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This paper investigates the problem of identifying unknown coefficient of time dependent in heat conduction equation by new
iteration method. In order to use new iteration method, we should convert the parabolic heat conductive equation into an integral
equation by integral calculus and initial condition.This method constructs a convergent sequence of function, which approximates
the exact solution with a few iterations and does not need complex calculation. Illustrative examples are given to demonstrate the
efficiency and validity.

1. Introduction

In this paper, we will consider an inverse problem of deter-
mining a control function 𝑝(𝑡) in the following parabolic
partial differential equation:

𝑢𝑡 (𝑥, 𝑡) = 𝑢𝑥𝑥 + 𝑞𝑢𝑥 + 𝑝 (𝑡) 𝑢 + 𝐹 (𝑥, 𝑡) ,
𝑥 ∈ (0, 1) , 𝑡 ∈ (0, 𝑇] , (1)

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 𝑥 ∈ (0, 1) , (2)

𝑢 (0, 𝑡) = 𝑔1 (𝑡) , 𝑡 ∈ (0, 𝑇] , (3)

𝑢 (1, 𝑡) = 𝑔2 (𝑡) , 𝑡 ∈ (0, 𝑇] , (4)

and the overspecified condition

𝑢 (𝑥∗, 𝑡) = 𝐸 (𝑡) , 𝑡 ∈ (0, 𝑇] , (5)

or

∫𝑠(𝑡)
0
𝑢𝑑𝑥 = 𝐸 (𝑡) , 𝑡 ∈ (0, 𝑇] , (6)

where 𝐹(𝑥, 𝑡), 𝑓(𝑥), 𝑔1(𝑡), 𝑔2(𝑡), 𝐸(𝑡) ̸= 0, and 0 < 𝑠(𝑡) ≤ 1
are known functions, 𝑞 is a known constant, and 𝑥∗ ∈ (0, 1)

is a fixed observation point; the condition (6) represents the
specification of a relative heat content of a portion of the
conductor. The unknown function pair (𝑢, 𝑝) will be deter-
mined.

Nonlocal boundary specifications like (6) arise from
many important applications in heat transfer, thermoelastic-
ity, control theory, life science, etc. For example, in a heat
transfer process, if we let 𝑢 represent the temperature dis-
tribution, then (1)–(4) and (6) can be regarded as a control
problemwith source control. A source control parameter 𝑝(𝑡)
needs to be determined so that a desired thermal energy can
be obtained for a portion of the spatial domain.

Determination of unknown coefficients in inverse heat
conduction problems is well known as inverse coefficient
problems (ICPs). Identification of physical properties such as
conductivity using measured temperature or heat flux values
at some sites is an important inverse problem, and these
problems have been studied bymany authors and some types
of ICPs have been solved by somenumerical or analysismeth-
ods; for instance, Cannon JR and Lin YP researched the
parameter 𝑝(𝑡) in some quasilinear parabolic differential
equations in [1], Kerimov NB and Ismailov MI studied the
existence, uniqueness and continuous dependence upon the
data of the solution of the ICPs using the generalized Fourier
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method in [2], Pourgholi R and Rostamian M solved an ICPs
using Tikhonov regularization method in [3], Hussein MS
and Lesnic D studied the problem of time and space-de-
pendent coefficients in a parabolic equation using the finite
difference method in [4], in [5] Kamynin VL researched the
existence and uniqueness theorems of the solution of the
inverse problem of simultaneous determination of the right-
hand side and the lowest coefficient in multidimensional
parabolic equations with integral observation, Fatullayev AG
and Cula S determined an unknown space-dependent coeffi-
cient in a parabolic equation using the finite difference meth-
od in [6],Ozbilge E andDemirA researched the inverse prob-
lem for a time-fractional parabolic equation using semigroup
method in [7], variational iteration method was applied to
solve an inverse parabolic equation in [8], and other methods
can be referred to literature [9–12].

Daftardar-Gejji and Jafari [13] proposed the new iteration
method (NIM) which is based upon the Adomian decompo-
sitionmethod.Thismethod has been applied to various equa-
tions such as algebraic equations, integral equations, and
ordinary and partial differential equations of integer and frac-
tional order. This method was compared with other numeri-
cal methods by some authors; for instance, in [14] Bhalekar
and Daftardar-Gejji applied the NIM to fractional-order
logistic equation and compared with the Adomian decom-
position and homotopy perturbation method, and the results
showed that the NIM converges faster to the approximate
solutions. Srivastava and Rai [15] used the NIM and modified
Adomian decomposition method to solve themultