0) ,

−𝑑𝑄out𝑑𝑡 = [2𝑠 (𝑇) 𝜇 (𝑇) 𝑝ℓ (𝑡) − 𝑏 (𝑇) 𝑐2ℓ (𝑡)] 𝑆
= 𝑆𝐷𝜕𝑥𝑐 (𝑡, ℓ) .

(2)

Here, 𝑄in(𝑡), 𝑄out(𝑡) are the amounts of hydrogen atoms in
the input chamber of volume 𝑉in and output chamber of
volume 𝑉out, 𝑐0(𝑡) ≡ 𝑐(𝑡, 0), 𝑐ℓ(𝑡) ≡ 𝑐(𝑡, ℓ). The identity sign
is frequently used here in the sense of equality by definition.
Within the considered operating temperature range the
gaseous hydrogen is in molecular form, but for consistency
(considering that atomic hydrogen diffuses through themetal
membrane) we use atoms as the unit. According to the kinetic
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gas theory, the incident particle flux density 𝐽𝑝 is related to the
pressure 𝑝 by the Hertz Knudsen formula: 𝐽𝑝 = 𝑝/√2𝜋𝑚𝑘𝑇
(𝑘 is the Boltzmann constant, 𝑚 is the mass of a hydrogen
molecule). In the context of the experiment it is convenient
to choose the following measurement units [ℓ] = cm, [𝑝] =
Torr. Then we numerically obtain the dependence 𝐽𝑝 = 𝜇𝑝,
𝜇(𝑇) ≈ 2.474 ⋅ 1022/√𝑇 ([𝜇] = 1H

2
/(Torr cm2 s), [𝑇] =

K). The processes of physical adsorption, chemisorption,
dissociation of molecules into atoms, and dissolution take
place on the surface. Only a small part of “incident” H atoms
will, however, be absorbed into the membrane volume. This
is taken into account by the factor 2𝑠. One can write 𝑠 (as
a parameter of the model) instead of 2𝑠, but it is more
convenient to interpret the dimensionless probability factor𝑠 as the fraction of absorbed H atoms within the 2𝑠 notation.
Thus, 2𝑠𝜇𝑝 is the resulting flux of atoms through the surface
into the bulk without differentiation into more elementary
stages. We will omit the word “density” assuming that the
surface has unit area.

Hereinafter, 𝐽0,ℓ = 𝑏𝑐20,ℓ are the densities of the desorption
flux from the sample (deviation from the square desorption
law is significant only at extreme temperatures) and 𝑏 is the
desorption coefficient.We also assume that 𝑠 and 𝑏 depend on
the temperature in anArrhenius way. Formally, the activation
energy 𝐸𝑠 in the exponent can as well be negative, being a
linear combination of the activation energies and heats of the
surface processes on the way “from gas to the solution”. If
a constant saturation pressure of molecular hydrogen 𝑝s =
const is maintained at a constant temperature 𝑇 = const on
both sides of the membrane, the equilibrium concentration𝑐 of the dissolved atomic diffusionally mobile hydrogen is
finally established. By equating the derivatives in model (2)
to zero, we get Sieverts’ law 𝑐 ∝ √𝑝s : 𝑐 = Γ√𝑝s, Γ ≡ √2𝑠𝜇/𝑏.

Let us clarify the experimental conditions. The volumes𝑉in,out comprise several liters, the thickness of the membrane
is ℓ < mm, the area 𝑆 is about 1 cm2, and the inflow pressure𝑝0(0) is within several hundreds Torr.

It now remains to find themagnitudes of𝑄in,𝑄out.Within
the time of transfer through the membrane the gas is in
the thermodynamical quasi-equilibrium, wherefore we use
the formula 𝑁 = 𝑝𝑉/(𝑘𝑇). Here, 𝑁 is the number of gas
particles occupying the volume 𝑉 at the temperature 𝑇 and
the pressure 𝑝 (in the SI system [𝑝] = Pa, [𝑉] = m3, [𝑘] =
J/K). Taking into account the relationships Torr = 133.322Pa
and Pa = J/m3 (formally), we get the following expressions
for the corresponding pressures and volumes in the boundary
conditions (2): 𝑄 = 2𝑁 = 𝛼𝑝𝑉/𝑇, 𝛼 ≈ 1.931 ⋅ 1019. Here, 𝑝,𝑉,𝑇 are the numerical values in the selected units (Torr, cm3,
K).

Within the experimental unit the membrane is situated
in a tube (which is heated to a predetermined temperature)
between the inlet and the outlet chambers.The tube diameter
is large enough to consider the equality of pressures as
the criterion of thermodynamical quasi-equilibrium between
the gas in the tube and in the chambers. The membrane
temperature should be taken for the formula for the kinetic
constant 𝜇(𝑇). The gas inside the volumes 𝑉in,out (whose

massive walls are at room temperature) may get heated
up. During the preliminary experiment it is recommended
to fill the chambers with a practically impermeable metal
membrane between them with “ambient” gas. Then we
heat the tube and record the pressure rises. Within the
framework of the ideal gas approximation (equation of state)
this procedure enables estimation of the increments of the
gas temperature inside the chambers. The corresponding gas
temperatures are the ones to be used in the formula given
for 𝑄 (and the subsequent ones, only excluding the value 𝜇).
The need of such a refinement arises from the characteristics
of this particular experimental unit. Such an adjustment
of the values of 𝑇 should not cause difficulties in further
calculations. Besides, this procedure has relatively little effect
on the final calculation of the model pressures taking into
account the measurement errors and relatively large volumes𝑉.
2.2. Fast Hydrogen Permeability Model. It is clear from phys-
ical considerations that a quasi-stationary state is quickly
established when the membrane is thin and the material
has a sufficiently high hydrogen permeability coefficient:
the diffusant concentration distribution is practically linear
with respect to the thickness. In this sense, the results of
numerical modelling based on the “general” model (the
presented boundary-value problem) confirm its adequacy.
Since near-to-surface concentrations cannot be measured,
the Richardson approximation is usually used in practice to
analyze the penetrating flux:

𝐽 (𝑡) = −𝐷𝜕𝑥𝑐 = 𝐷ℓ−1 [𝑐0 (𝑡) − 𝑐ℓ (𝑡)] ≈ 𝐽𝑅 (𝑡)
= 𝐷Γℓ−1 [√𝑝0 (𝑡) − √𝑝ℓ (𝑡)] .

(3)

Let us formulate the problemofmodelling the concentrations𝑐0,ℓ using the pressures 𝑝0,ℓ (the problem is also of interest
per se) without the quasi-equilibrium simplification 𝑐(𝑡) =Γ√𝑝(𝑡). The quasi-stationary state is achieved within a time𝑡0, which is short compared to the total experiment time
(𝜕𝑥𝑐 = −[𝑐0(𝑡) − 𝑐ℓ(𝑡)]/ℓ). So, the original model (1)-(2) can
be simplified (taking into account the formula 𝑄 = 𝛼𝑝𝑉/𝑇):

𝑝̇0,ℓ (𝑡) = ∓𝛽0,ℓ [𝑐0 (𝑡) − 𝑐ℓ (𝑡)] ,
𝛽0,ℓ ≡ 𝑆𝐷 [𝛼𝑉in,outℓ]−1 𝑇,

(4)

2𝑠𝜇𝑝0,ℓ (𝑡) − 𝑏𝑐20,ℓ (𝑡) = ±𝐷ℓ−1 [𝑐0 (𝑡) − 𝑐ℓ (𝑡)] ,
𝑡 ≥ 𝑡0 > 0. (5)

Since by virtue of the “inlet-outlet” balance the equalities hold
true,

𝑝̇ℓ (𝑡) = −𝑉in𝑉−1out𝑝̇0 (𝑡) 󳨐⇒
𝑝ℓ (𝑡) = 𝑝ℓ (𝑡0) + 𝑉in𝑉−1out [𝑝0 (𝑡0) − 𝑝0 (𝑡)] ,

(6)

it is sufficient to express the concentrations 𝑐0,ℓ(𝑡) = 𝑐0,ℓ(𝑝0(𝑡))
from the boundary conditions (5) and substitute them into
the first equation of (4) (the sign is chosen depending on
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whether the index is 0 or ℓ). The dimensionless normalized
variables are convenient for numerical simulation:

𝑋0,ℓ (𝑡) = 1 + 2ℓ𝑐0,ℓ (𝑡) 𝑏𝐷−1,
𝑎0,ℓ (𝑡) = 4ℓ2Γ2𝑝0,ℓ (𝑡) 𝑏2𝐷−2 − 1. (7)

In addition, the system of equations (5) is compactly written
in the symmetric form 𝑎0 +2𝑋ℓ = 𝑋20, 𝑎ℓ +2𝑋0 = 𝑋2ℓ . For the
variable 𝑋 ≡ 𝑋ℓ we obtain the incomplete quartic equation[𝑋2 − 𝑎ℓ]2 = 4[2𝑋 + 𝑎0], which can be solved in radicals (for
physical considerationswe are interested in the positive root).
However, the explicit expression is somewhat cumbersome
and we will anyway have to numerically integrate the first
equation of (4) in the form 𝑝̇0 = 𝑓(𝑝0). Therefore, we shall
aim to derive differential equations for 𝑋0,ℓ, since informa-
tion about the dynamics of the boundary concentrations 𝑐0,ℓ
is also important.

Differentiate (5) with respect to time and substitute the
pressure derivatives from (4). For the variables 𝑋0,ℓ we get
the system

𝑋̇0 (𝑡) = −2𝑠𝑀0 [𝑋0 − 𝑋ℓ] ⋅ 𝑋ℓ − 𝑉in𝑉−1out𝑋0𝑋ℓ − 1 ,

𝑀0 ≡ 𝜇𝑆𝑇
𝛼𝑉in ,

(8)

𝑋̇ℓ (𝑡) = 2𝑠𝑀ℓ [𝑋0 − 𝑋ℓ] ⋅ 𝑋0 − 𝑉−1in 𝑉out𝑋0𝑋ℓ − 1 ,

𝑀ℓ ≡ 𝜇𝑆𝑇
𝛼𝑉out .

(9)

The change of variables in (7) determines the concentra-
tions 𝑐0,ℓ(𝑡) from which the model pressures 𝑝0,ℓ(𝑡), 𝑡 ≥ 𝑡0 are
calculated using (5).

Let us formulate step-by-step the numerical algorithm of
modelling the pressures 𝑝0,ℓ(𝑡) for the current values of 𝐷,𝑏, 𝑠 coefficients (the authors used the Scilab freeware). We
target at the “normal” experimental conditions [11, 12, 29–31],
including the values of 𝑝, 𝑇, ℓ, 𝑉, 𝑆.

(1) We fix 𝑡 = 𝑡0: omit fast transient processes (the
duration of the transient processes is about tens of seconds
on the hours-long experimental time scale). For the variable𝑋 ≡ 𝑋ℓ we choose the root of the biquadratic polynomial
[𝑋2 − 𝑎ℓ(𝑡0)]2 − 4[2𝑋+ 𝑎0(𝑡0)]. From physical considerations

it follows that 𝑐ℓ(𝑡0) > 𝑐ℓ(𝑡0) and thus 𝑋 > 1 + √1 + 𝑎ℓ =1 + 2ℓΓ√𝑝ℓ(𝑡0) 𝑏𝐷−1.
(2) The system of equations 𝑎0 + 2𝑋ℓ = 𝑋20, 𝑎ℓ + 2𝑋0 =𝑋2ℓ (𝑡 = 𝑡0) yields the missing value of 𝑋0(𝑡0). Formally,

one equation is enough, but we take into account averaging
procedures including determination of the values of 𝑝0,ℓ(𝑡0).

(3) We numerically integrate the ODE system (8), (9)
with the obtained initial data. The change of variables in (7)
defines the concentrations 𝑐0,ℓ(𝑡), which are used to calculate
the model pressures 𝑝0,ℓ(𝑡), 𝑡 ≥ 𝑡0 from (5).

Computational experiments show that the model curves
almost coincide (at 𝑡 ≥ 𝑡0) with those generated by the
originally proposed model, i.e., the nonlinear distributed
initial boundary value problem.

Observe the difference from the quasi-equilibriummodel
(the Richardson approximation), where the only parameter
for approximation of the experimental pressure is the com-
plex Φ = 𝐷Γ. All the variable parameters of the original
model that influence the permeability, namely, 𝐷, 𝑏, 𝑠, are
important when running the above algorithm. Thus, the fast
hydrogen permeability model does not lose in informative-
ness concerning the considered transfer parameters.

3. Modelling of Hydrogen Permeability

3.1. Numerical Modelling of the Penetration Experiment. The
proposed model is adapted to the experimental conditions
and the data range for alloys based on V group metals with
high hydrogen permeability, in particular, data for vanadium
alloyswhich are presented in [11–13, 29–33].Wefix𝑇 = 673K,
ℓ = 0.05 cm, 𝜇(𝑇) = 2.474 × 1022/√𝑇 1H

2
/(Torr cm2 s),

𝐷 = 2 × 10−5 cm2/s, Γ = 2 × 1020 1H/(cm3√Torr),Φ = 𝐷Γ = 4 × 1015 1H/(cm s√Torr). We set the value𝑠 = 1.2 × 10−4 and calculate the corresponding desorption
coefficient 𝑏 = 2𝜇𝑠/Γ2 = 5.7 × 10−24 cm4/s. The input
pressures 𝑝1,2,3 = {30, 50, 70}Torr were built up in steps at
the inlet and maintained to achieve steady state fluxes at the
outlet. Degassing of the membrane was done in advance and
continuous vacuum pumping was performed at the outlet
side.The gas temperature inside the inlet and outlet chambers
(whose volumes are sufficiently high) is assumed to be equal
to 300K. This slight difference from the room temperature
is due to the heating of the diffusion cell with the sample
inside (specified by the characteristics of the equipment).The
experimental conditions are such that the concentration at
the membrane outlet side is near zero and at the inlet side
a stationary concentration is quickly established (but it is
lower than the equilibrium one): 𝑐 < 𝑐. Within the model
we determine 𝑐𝑖 and 𝑐𝑖 by the formulas

𝑐𝑖 = √2𝜇𝑠𝑝𝑖𝑏−1, 2𝜇𝑠𝑝 − 𝑏𝑐2 = 𝐽 = 𝐷𝑐ℓ−1 󳨐⇒ 𝑐𝑖 = −𝑎 + √𝑎2 + Γ2𝑝𝑖, 𝑎 ≡ 𝐷 [2𝑏ℓ]−1 . (10)

For the given values of the parameters we have 𝑐1 = 1.06 ×1021 < 𝑐1 = 1.09 × 1021, 𝑐2 = 1.38 × 1021 < 𝑐2 = 1.41 × 1021,𝑐3 = 1.64 × 1021 < 𝑐3 = 1.67 × 1021.
Next we express the solutions of the standard boundary

value problems with Dirichlet boundary conditions corre-
sponding to the jumps of the inlet pressure.
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Figure 1: The establishment of fluxes 𝐽(𝑡).

Stage I. The boundary value problem of the penetration
method is

𝜕𝑡𝑐 = 𝐷𝜕2𝑥𝑐, 0 < 𝑥 < ℓ,
𝑐 (𝑡, 0) = 𝑐1,
𝑐 (𝑡, ℓ) = 0,
𝑐 (0, 𝑥) = 0, 𝑥 ∈ [0, ℓ] .

(11)

The penetrating flux is 𝐽1 = −𝐷𝑐𝑥|ℓ = 𝐷𝑐1ℓ−1[1 +2∑∞𝑛=1(−1)𝑛 exp{−𝑛2𝜋2𝐷𝑡/ℓ2}].
From the computational point of view it is convenient

to introduce the dimensionless time 𝑡󸀠 = 𝐷𝑡/ℓ2 which is
oriented at the characteristic diffusion time ℓ2/𝐷. As small𝑡 → 0 a singularity appears if we directly use the partial sum
of the expression

𝑓 (𝑡󸀠) = 1 + 2 ∞∑
𝑛=1

(−1)𝑛 exp {−𝑛2𝜋2𝑡󸀠} . (12)

Let us provide another expression for 𝑓 using the properties
of the Jacobi theta function. More precisely, we are interested
in the function

𝜃3 (𝑡, 𝑥) = 1 + 2 ∞∑
𝑛=1

exp {−𝑛2𝜋2𝑡} cos (2𝑛𝜋𝑥) , 𝑡 > 0. (13)

We have an alternative presentation for 𝑥 = 0 [34]:
𝜃3 (𝑡, 0) = 1 + 2 ∞∑

𝑛=1

exp {−𝑛2𝜋2𝑡}

= 1
√𝜋𝑡
∞∑
−∞

exp{−𝑛2𝑡 } .
(14)

The series on the left is rapidly converging for large 𝑡. But
the series on the right is rapidly converging for small 𝑡. If
we define 𝜃(𝑡) = ∑ exp{−𝜋𝑛2𝑡} (𝑛 ∈ Z, 𝑡 > 0), then we get𝜃(1/𝑡) = √𝑡𝜃(𝑡), or √𝑡∑ exp{−𝜋𝑛2𝑡} = ∑ exp{−𝜋𝑛2𝑡−1} (𝑛 ∈
Z), which is known as the functional equation for the theta
function [35]. After some auxiliary transformations for 0 <𝑡󸀠 ≪ 1 we get the appropriate representation

𝑓 (𝑡󸀠) = 2
√𝜋𝑡󸀠 ∑
𝑚=2𝑛−1

exp{−𝑚2
4𝑡󸀠 } (𝑛 ∈ N) . (15)

The function𝑓(𝑡󸀠) has an 𝑆-shaped form of the saturation
curve (see the inset in Figure 1). Stage I ends with 𝑐(𝑡∗, 𝑥) =𝑐1(ℓ − 𝑥)ℓ−1.
Stage II. 𝑡∗ → 𝑡0 = 0 is the new 𝑡 time zero:

𝑐𝑡 = 𝐷𝑐𝑥𝑥, 0 < 𝑥 < ℓ,
𝑐 (𝑡, 0) = 𝑐2,
𝑐 (𝑡, ℓ) = 0,
𝑐 (0, 𝑥) = 𝑐1 (ℓ − 𝑥) ℓ−1.

(16)

Stage II ends with 𝑐(𝑡∗, 𝑥) = 𝑐2(ℓ−𝑥)ℓ−1.The penetrating flux
is

𝐽2 (𝑡) = 𝐷ℓ−1 [𝑐1

+ (𝑐2 − 𝑐1) [1 + 2∞∑
𝑛=1

(−1)𝑛 exp{−𝑛2𝜋2𝐷𝑡
ℓ2 }]] .

(17)

Stage III. The formulas are similar to the cyclic interchange𝑐1 → 𝑐2, 𝑐2 → 𝑐3.
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The result of connecting the stages into a single “exper-
imental” curve of the penetrating flux 𝐽(𝑡) (conventionally,𝑡 = (𝑡1, 𝑡∗1 + 𝑡2, 𝑡∗2 + 𝑡3), 𝐽 = (𝐽1, 𝐽2, 𝐽3)) is shown in Figure 1.

3.2. Converting Pressure into Flux. During the real experi-
ment, the gas pressure inside the outlet volume 𝑉 = 𝑉out
is measured, not the penetrating flux. Therefore, in this
subsection we will provide the corresponding recalculation
formula. Denote the pumping rate of the vacuum system by
] ([]] = m3/s). We take as the framework the ideal gas state
equation: 𝑝𝑉 = 𝑁𝑘𝑇. Here, [𝑝] = Pa, [𝑉] = m3, 𝑁 is the
number of particles (H2 molecules), and 𝑘 is the Boltzmann
constant. Differentiating on 𝑡 we get 𝑝̇𝑉 = 𝑁̇𝑘𝑇. Let us
calculate the particle balance over the time Δ𝑡:

Δ𝑁 = 0.5𝐽ℓ𝑆Δ𝑡 − ]Δ𝑡𝑁𝑉−1, 𝐽ℓ = −𝑆𝐷𝜕𝑥𝑐 (𝑡, ℓ) , (18)

where [𝑁/𝑉] = 1H
2

/m3 (the concentration), [𝐽ℓ] =
1H/(m2 s). The factor 0.5 is due to the fact that the diffusion
flux is atomic, and the particle in the volume 𝑉 is the H2
molecule. Let us divide the equation of the material balance
by Δ𝑡 and direct Δ𝑡 → 0. Finally, we get the differential
equation:

𝑁̇ (𝑡) = 0.5𝐽ℓ (𝑡) 𝑆 − ]𝑉−1𝑁(𝑡) 󳨐⇒
𝑝̇𝑉 = 𝑁̇𝑘𝑇 = 𝑘𝑇 [0.5𝐽ℓ𝑆 − ]𝑉−1𝑁]

= 𝑘𝑇𝑆𝐽ℓ (𝑡)2 − ]
𝑉𝑘𝑇𝑁 (𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝(𝑡)𝑉

󳨐⇒

𝑝̇ (𝑡) = 𝑘𝑇𝑆
2𝑉 𝐽ℓ (𝑡) − ]

𝑉𝑝 (𝑡) ,
𝑝 (0) = 0.

(19)

Denoting 𝜃1 = 𝑘𝑇𝑆/(2𝑉), 𝜃0 = 𝑉/], we get 𝑝̇ = 𝜃1𝐽ℓ − 𝑝/𝜃0
(𝑝0 = 0), wherefrom
𝑝 (𝑡) = 𝜃1 ∫

𝑡

0
exp{𝜏 − 𝑡

𝜃0 } 𝐽ℓ (𝜏) 𝑑𝜏,

𝐽ℓ (𝑡) = 2𝑉
𝑘𝑇𝑆𝑝̇ (𝑡) +

2]
𝑘𝑇𝑆𝑝 (𝑡) .

(20)

The measured function 𝑝(𝑡) is noised, so we first apply a
smoothing procedure and only then calculate the derivative𝑝̇(𝑡). Note that when the pumping system is powerful enough
and permeability is relatively slow the first summand acts as
a minor correction to the approximation 𝐽ℓ ≈ 2]𝑝(𝑡)/(𝑘𝑇𝑆).
Asymptotically, a steady state value is established: 𝑝̇ → 0 ⇒
𝐽 = 2]𝑝/(𝑘𝑇𝑆).

Only the operation of integration is needed to calculate
the lag time (see below):

∫𝑡
0
𝐽ℓ (𝜏) 𝑑𝜏 = 2𝑉

𝑘𝑇𝑆𝑝 (𝑡) +
2]
𝑘𝑇𝑆 ∫

𝑡

0
𝑝 (𝜏) 𝑑𝜏, (21)

so a preliminary approximation of the derivative 𝑝̇(𝑡) is
unnecessary. It suffices to use the composite Simpson for-
mula. One should remember that we use the following

measurement units within this subsection [𝑘𝑇] = J = N ×m,[𝐿] = m, [𝑝] = Pa = N/m2 (Pa ≈ 7.5 × 10−3 Torr), [𝐽] =1H/(m2 s). In the following, we return to the measurement
units accepted in this article.

3.3. Boundary Value Problem of Hydrogen Permeability.
When the steady state permeability value is established dur-
ing the penetration experiment, continuous pumping at the
outlet and maintenance of constant pressure at the inlet are
stopped. The aggregated experiment moves to the stage of
“communicating vessels”: inlet pressure declines and outlet
pressure grows (𝑝0,ℓ(𝑡) are measured). Considering the new
time zero we also have 𝑡 ≥ 0. We are so far talking about
the direct problem of modelling hydrogen pressures inside
the volumes 𝑉in,out. We specify the values: 𝑆 = 0.5 cm2, 𝑉in =
1500 cm3, 𝑉out = 2200 cm3, 𝑝0(0) = 𝑝0 = 𝑝3, 𝑐 = Γ√𝑝0. We
target here the experimental conditions and the data for the
V85Ni15 alloy [11, 33].

We numerically solve the initial boundary problem of
hydrogen permeability:

𝜕𝑡𝑐 = 𝐷 (𝑇) 𝜕2𝑥𝑐,
𝑐 (0, 𝑥) = (ℓ − 𝑥) 𝑐3ℓ−1,
2𝑠 (𝑇) 𝜇 (𝑇) 𝑝0,ℓ (𝑡) − 𝑏 (𝑇) 𝑐20,ℓ (𝑡) = ∓𝐷𝜕𝑥𝑐󵄨󵄨󵄨󵄨𝑥=0,ℓ ,
𝑑𝑄in,out𝑑𝑡 = − [2𝑠𝜇𝑝0,ℓ (𝑡) − 𝑏𝑐20,ℓ (𝑡)] 𝑆,

𝑄in,out = 𝛼𝑝0,ℓ (𝑡) 𝑉in,out𝑇−1.

(22)

The membrane temperature is taken in the dependences
of 𝐷, 𝑏, 𝑠, 𝜇 on 𝑇, and the temperature of the gas inside
the chambers is taken in the expressions for 𝑄in,out (take
into account the correction to room temperature due to the
heating of the diffusion cell). The model curves of molecular
hydrogen pressures are presented in Figure 2. If we use the
ODE system (8), (9) instead of the “full” model, standard
software packages will suffice (we substitute the values of
the hydrogen temperature inside the volumes 𝑉in,out into
the expressions for 𝑀0,ℓ). To this end one should skip the
initial time 𝑡0 within several minutes until a quasi-stationary
(not quasi-equilibrium) mode is established. Then the above
algorithm is applied to the fast hydrogen permeability
model. Figure 2 shows that there is no significant additional
error during the numerical simulation (the curves visually
coincide). Model curves were numerically generated to test
the following algorithm for solving the inverse problem of
parametric identification. The parameters generating these
curves were then “forgotten”.

4. General Identification Technique

4.1. Determination of the Lag Time. For completeness, we
briefly describe the method of estimating the diffusion
coefficient proposed by Daines-Berrer. The curve of the flux
𝐽1(𝑡) asymptoticallymoves to the stationary value 𝐽1 = 𝐷𝑐1/ℓ.
Hence, 𝑄(𝑡) = ∫𝑡

0
𝐽(𝜏)𝑑𝜏 ≈ 𝐽1[𝑡 − ℓ2/(6𝐷)] (𝑡 ≥ 𝑡∗ = 𝑡∗1 ).
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Figure 2: Dynamics of pressures 𝑝0,ℓ(𝑡).

The intersection of the asymptote with the 𝑡 axis gives the
so-called lag time 𝜏0 = ℓ2/(6𝐷), which allows estimating the
diffusion coefficient. Analytically,

𝜏0 ≈ 𝑡∗ − ∫𝑡∗
0

𝐽1 (𝜏) 𝐽−11 𝑑𝜏, 𝐽1 ≈ 𝐽1, 𝑡 ≥ 𝑡∗. (23)

Note that the value under the integral sign is a relativemagni-
tudewhich does not require absolute values of the penetrating
flux in any measurement units (𝐽1 = sup 𝐽1(𝑡)). In addition,
the value 𝜏0 does not depend on 𝑐1. It is usually assumed that
the locally equilibrium concentration 𝑐1 = Γ√𝑝1 is quickly
established at the inlet, so one can additionally estimate the
solubility Γ = √2𝑠𝜇/𝑏 and the permeabilityΦ = 𝐷Γ using the
corresponding value 𝐽1 = 𝐷𝑐1/ℓ.This assumption is not used
in this article.Weweaken it to increase the accuracy of further
estimations. We assume that according to the experimental
conditions the stationary inlet concentration 𝑐0(𝑡) ≈ 𝑐1 < 𝑐1
(𝑡 ≥ 𝜀, 𝜀 ≪ 1) is quickly established given that 𝑐ℓ(𝑡) ≈ 0.
The value of 𝑐1 as such is yet to be clarified. Thus, only the
estimate of the diffusion coefficient 𝐷 is considered reliable
at this stage.

With a new zero time reference, integrating the expres-
sion 𝐽2(𝑡) we get

∫𝑡
0
[𝐽2 (𝜏) − 𝐽1] 𝑑𝜏 ≈ [𝐽2 − 𝐽1] ⋅ [𝑡 − ℓ2 (6𝐷)−1]

(𝑡∗ 󳨀→ 𝑡0 = 0) ,
(24)

where 𝐽𝑖 = 𝐷𝑐𝑖/ℓ, 𝑡 ≥ 𝑡∗ = 𝑡∗2 . Formally, we obtain the
same expressions for the lag time and the estimate of 𝐷
if we change both the zero time and the flux baseline (𝐽1
value overstatement).There is no additional information here
(about the target values of the surface parameters 𝑏 and 𝑠),
but the triple penetration experiment allows refining 𝐷. For
the model numerical experiment we have 𝜏01 ≈ 𝜏02 ≈ 𝜏03 ≈20.82 s.
4.2. Isotherm: Initial Estimates of 𝑏, 𝑠. In experimental prac-
tices it is common to draw and analyze the isotherm, i.e., the
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Figure 3: Extrapolation of the isotherm of 𝐽.

curve of the steady state penetrating flux 𝐽 dependence on
the inlet pressure 𝑝, while vacuum pumping is performed
at the outlet side. If one targets the Sieverts’ law and the
(quasi)equilibrium concentration 𝑐 = Γ√𝑝 at the inlet side
(hence 𝐽 = 𝐷𝑐/ℓ), then it is natural to plot the dependence
𝐽 = 𝐽(√𝑝).

Let us analyze the steady state flux balance equation: 𝑎 ≡
𝐷(2ℓ𝑏)−1,

2𝑠𝜇𝑝 − 𝑏𝑐2 = 𝐽 = 𝐷𝑐ℓ−1 󳨐⇒
𝑐 = 𝑎 [−1 + √1 + 𝑎−2Γ2𝑝] ,
𝐽 = 𝐷𝑐ℓ−1 = 𝐷ℓ−1𝑎 [−1 + √1 + 𝑎−2Γ2𝑝] .

(25)

Asymptotic analysis shows that the dependence 𝐽(√𝑝) has a
parabolic shape (𝐽 ∝ 𝑝) at low inlet pressures 𝑝:

𝑎−2Γ2𝑝 ≡ 𝑥2 (𝑥 ∝ √𝑝) 󳨐⇒
𝑐 = 𝑎 [−1 + √1 + 𝑥2] = 𝑎 [0.5𝑥2 + ⋅ ⋅ ⋅] ,

(26)

and a straight line form at relatively high pressures 𝑝:
𝑎−2Γ2𝑝 ≫ 1 󳨐⇒

𝐽 = −𝐷2 (2ℓ2𝑏)−1 + 𝐷Γℓ−1√𝑝. (27)

Using the straight-line segment of the isothermwe find𝐷Γ/ℓ
(the slope of the straight line), and knowing the estimate of𝐷 we determine the initial approximation of the solubility
coefficient Γ. From the intersection of the straight line with
the ordinate axis we find 𝑏. Knowing the values of Γ = √2𝑠𝜇/𝑏
and 𝑏 we compute 𝑠 and Φ = 𝐷Γ.

A graphic illustration (using aminimal required set of the
calculated model 𝐽1,2,3 values) is presented in Figure 3.

Note that the obtained initial approximations are in good
agreement with the original “forgotten” parameters as shown
in Table 1.
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Table 1

Original value Approximate value
𝐷 2.00 × 10−5 2.0012 × 10−5
𝑏 5.72 × 10−24 5.8371 × 10−24
𝑠 1.20 × 10−4 1.2221 × 10−4
Γ 2.00 × 1020 1.9984 × 1020
Φ 4.00 × 1015 3.9993 × 1015

4.3. The Final Stage of Isothermic Identification. Table 1 re-
flects only the computational errors arising when solving
the direct and inverse problems. The real experimental data
are noisy. The identification algorithm uses only integral
operators thus ensuring the noise resistance of experimental
data treatment. The penetration method is characterized by
a significant measurement error, and data on the penetrating
flux are required (and this, in turn, requires a more accurate
determination of the vacuum system characteristics). The
model of the dissolved hydrogen concentration jump at the
inlet side is not very precise either. We are brought to a
conclusion that the “communicating vessels” stage, where
hydrogen pressures are measured over a long time, offers a
much higher accuracy of measurements.

Thus, the first stage of the aggregated experiment is per-
ceived as a preliminary estimation of the 𝐷, 𝑏, 𝑠 coefficients.
It is essential that the solution of the inverse problem of para-
metric identification is unique, since the results obtained for
thin laboratorymembranes are extrapolated (recalculated) to
the dimensions of real-life structures. The results are “fine-
tuned” by means of local variation of the preliminary values
of 𝐷, 𝑏, 𝑠 in the fast hydrogen permeability model (the ODE
system).

5. Thermal Desorption Spectroscopy (TDS)

Pressure values inside the chambers tend to equalize with
time. The uniform equilibrium saturation 𝑐 = 𝑐 = Γ𝑝,
Γ ≡ √2𝜇𝑠/𝑏, 𝑇 = 𝑇 = const corresponds to this pressure𝑝 = 𝑝. We turn off the heating. Next, we create the vacuum
at both sides of the membrane and begin slowly reheating the
sample from room temperature (the degassing is practically
completed) to activate the desorption process.

The thermal desorption flux of hydrogen from the sample
is measured by mass spectrometer. What additional infor-
mation can be obtained from the TDS experiment? The
dependence 𝐷(𝑇) is assumed to be known (for example,
as a result of a series of experiments in the DLR mode at
various temperatures). We obtain no new information about𝑠(𝑇) under vacuum conditions since modern, quite powerful
vacuum systems allow neglecting the resorption. It remains
to more precisely define the two-parameter Arrhenius-like
dependence 𝑏(𝑇). This is the bulk desorption coefficient
(the coefficient of effective recombination of atoms into H2
molecules): 𝐽0,ℓ = 𝑏𝑐20,ℓ, 𝑏 = 𝑏vol.

The heating 𝑇(𝑡) is usually linear 𝑇(𝑡) = 𝑇0 + V𝑡. The
heating rate V is not too high (<K/s). When the temperature
maximum is reached (if degassing is not yet completed), then
heating is stopped: 𝑇(𝑡) = 𝑇max. We refine the boundary

conditions taking into account that hydrogen atoms can
accumulate at the surface during slowmonotone heating and
relatively low temperatures.

5.1. Dynamical Boundary Conditions. The surface is a signifi-
cant potential energy barrier (see [2, p. 177–206]). Hence, the
boundary conditions are modeled as follows: 𝑐0(𝑡) ≡ 𝑐(𝑡, 0),𝑐ℓ(𝑡) ≡ 𝑐(𝑡, ℓ),

𝑐 (0, 𝑥) = 𝑐, 𝑥 ∈ [0, ℓ] , 𝑡 ∈ [0, 𝑡∗] , (28)

𝑐0 (𝑡) = 𝑔 (𝑇) 𝑞0 (𝑡) ,
𝑐ℓ (𝑡) = 𝑔 (𝑇) 𝑞ℓ (𝑡) , (29)

̇𝑞0 (𝑡) = 2𝜇 (𝑇) 𝑠 (𝑇) 𝑝0 (𝑡) − 𝑏 (𝑇) 𝑞20 (𝑡)
+ 𝐷𝜕𝑥𝑐 (𝑡, 0) , (30)

̇𝑞ℓ (𝑡) = 2𝜇 (𝑇) 𝑠 (𝑇) 𝑝ℓ (𝑡) − 𝑏 (𝑇) 𝑞2ℓ (𝑡)
− 𝐷𝜕𝑥𝑐 (𝑡, ℓ) . (31)

Here, 𝑞0,ℓ(𝑡) are the surface concentrations (𝑥 = 0, ℓ, ̇𝑞 ≡𝑑𝑞/𝑑𝑡); 𝑔(𝑇) is the parameter of local equilibrium between
the surface and the subsurface bulk (coefficient of quick dis-
solution); 𝑏(𝑇) = 𝑏0 exp{−𝐸𝑏/[𝑅𝑇]} is the surface desorption
coefficient:

𝐽0,ℓ (𝑡) = 𝑏 (𝑇 (𝑡)) 𝑞20,ℓ (𝑡) = 𝑏 (𝑇 (𝑡)) 𝑔−2 (𝑇 (𝑡)) 𝑐20,ℓ (𝑡) 󳨐⇒
𝑏 = 𝑏surface = 𝑔2𝑏volume.

(32)

The well-posedness of these dynamical boundary conditions
was proved in [36].

5.2. “Surface–Bulk” Fluxes Balance. Model (29) of quick dis-
solution (local equilibrium) on the surface is derived from the
more general ratios:

𝑘− (𝑇) [1 − 𝑐0,ℓ (𝑡) 𝑐−1max] 𝑞0,ℓ (𝑡)
− 𝑘+ (𝑇) [1 − 𝑞0,ℓ (𝑡) 𝑞−1max] 𝑐0,ℓ (𝑡) = ∓𝐷𝑐𝑥󵄨󵄨󵄨󵄨0,ℓ .

(33)

Coefficients 𝑘−, 𝑘+ are the descriptors of the rate of dissolu-
tion in the bulk and transfer to the surface. When concen-
trations are nowhere near maximum and 𝐷𝑐𝑥 ≈ 0 on the
relative scale, we obtain (29), where 𝑔 = 𝑘−/𝑘+. If the surface
is isotropic (in terms of 𝐸𝑘− ≈ 𝐸𝑘+), then the parameter 𝑔(𝑇)
is a little dependent on temperature. The density of the H
atoms adsorption flux can be modeled by the term 2𝜇𝑠𝑝[1 −
𝜃]2 for balance equations (30), (31). For the ranges of weak
concentrations and sufficiently high working temperatures
the degree of surface coverage satisfies 𝜃(𝑡) = 𝑞(𝑡)/𝑞max ≪1. These simplifications are in agreement with the limited
information capacities of theTDS experiments. Experimental
data are more easily approximated for a large number of
parameters. But the uniqueness of the estimations is then
failed, and thus essential errors may occur at extrapolation
of the results “from thin plate to wall”.
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5.3. Symmetry Conditions. We shall hereinafter use a con-
tracted notation for simplicity

𝑏 (𝑡) ≡ 𝑏 (𝑇 (𝑡)) ,
𝐷 (𝑡) ≡ 𝐷 (𝑇 (𝑡)) ,
𝑠 (𝑡) ≡ 𝑠 (𝑇 (𝑡)) .

(34)

The generalized quick dissolution coefficient 𝑔 of local
“surface-bulk” equilibrium is assumed to be constant (𝐸𝑘− ≈𝐸𝑘+) in the given heating range. The TDS method fulfills the
symmetry conditions:

𝑝 = 𝑝0,ℓ,
𝑞 = 𝑞0,ℓ,
𝑐0 = 𝑐ℓ,

𝐷𝜕𝑥𝑐󵄨󵄨󵄨󵄨0 = −𝐷𝜕𝑥𝑐󵄨󵄨󵄨󵄨ℓ ,
𝑐 (𝑥) = 𝑐 = const.

(35)

The information capacities of the initial and final stages of the
TDS experiment are low. So it is sufficient to limit ourselves
to 𝑡 ≤ 𝑡∗, when the flux from the sample has decreased
by an order of magnitude compared to the maximum. The
experimental data are the desorption density curves 𝐽(𝑡)
or TDS spectra 𝐽(𝑇) (𝑇(𝑡) ↔ 𝑡) for different saturation
conditions and heating rates. The conversion 𝑝(⋅) 󳨃→ 𝐽(⋅) is
made more specific by taking into account the parameters of
the experimental unit. Modern equipment provides a means
of creating deep vacuum (10−9–10−7 Torr). For this reason,
the component 𝑃 ≡ 2𝜇𝑠𝑝 (𝑃 ≫ 1) is the key control for the
saturation stage, but resorption is neglected for the degassing
stage (𝑃 ≪ 1).
5.4. Diffusion Model with Reversible Capture. We can take
into account different channels of diffusion, but the informa-
tion content of the TDS experiment is limited. Therefore, the
coefficient𝐷 is assumed to be an integral effective index.

Seeking a write-up of the TDS peaks set, it is handier to
use the following model:

𝜕𝑡𝑐 = 𝐷𝜕2𝑥𝑐 −
𝑚∑
]=1

[𝑎−] [1 − 𝑍]] 𝑐 (𝑡, 𝑥) − 𝑎+] 𝑧] (𝑡, 𝑥)] ,
𝜕𝑡𝑧] = 𝑎−] (𝑇) [1 − 𝑍]] 𝑐 (𝑡, 𝑥) − 𝑎+] (𝑇) 𝑧] (𝑡, 𝑥) ,

(36)

where 𝑧](𝑡, 𝑥) is the concentration of hydrogen atoms cap-
tured by defects of different types; 𝑎∓] are the coefficients of
H capture and release by traps; 𝑍] ≡ 𝑧](𝑡, 𝑥)/𝑧]max is the
defects saturation degree (𝑧]max = max 𝑧]). Capture is taken
into account at its integral level for practical purposes. Amore
precise definition of the defects’ geometry and distribution
would add complexity to themodel. If, for instance, the defect
is not a microcavity but hydride phase inclusions, then at
the degassing stage the corresponding coefficient 𝑎−𝑗 (𝑇) is
identically zero and 𝑎+𝑗 (𝑇) value is positive only if the critical
temperature is reached: 𝑇(𝑡) ≥ 𝑇crit. It is easy to simulate

the required number of TDS-peaks using different binding
energies (coefficients 𝐸𝑎). Numerical algorithms based on
difference schemes and modeling results were presented
in [24, 26]. In this paper we use only (1) (𝐷 = 𝐷eff ).
For thin membranes of quickly permeable material used in
experiments this approximation is usually sufficient.

5.5. Equilibrium Analysis. Let us take a brief look at the
equilibrium ratios at the accepted detail level ofmodeling.We
assume that pressure and temperature are constant. Formally,
equilibrium is characterized by all derivatives being equal to
zero. Keeping in mind the extensively used Sieverts’ law, we
shall observe proportionality to the√𝑝 value.

(1) On the surface the following ratio is applied:

2𝜇𝑠𝑝 [1 − 𝜃1]2 − 𝑏𝑞2 = 0, 𝜃1 ≡ 𝑞
𝑞max

, ]2 ≡ 2𝜇𝑠
𝑏𝑞2max

. (37)

Here, 𝜃1 is the degree of surface coverage (next 𝜃𝑖 have a
similar meaning). Let us formulate 𝜃1:

𝑝]2 [1 − 𝜃1]2 = 𝜃21 󳨐⇒
𝜃1 = ]√𝑝

1 + ]√𝑝,
]√𝑝 ≪ 1 󳨐⇒
𝜃1 ∝ √𝑝.

(38)

(2) In the “surface–bulk” equilibrium we have (𝜃2 ≡𝑐/𝑐max, 𝑘1 ≡ 𝑘−𝑞max, 𝑘2 ≡ 𝑘+𝑐max, 𝛾 ≡ 𝑘1/𝑘2), then from
Formula (33) we obtain

𝑘1𝜃1 [1 − 𝜃2] = 𝑘2𝜃2 [1 − 𝜃1] 󳨐⇒
𝜃2 = 𝛾𝜃11 + [𝛾 − 1] 𝜃1 .

(39)

(3) For definiteness, we take into account only one type
of traps (𝑚 = 1). We use (36). For symmetry, we add the
saturation factor [1−𝜃2] for 𝑧 = 𝑧]. Here we have 𝜃3 ≡ 𝑧/𝑧max,𝑎 ≡ 𝑎+𝑧max/[𝑎−𝑐max]; then we obtain

𝜃2 [1 − 𝜃3] = 𝜃3 [1 − 𝜃2] 𝑎 󳨐⇒
𝜃3 = 𝜃2𝑎 + [1 − 𝑎] 𝜃2 .

(40)

The “saturation-degassing” experiment provides infor-
mation about a general average concentration 𝑐 in the bulk𝑉 = 𝑆ℓ (end surfaces are neglected):

𝑉𝑐 = 2𝜃1𝑞max𝑆 + 𝜃2𝑐max𝑉 + 𝜃3𝑧max𝑉. (41)

Normalize 𝑐 by 𝑐max and consider the dependence

Θ(𝑝) ≡ 𝑐
𝑐max

= 2𝑞maxℓ𝑐max
𝜃1 + 𝜃2 + 𝜃3 𝑧max𝑐max

. (42)

Let us focus on the curves in the axes (√𝑝,Θ). Numerical
results are presented in Figure 5 (𝑎 = 𝑎+/𝑎−, 𝑐max = 1018,
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ℓ = 0.1 cm). Quite many parameters have an effect, but one
can usually estimate the orders of magnitude to find “the
distance to linearity” (to the Sieverts’ law adequacy range).

The curves Θ = 𝑓(√𝑝) have the “growing wave” form.
It is noticeable in a wide pressure range only. For the given
parameters, the inflection point is the most vivid on the
curvesmarkedwith pentagrams.The analysis of each additive
component in (42) for the total concentration shows that the
position of the inflection point is determined by the moment
when the first and third addends have turned to the saturation
mode with the following prevalent rise of 𝜃2. Note that the
curves for a narrower pressure range are practically linear,
in line with ranges of the Sieverts’ law. In a wide range of
pressures, the wave-like character of the graphs is observed
experimentally [37].

5.6. Richardson Approximation. When experimentally esti-
mating the hydrogen permeability of structural materials,
Richardson approximation is often used for the penetration
flux density:

𝐽 (𝑡) = Φ [√𝑝in (𝑡) − √𝑝out (𝑡)] ℓ−1, 𝑝out < 𝑝in. (43)

Membranes are usually very thin and their permeability is
relatively high. We can accept for the concentration gradient𝑐𝑥 = [𝑐out − 𝑐in]/ℓ. In accordance with the Fick’s law, the
formula 𝐽 = −𝐷[𝑐out − 𝑐in]/ℓ is “exact”. Here, the function𝐽(𝑡) is the monoatomic hydrogen permeation flux density.
The actual boundary volume concentrations cannot however
be measured, and thus a quasi-equilibrium approximation
is used, where the concentration 𝑐 is substituted with the
equilibrium concentration 𝑐 = Γ√𝑝 in accordance with
Sieverts’ law (Γ is the solubility coefficient, or solubility for
short). On account of the inequalities 𝑐in > 𝑐in, 𝑐out < 𝑐out,
this substitution overrates the second factor in the formula𝐽 = 𝐷[𝑐in−𝑐out]/ℓ : 𝑐in−𝑐out > 𝑐in−𝑐out. Hence, the value of𝐷
needs to be formally marked down to retain the equality. So,
if the value of Φ (permeability) is found from experimental
data by fitting as indicated in formula (43), then we obtainΦ < 𝐷Γ. The Φ and Γ values from the (typically used)
formula Φ = 𝐷Γ determine the lower bound of the diffusion
coefficient 𝐷. Furthermore, dissolved diffusing hydrogen
is mainly involved in the steady state (quasi-steady state)
permeability mode. In the context of the model (29)–(31), we
obtain 𝑐 = Γ√𝑝, Γ = 𝑔√2𝜇𝑠/𝑏. The “saturation-degassing”
experiment yields the total value 𝑐 > 𝑐 and an overstated (for
the permeability problem) value Γmax : 𝑐 = Γmax√𝑝.

Hence, we can estimate the Φ value by fitting using
formula (43). This information has practical value as a
convenient coefficient for translation from pressures to flux.
If, however, the 𝐷 value is taken from one experiment (or
paper) and the Γ value is taken from another source, then,
strictly speaking, we get a ranking of three different numbersΦ < 𝐷Γ < 𝐷Γmax. If the material has a high level of
trapping by defects, then the calculated permeability can be
an order of magnitude higher than the real permeability.
The permeability coefficient Φ (as a parameter of (43)) has
an 𝑆-form (Arrhenius-like) of the saturation curve based on
the order of pressures. It is only for relatively high pressures

(where 𝑐0,ℓ are near Sieverts’ concentrations) that we get Φ ≈𝐷Γ.
6. Functional Differential TDS Equation

Identification of TDS spectra is required not only to reveal
the causes of different thermal desorption peaks, but also
to enable numerical extrapolation and generalization of
the results received for laboratory samples (ℓ usually is
fractions of mm). Model (36) gives the possibility to get any
number of peaks using traps with different parameters 𝑎±] .
The question, however, is whether different peaks can occur
when degassing an almost homogeneous material. To answer
this question let us restrict ourselves to the basic diffusion
equation (1), but retaining symmetric dynamical boundary
conditions (29)–(31) and (35). The surface is considered
isotropic in terms of 𝑔 = const over the heating range. The
resorption during vacuum building is neglected.Thus, we are
limited to a minimal number of parameters for the model
which takes into account the dynamical interplay of surface
processes and diffusion. In the following, let us operate at this
approximation.

The comparison of simulated and experimental TDS
spectra with a focus on parametric identification requires
only the surface concentration (𝐽 = 𝑏𝑞2). It is reasonable to
try to avoid iterative solution of the boundary value problem
for interim approximations of the model parameters𝐷0, 𝐸𝐷,𝑏0, 𝐸𝑏, 𝑠0, 𝐸𝑠, 𝑔. To this end, we will run the transformations
to reduce the problem to the integration of a low order ODE
system.

6.1. Derivation of Riccati-Type Equation. The accepted TDS
degassing model is 𝜕𝑡𝑐 = 𝐷(𝑡)𝜕2𝑥𝑐, 𝑐(0, 𝑥) = 𝑐,

𝑐0,ℓ (𝑡) = 𝑔𝑞 (𝑡) ,
̇𝑞 (𝑡) = −𝑏 (𝑡) 𝑞2 (𝑡) + 𝐷 (𝑡) 𝜕𝑥𝑐 (𝑡, 0) ,
𝐽 (𝑡) ≡ 𝑏 (𝑡) 𝑞2 (𝑡) .

(44)

Let us replace the time 𝑡󸀠 = ∫𝑡
0
𝐷𝑑𝜏 (keeping the former

notation 𝑡):
𝜕𝑡𝑐 (𝑡, 𝑥) = 𝜕2𝑥𝑐 (𝑡, 𝑥) ,
𝑐 (0, 𝑥) = 𝑐,

𝑐0,ℓ = 𝑔𝑞 (𝑡) ,
(45)

𝜕𝑥𝑐󵄨󵄨󵄨󵄨0 = − 𝜕𝑥𝑐󵄨󵄨󵄨󵄨ℓ = ̇𝑞 (𝑡) + 𝐽 (𝑡)𝐷−1 (𝑡) . (46)

Here 𝑞(𝑡) is considered as the parameter and (46) is an
additional relation for the linear problem (45). We perform
a replacement to get homogenous boundary conditions:

𝑐 = 𝑐 (𝑡, 𝑥) − 𝑔𝑞 (𝑡) ,
𝜕𝑡𝑐 (𝑡, 𝑥) = 𝜕2𝑥𝑐 (𝑡, 𝑥) + 𝑓 (𝑡) ,
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𝑓 (𝑡) = −𝑔 ̇𝑞 (𝑡) ,
𝑐 (0, 𝑥) = 𝜑 (𝑥) = 0,

𝑐|0,ℓ = 0.
(47)

Let uswrite the solution of the linear boundary value problem
using the source function (Green’s function):

𝑐 (𝑡, 𝑥) = ∫𝑡
0
∫ℓ
0
𝐺1 (𝑥, 𝜉, 𝑡 − 𝜏) 𝑓 (𝜏) 𝑑𝜉 𝑑𝜏,

𝐺1 (𝑥, 𝜉, 𝑡) ≡ 2
ℓ
∞∑
𝑛=1

exp{−𝑛2𝜋2ℓ2 𝑡} sin 𝑛𝜋𝑥
ℓ sin 𝑛𝜋𝜉

ℓ .
(48)

Boundary conditions contain the derivative 𝑐𝑥(𝑡, 0):
𝜕𝑥𝑐󵄨󵄨󵄨󵄨0 = −4𝑔ℓ ∫𝑡

0
̇𝑞 (𝜏)∑󸀠 exp{𝑛2𝜋2

ℓ2 (𝜏 − 𝑡)} 𝑑𝜏,
∑󸀠 ≡ ∑

𝑛=1,3,5,...

.
(49)

For 𝜏 = 𝑡 we have divergent series. So, term-by-term inte-
gration is implied. For the original time 𝑡 we get 𝜕𝑥𝑐(𝑡, 0) =𝜕𝑥𝑐(𝑡, 0) = 𝜕𝑥𝑐(𝑡, ℓ) = 𝜕𝑥𝑐(𝑡, ℓ),

𝜕𝑥𝑐 (𝑡, 0)
= −4𝑔ℓ ∑󸀠 ∫𝑡

0
̇𝑞 (𝜏) exp{−𝑛2𝜋2ℓ2 ∫𝑡

𝜏
𝐷 (𝑠) 𝑑𝑠} 𝑑𝜏. (50)

Finally, the dynamic boundary condition is written in the
integrodifferential form:

̇𝑞 (𝑡)
= −𝑏 (𝑡) 𝑞2 (𝑡)

− 4𝑔𝐷
ℓ ∑󸀠 ∫𝑡

0
̇𝑞 (𝜏) exp{−𝑛2𝜋2ℓ2 ∫𝑡

𝜏
𝐷 (𝑠) 𝑑𝑠} 𝑑𝜏.

(51)

The resultant equation (51) with quadratic nonlinearity will
be classified as a functional differential Riccati equation
of the neutral type. The equation is equivalent to the
original boundary value problem in that the solution 𝑞(𝑡)
uniquely determines the solution 𝑐(𝑡, 𝑥). The analogy with
the functional differential equation of the form 𝑥̇(𝑡) =
F[𝑡, 𝑥(𝑡), 𝑥̇(𝑡), 𝑥[0,𝑡], 𝑥̇[0,𝑡]] of the neutral type [38] is that it is
impossible to eliminate the derivative ̇𝑞on the right side of the
equation through integration by parts lest a divergent series
arises. We are concerned with the time interval [𝑡1, 𝑡2] ⊂(0, 𝑡∗), which corresponds to the TDS peak. Measurement
for 𝑡 ≈ 0, 𝑡∗ yields little information. There is a voluminous
body of literature onRiccati-type equations (includingmatrix
equations for the optimal control theory).

6.2. Dimensionless Form of the Problem. For more com-
fortable modeling we turn to dimensionless variables using

substitution rules: 𝑡󸀠 = ∫𝑡
0
𝐷(𝜏)𝑑𝜏/ℓ2, 𝑥󸀠 = 𝑥/ℓ, V = 𝑞/𝑞

(𝑐 = 𝑔𝑞). Retaining the notation 𝑡, we obtain
V̇ (𝑡) = −𝑏̃ (𝑡) V2 (𝑡)

− 4𝑔ℓ∑󸀠 ∫𝑡
0
V̇ (𝜏) exp {−𝑛2𝜋2 [𝑡 − 𝜏]} 𝑑𝜏,

V (0) = 1,
(52)

where 𝑏̃(𝑡) ≡ 𝑞𝑏(𝑡)ℓ2/𝐷(𝑡) is a dimensionless parameter of
quadratic “desorption”.

6.3. Initial Data. We specify the factor 𝑏̃(𝑡) for quadratic
nonlinearity. Initial saturation is conducted under relatively
high temperature 𝑇 = 𝑇 = const and pressure 𝑝 = const.
After the steady state of saturation is attained we get

2𝜇 (𝑇) 𝑠 (𝑇) 𝑝 = 𝑏 (𝑇) 𝑞2,
𝑐 = 𝑔𝑞 󳨐⇒
𝑐 = 𝑔𝑏−1/20 √2𝜇𝑠𝑝󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇 exp {𝐸𝑏 [2𝑅𝑇]

−1} ,
𝑏̃ (𝑡) ≡ 𝑞𝑏 (𝑡) ℓ2𝐷−1 = 𝑐𝑏 (𝑡) ℓ2 [𝑔𝐷 (𝑡)]−1

≡ 𝑏̃0 exp {−𝐸𝑏̃ [𝑅𝑇 (𝑡)]−1} ,
𝐸𝑏̃ ≡ 𝐸𝑏 − 𝐸𝐷,
𝑏̃0 ≡ ℓ2𝐷−10 √𝑏02𝜇𝑠𝑝󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇 exp {𝐸𝑏 [2𝑅𝑇]

−1} .

(53)

Hereafter, let us be guided by a maximum limit of surface
concentration at around 𝑞max ∼ 1015–1016 (monolayer in
the context of geometric statics). If during initial saturation
the surface concentration for the given model parameters is𝑞 > 1014, the degree of surface coverage must be taken into
account. Then, to calculate the initial value of 𝑞 we take the
ratio 2𝜇𝑠𝑝[1 − 𝑞𝑞−1max]2 = 𝑏𝑞2 instead of 2𝜇𝑠𝑝 = 𝑏𝑞2.

In themeantime, this a priori restriction (arising from the
assumption that stationary “balls” are ordered geometrically
on a plane) is highly questionable. For a dynamics model, it
appears that the concentration threshold 𝑞max may be higher,
if it is specified what meaning is attached to the term “bub-
bling” surface layer (at a quite high temperature). The real 𝑞
value is somewhat conventional, since it is strongly influenced
by the experiment pretreatment (building of vacuum before
the start of heating). However, most of the hydrogen is in
the bulk, the diffusion equation (and the diffusion process
itself) has a smoothing effect, and we are interested in evident
thermal desorption peaks, since the initial and final time
intervals of the experiment offer little information. For initial
calculations it is therefore sufficient to correctly estimate the
magnitude of the “effective” 𝑞 concentration. High precision
requirements are noncritical here.
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7. Extracting Integrable Singularity

The functional differential equation of thermal desorption
(52) has a singularity hindering its numerical solution. The
function,

Θ (𝑠) = 4∑󸀠 exp {−𝑛2𝜋2𝑠} , ∑󸀠 ≡ ∑
𝑛=1,3,5,...

, (54)

takes finite values for 𝑠 > 0. The series is rapidly converging
for large 𝑠. Formally, substituting 𝑠 = 0 (the integration
variable 𝜏 reaches the upper limit 𝑡) we obtain a divergent
series. This can be “fixed” by term-by-term integration. The
order of terms in the series is 𝑂(𝑛−2) (𝑛 = 2𝑖 − 1, 𝑖 ≥ 1),
wherefore convergence is slow. Let us formulate the problem.
The equation has to be approximated by a low order ODE
system to enable application of standard software packages
(for example, Scilab).

Let us run some transformations using the theory of
Jacobi theta functions to explicitly extract the integrable
singularity. We consider the presentation (14):

𝜃3 (𝑡, 0) = 1 + 2∞∑
𝑛=1

exp {−𝑛2𝜋2𝑡}

= 1
√𝜋𝑡
∞∑
−∞

exp{−𝑛2𝑡 } .
(55)

The series on the left is rapidly converging for large 𝑡. But the
series on the right is rapidly converging for small 𝑡. Let us run
auxiliary transformations:

1
√𝜋𝑡
∞∑
−∞

exp{−𝑛2𝑡 } = 1 + 2∞∑
𝑘=1

exp {−𝑘2𝜋24𝑡} + 2∑󸀠

= 2∑󸀠 + 1
√4𝜋𝑡

∞∑
−∞

exp{−𝑛24𝑡} .
(56)

Proceeding from here, the last series is subtracted from the
first series and the result is doubled.The following expression
is obtained for 𝑠 > 0:

Θ (𝑠) ≡ 4∑󸀠 exp {−𝑛2𝜋2𝑠} = 1 − 𝑄
√𝜋𝑠 ,

𝑄 (𝑠) ≡ −2∞∑
𝑛=1

𝑞𝑛2 ,
(57)

𝑞 ≡ − exp{−1/(4𝑠)}. The series 𝑄 is very rapidly converging
for small 𝑠. As 𝑠 → +0 we have 𝑄 → 0 and the integrable
singularity Θ ≈ 1/√𝜋𝑠. The graph for 𝑄(𝑠) has an 𝑆-shaped
(“Arrhenius-like”) saturation curve form and 𝑆(1) ≈ 0.9996.
The function𝑄/√𝜋𝑠 increases monotonically to a maximum
(≈0.828 for 𝑠 ≈ 0.334) and then decreases monotonically.
To represent the series 𝑄(𝑠) it is reasonable to use only a
small number (5–8) of series terms. As an alternative to (52),

using the above-described presentation ofΘ(𝑠)we obtain the
equation

V̇ (𝑡) = −𝑏̃ (𝑡) V2 (𝑡) − 𝜘∫𝑡
0

1 − 𝑄 (𝑡 − 𝜏)
√𝜋 [𝑡 − 𝜏] V̇ (𝜏) 𝑑𝜏

(𝑡 ≥ 0, V (0) = 1) ,
(58)

where the fraction (weak singularity under the integral)
rapidly decreases from infinity (𝜏 = 𝑡) to near zero (𝜏 = 𝑡−1).
For 𝑡 > 1, the lower limit of the integral can be replaced with𝑡−1.Thus, the neglectable background can be easily identified
in the original physical time using the relation 1 = 𝑡󸀠2 −𝑡󸀠1 = ∫𝑡2

𝑡
1

𝐷(𝑇(𝜏))𝑑𝜏/ℓ2. The compact functional differential
(V̇ ≡ 𝑑V/𝑑𝑡) TDS equation (58) with initial data V(0) =1 replaces the original nonlinear boundary value problem
(from Section 6.1) with dynamic boundary conditions in
the sense that formally only the dynamics of the surface
concentration (desorption) is required for TDS spectrum
construction. Note that equation (58) contains a Caputo
fractional derivative 𝑑1/2V(𝑡)/𝑑𝑡1/2 = ∫𝑡

0
V̇(𝜏)[𝜋(𝑡 − 𝜏)]−1/2𝑑𝜏.

The theory of integrodifferential equations (the “residual”
integral containing the function 𝑄 can be transformed by
parts) is a surging field of modern mathematics and its
applications.

8. Numerical Method and
Computer Simulation

To be specific in the paper, we use data for nickel and steel
(12Cr18Ni10Ti) [6], tungsten [5], and beryllium [39, 40]. Esti-
mates depend substantially on the experimental conditions
and sample pretreatment. So the values are perceived as a
model for numerical illustrations. The parameters common
for all the materials are ℓ = 0.1 cm, 𝑇0 = 300K, [𝐸] = J/mol.
The assumed values of model parameters are the following:
(steel) 𝑏0 = 1.28 × 10−9 cm2/s, 𝐸𝑏 = 80 × 103, 𝐷0 = 3.09 ×10−4 cm2/s, 𝐸𝐷 = 31 × 103, 𝑔 = 50 cm−1, 𝐸𝑔 = −5 × 103,
𝑠0 = 0.6, 𝐸𝑠 = 110 × 103, 𝑐 = 6 × 1017 at.H/cm3, 𝑇 =1170K, 𝑇̇ = 1K/s; (Ni) 𝑏0 = 1.53 × 10−14, 𝐸𝑏 = 43.2 × 103,𝐷0 = 7.5 × 10−3, 𝐸𝐷 = 40 × 103, 𝑔 = 100, 𝐸𝑔 = 0,
𝑠0 = 1.8 × 10−2, 𝐸𝑠 = 61.4 × 103, 𝑝 = 37.4Torr, 𝑇 = 770,𝑇̇ = 0.5; (W) 𝑏0 = 6 ⋅ 10−4, 𝐸𝑏 = 69.559 × 103,𝐷0 = 4.1 ⋅ 10−3,𝐸𝐷 = 37.629 × 103, 𝑔0 = 104, 𝐸𝑔 = 15 × 103, 𝑠0 = 9 ⋅ 10−3,
𝐸𝑠 = 15, 𝑝 = 670, 𝑇 = 1300, 𝑇̇ = 5; (Be) 𝑏0 = 3.08 ⋅ 10−9,𝐸𝑏 = 57.43 × 103, 𝐷0 = 3 ⋅ 10−3, 𝐸𝐷 = 28 × 103, 𝑔0 = 200,𝐸𝑔 = 1.5 × 103, 𝑠0 = 1.44 ⋅ 10−4, 𝐸𝑠 = 1.82 × 103, 𝑝 = 760,
𝑇 = 1150, 𝑇̇ = 5.

The main role in the degassing dynamics belongs to
quadratic desorption. We therefore approximate the integral
term in (58). The after-effect horizon here is ℎ < 1 (𝜏 ∈[𝑡, 𝑡 − ℎ] for dimensionless time,𝑄(1) ≈ 0.999). Let us fix ℎ ∼0.3–0.4 due to the smooth function𝑄(𝑠)/√𝑠 graph (Figure 4)
and the trapezoid rule for numerical integration.The replace-
ment of 𝑡󸀠 = ∫𝑡

0
𝐷𝑑𝜏/ℓ2 is naturally targeted at the diffusion

time scale ℓ2/𝐷 so that the step ℎ corresponds to a significant
segment of the experiment physical time.Then, TDS equation
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Figure 4: Functions 𝑄(𝑠) and 𝑄(𝑠)/√𝜋𝑠.

(58) can be approximated step-by-step by a low order ODE
system on segments of dimensionless time of length ℎ.

The greatest contribution to the integral is made by
the value V̇(𝜏), 𝜏 ≈ 𝑡 due to nonlimited (but integrable)
singularity. Thus, the quadratic approximation

V̇ (𝜏) ≈ V̇ (𝑡) + 𝐴 [𝑡 − 𝜏] + 𝐵 [𝑡 − 𝜏]2 (59)

is used due to function V̇ concavity. Let us consider the current
segment of time 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ], 𝑘 ≥ 0. The conditions

V̇ (𝜏)|𝑘ℎ = V̇ (𝑘ℎ) ,
∫𝑡
𝑘ℎ
V̇ (𝜏) 𝑑𝜏 = V (𝑡) − V (𝑘ℎ)

(V (𝑡) ≈ V (𝑘ℎ) + V̇ (𝑡) [𝑡 − 𝑘ℎ])
(60)

determine the values of 𝐴(𝑡), 𝐵(𝑡) (constants on 𝜏):
V̇ (𝜏) ≈ V̇ (𝑡) + 2 V̇ (𝑡) − V̇ (𝑘ℎ)

𝑡 − 𝑘ℎ [𝑡 − 𝜏]
− 3 V̇ (𝑡) − V̇ (𝑘ℎ)

[𝑡 − 𝑘ℎ]2 [𝑡 − 𝜏]2 ,
(61)

𝜏 ∈ [𝑘ℎ, 𝑡] (𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ]). Represent the integral from
Formula (58) as a sum 𝜏 ∈ [0, 𝑘ℎ], 𝜏 ∈ [𝑘ℎ, 𝑡]. For the second
additive, the singularity V̇(𝜏)/√𝑡 − 𝜏 is explicitly integrated by
substituting (9). The trapezoid rule and mean value theorem
are used for the integral without singularity (𝑄(+0)/√+0 = 0)

∫𝑡
𝑘ℎ

𝑄 (𝑡 − 𝜏)
√𝜋 [𝑡 − 𝜏] V̇ (𝜏) 𝑑𝜏 = V̇ (𝜉) ∫𝑡

𝑘ℎ

𝑄 (𝑡 − 𝜏)
√𝜋 [𝑡 − 𝜏]𝑑𝜏

≈ V̇ (𝑘ℎ) + V̇ (𝑡)
2√𝜋 ⋅ 12 ⋅ 𝑄 (𝑡 − 𝑘ℎ)√𝑡 − 𝑘ℎ.

(62)

To approximate the first integral

∫𝑘ℎ
0

1 − 𝑄 (𝑡 − 𝜏)
√𝜋 [𝑡 − 𝜏] V̇ (𝜏) 𝑑𝜏

= 4∑󸀠 ∫𝑘ℎ
0

V̇ (𝜏) 𝑒−𝑛2𝜋2[𝑡−𝜏]𝑑𝜏
(63)

we use only several terms (for definiteness 𝑛 = 1, 3) on the
right-hand side taking into account the factor 𝑛2.Thenegative
additives (V̇ < 0) thereby drop out. Let us compensate for
that by replacing 𝑘ℎ with 𝑡 and introducing the additional
variables 𝑤1,2(𝑡):

𝑤𝑖 (𝑡) ≡ ∫𝑡
0
exp {− (2𝑖 − 1)2 𝜋2 [𝑡 − 𝜏]} V̇ (𝜏) 𝑑𝜏,

𝑤̇𝑖 (𝑡) = − (2𝑖 − 1)2 𝜋2𝑤𝑖 (𝑡) + V̇ (𝑡) ,
𝑤1,2 (0) = 0.

(64)

As a result we obtain an ODE system instead of (58):

V̇ (𝑡) = −𝑏̂ (𝑡) V2 (𝑡) + 𝜘
√𝜋 [ 2

15 + 𝑄 (𝑡 − 𝑘ℎ)
4 ]√𝑡 − 𝑘ℎ V̇ (𝑘ℎ) − 4𝜘 [𝑤1 (𝑡) + 𝑤2 (𝑡)] , V (0) = 1,

𝑤̇1 (𝑡) = ⋅ ⋅ ⋅ − [4𝜘 + 𝜋2]𝑤1 (𝑡) − 4𝜘𝑤2 (𝑡) , 𝑤1 (0) = 0,
𝑤̇2 (𝑡) = ⋅ ⋅ ⋅ − 4𝜘𝑤1 (𝑡) − [4𝜘 + 9𝜋2]𝑤2 (𝑡) , 𝑤2 (0) = 0,

𝑏̂ ≡ 𝑏̃
1 + (𝜘/√𝜋) [32/15 − 𝑄 (𝑡 − 𝑘ℎ) /4]√𝑡 − 𝑘ℎ , 𝜘 ≡ 𝜘

1 + (𝜘/√𝜋) [32/15 − 𝑄 (𝑡 − 𝑘ℎ) /4]√𝑡 − 𝑘ℎ .

(65)

Ellipsis stands for the right-hand side of the first line of the
first equation (−𝑏̂ ⋅ ⋅ ⋅ V̇(𝑘ℎ)). The series for 𝑄(𝑠) converges
very rapidly. It is sufficient to use 5–8 terms for soft-
ware.

The sought function V(𝑡) = 𝑞(𝑡)/𝑞 on the current segment
of dimensionless time (in the system (65) 𝑡 = 𝑡󸀠, 𝑡󸀠 ∈ [𝑘ℎ, (𝑘+1)ℎ], 𝑘 ≥ 0) is computed by the Runge-Kutta 4th-order
method for integration of ODE systems (the authors used
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Figure 5: Saturation degree.

Scilab software). If the TDS spectrum has two peaks, then𝑤3,4 should be additionally used to improve the modeling
accuracy. Returning to the physical time, we get the model
spectrum 𝐽(𝑇) = 𝑏(𝑇)𝑞2(𝑡) (𝑡󸀠 ↔ 𝑡 ↔ 𝑇(𝑡)).

Qualitatively, thermal desorption spectra of metal struc-
turalmaterials have a typical form. Figure 6 illustrates numer-
ically simulated TDS spectra for the above-listed hydrogen
permeability parameter values of the structural materials at
different heating rates. Even when defects (traps) are not
taken into account, the suggested model can yield different
types of two-peak graphs (where the low temperature peak is
more pronounced or where the peaks are comparable). For
reference, the change of the so-called transport parameter𝑊 = ℓ𝑏vol𝑐/𝐷 = ℓ𝑏𝑐/(𝐷𝑔2) is shown in the top part of the
graphs. This parameter is crucial for the study of membrane
hydrogen permeability [5]. We supposed that SLR corre-
sponds to 𝑊 < 10−2 and DLR corresponds to 𝑊 > 104.
For beryllium and steel, the low temperature TDS peak takes
place in the range where diffusion and surface processes
play commensurable roles. The high temperature TDS peak
occurs in DLR. For nickel, surface processes and diffusion
have similar effect throughout the experimental temperature
range, and only a peak-like step appears in the TDS spectrum
at a low temperature.

Let us focus on TDS spectra for tungsten because these
spectra are qualitatively different from the previous ones.
The aforementioned parameter values “for tungsten” are,
of course, formal. Besides microimpurities, the parameters
depend on how the sample surface was treated. This is
especially true because in practice a plate is thin, the volume
is small, and the effect of surface processes is more vivid.
This is one of the reasons for such a high variation of the
quantitative estimates of hydrogen permeability parameters.
Another reason (but not the last) is the following. Different
models are used for experimental data treatment (although

coefficients formally have the same name). For the model
data accepted here, a narrow splash followed by a lengthy
movement to the second peak (less visible) was observed. In
this model the sample has no high-capacity traps (standard
diffusion equation), but more detailed consideration is given
to the surface (see (29)–(31), the plate is thin). At first,
near-surface hydrogen is actively desorbed. Then, diffusion
is slowly activated by heating. The concentration gradient is
substantial, and pumping to the surface is growing. These
effects are usually categorically explained by the presence of
traps, not by the dynamics of “surface-bulk” interplay. An
amazingly similar experimental curve (marked with black
circles) is found in [41], Figure 1, although this paper dis-
cussed deuterium implantation on tungsten. The essence of
our model results is that various TDS peaks may have other
causes apart from the routinely blamed traps.

Figure 7 separately shows the dynamics of surface pro-
cesses and diffusion. High-temperature peaks correspond to
the significantly enlarged desorption coefficient and activa-
tion of the diffusion afflux from the bulk under heating. Peaks
at a low temperature take place where the diffusion towards
the surface is not high but near-surface concentrations are
higher.

Let us briefly present the numerical modeling algorithm.

(i) Set the parameters 𝑠0, 𝐸𝑠, 𝑏0, 𝐸𝑏,𝐷0, 𝐸𝐷, 𝑔. Determine
the values of 𝑐, 𝑏̃(𝑡󸀠), 𝜘 = 𝑔ℓ under the saturation
conditions𝑝,𝑇 as described in Initial saturation stage.
If the equilibrium bulk concentration 𝑐 of dissolved
diffusing hydrogen is known, then presetting of 𝑠(𝑇)
is not needed. Other scenarios of initial saturation
are possible (see discussion in Initial saturation stage).
The required adjustment of initial data is deter-
mined by the specifics of the actual TDS experi-
ment.
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Figure 6: TDS-spectra.

(ii) The low order ODE system of type (65) is numerically
integrated step by step in dimensionless time (on anℎ length interval). Other ODE approximations were
presented in [27].This procedure is standard for every
modern software.

(iii) The graph 𝐽(𝑡) = 𝑏(𝑇(𝑡))𝑞2(𝑡) or spectrum 𝐽(𝑇) is
plotted in physical time using the function V(𝑡󸀠) =𝑞(𝑡󸀠)/𝑞.

9. Inverse Problem of
Parametric Identification

The presented algorithm of numerical modeling allows quick
scanning of different scenarios and operating conditions of
a material (including the heating law and extrapolation of
the results with ℓ increase). This statistical information is
useful when designing the strategy of experimental research.
New materials (various alloys) first have to be analyzed for
their hydrogen permeability. In dealing with this task we
encounter inverse mathematical physics problems, which
are well-known for their difficulty. Let us suppose that the
diffusion coefficient 𝐷(𝑇) is known (Daines-Berrer method

is usually used for the DLR of permeability). Let us formulate
the problem: to estimate the surface parameters 𝑏0,𝐸𝑏,𝑔using
the 𝐽(𝑡) (desorption flux) information. These conditions
correspond to the real conditions of an experiment where
desorption dynamics closely correlates with diffusion in the
bulk. The problem of estimating the desorption coefficient
(𝑏vol = 𝑏/𝑔2) for the situation where accumulation on the
surface can be neglected ( ̇𝑞 ≈ 0) was presented in [25].

Since the function 𝐷(𝑡) ≡ 𝐷(𝑇(𝑡)) is known, it is
reasonable to move directly to dimensionless time 𝑡󸀠, which
is oriented at the characteristic time of the diffusion transferℓ2/𝐷. The old notation 𝑡 is retained not to complicate the
formulas. Let us present the nonlinear additive term in the
system (65) in the following form:

𝑏̂ (𝑡) V2 (𝑡) = 𝛼 (𝜘) ⋅ ℓ
𝐷 (𝑡) 𝑐 ⋅ 𝐽 (𝑡) ,

𝐽 (𝑡) ≡ 𝑏 (𝑡) 𝑞2 (𝑡) .
(66)

Here, 𝛼 is a function of the parameter 𝜘. It is obtained
through transformations using notations from (52) and (65).
Elementary but somewhat lengthy formulas are omitted. The
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function 𝐽(𝑡) (𝑡 = 𝑡󸀠) is known from measurements. After
substitution into (65) we obtain a system of three linear ODE.
It is reasonable to add the variables 𝑤3,4 to improve the
calculation accuracy.Themeasurements are usually noisy, but
the function 𝐽(𝑡) comprised of the right-hand side of theODE
and is smoothed by integration.

Note that the right-hand sides of the equations now
depend only on one estimated dissolution parameter 𝜘 =𝑔ℓ. The identification algorithm can thus be decomposed.
By setting the value of 𝑔 we can eventually calculate the
dependence 𝑞(𝑡) = 𝑞(𝑡; 𝑔) in the original physical time 𝑡. Be
reminded now that

𝐽 = 𝑏𝑞2 󳨐⇒
𝑏 = 𝐽𝑞−2 󳨐⇒

ln 𝑏0 − 𝐸𝑏𝑅 ⋅ 103 ⋅
103
𝑇 = ln𝜓,

(67)

where 𝜓(𝑡) ≡ 𝐽/𝑞2, 𝑇 = 𝑇(𝑡). Since heating is monotonic𝑡 ↔ 𝑇(𝑡), we can introduce the coordinates 𝑋 ≡ 103/𝑇, 𝑌 ≡
ln𝜓.The parametric curve𝑋(𝑡),𝑌(𝑡) is obtained on the plane(𝑋, 𝑌). Judging by the ratio (67), this curve has to be a straight
line with a negative slope. Hence, we have the criterion for
the choice of the “correct” value for 𝑔: the curve 𝑋(𝑡), 𝑌(𝑡) =
ln{𝐽(𝑡)/𝑞2(𝑡; 𝑔)} has to be a straight line segment on the
plane (𝑋,𝑌). This subproblem is scalar, where only 𝑔 va-
ries.

Formally, we prolong the straight line segment until it
crosses the coordinate axes. The crossing with the 𝑦-axis
(𝑋 = 0) yields the ln 𝑏0 value. The crossing with the abscissa𝑥 = 103 × 𝑅 ln 𝑏0/𝐸𝑏 determines the 𝐸𝑏 value.

The algorithm is laborious due to iterative use of the
procedure of numerical solving of the initial problem for
the ODE system. It requires some effort and familiarity with
mathematical packages, but it is much easier and quicker to
use the standard built-in operation than to perform iterative
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Figure 8: Estimation of desorption and dissolution parameters.

solution of the original nonlinear boundary value problem
with three varying parameters.

The presented linearization method is illustrated in
Figure 8. Model spectra were plotted to test the algorithm.
A system of five equations (for the variables V(𝑡), 𝑤1–4(𝑡))
was numerically solved to obtain more accurate estimates
for two-peak spectra. In addition, a series of experiments
was performed for spectra with a random error not higher
than 20% (we used standard Scilab uniform random num-
ber generator). The identification algorithm based on ODE
system integration demonstrated the noise resistance of
experimental data treatment.

The initial value of 𝑔 yields the mass balance

𝑐ℓ + 2𝑞 = 𝑐 [ℓ + 2𝑔−2] = 2∫𝑡∗
0

𝐽 (𝜏) 𝑑𝜏. (68)

The experiments have demonstrated that the accuracy of
such estimation decreases for 𝑔 ≫ 1. Curves based on the
“correct” numerical 𝜘 value (the resultant curve is close to
the straight line segment) and curves for 20% deviation from𝜘 are shown.The error of the identification algorithm testing
is less than several percentages. This error appears due to the

numerical error of direct and inverse problem solving. There
is high sensitivity (appearing as vertical “beak” singularity)
to situations where the “true” 𝜘 value is exceeded. Mathe-
matical singularity appears because, formally, the function
V(𝑡) changes sign, taking also negative values. We did not
take efforts to avoid this “nonphysical” transition because
it is a vivid sign of a wrong 𝜘 value. The same numerical
experiments were done for noisy spectra. Activation energies
are determined more accurately because energy parameters
more actively influence desorption during heating. From
the mathematical point of view, there is no need to strive
for visual agreement of simulated and experimental curves
(because the experimental error is tens of percentages). ODE
approximation is quite adequate.

10. Conclusions

It is advisable to aggregate the thermal desorption
(TDS) and penetration experiments (with and without
vacuum pumping) to make the measurements substantially
more informative for further estimation of the hydrogen
permeability parameters and to improve the accuracy of
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parameter identification. This paper suggests a cascade
experiment technique and the corresponding mathematical
software.

The identification algorithm uses only integral operators
thus ensuring the noise resistance of experimental data treat-
ment. The penetration method with vacuum pumping is
characterized by a significantmeasurement error, and data on
the penetrating flux are required (and this, in turn, requires a
more accurate determination of the vacuum system charac-
teristics).Themodel of the dissolved hydrogen concentration
jump at the inlet side is not very precise either.We are brought
to a conclusion that the “communicating vessels” stage, where
molecular hydrogen pressures are measured over a long time,
is characterized by a much higher accuracy of measure-
ments.

The first stage of the aggregated experiment is perceived
as preliminary estimation of the diffusion 𝐷, desorption 𝑏 =𝑏vol, and absorption 𝑠 coefficients. It is essential that the
solution of the inverse problem of parametric identification
is unique, since the results obtained for thin laboratory
membranes are extrapolated (recalculated) to the dimensions
of real-life structures. The results are “fine-tuned” by means
of local variation of the preliminary values of 𝐷, 𝑏, 𝑠 in the
ODE-model of fast hydrogen permeability.

The final stage deals with the problem of identification
of the spectra of hydrogen thermal desorption. This problem
is of high relevance for the nuclear power industry. Quali-
tatively, the identification consists of revealing the causes of
desorption peaks. It is usually assumed that TDS peaks
appear due to hydrogen release from traps with different
binding energies. Here, it was demonstrated using a diffusion
model for a homogeneous material that if surface processes
are taken into account, two-peak spectra can be obtained
even for very thin experimental samples. The tendency to
resort to the “theory of different traps” as the only explanation
is understandable, but the volume of our samples was near
zero for the trapping capacity to manifest itself.

The nonlinear boundary value problem (standard dif-
fusion equation with dynamical boundary conditions) is
reduced to the functional differential equation for the surface
concentration, because nothing but desorption dynamics is
required to plot a TDS spectrum. An effective numerical
algorithm oriented to the use of mathematical packages
(including freeware) is proposed. The main final output of
this part of the paper is a geometrically transparent method
for solving the inverse problem of surface parameter iden-
tification where desorption and diffusion in the bulk are
dynamically interrelated.
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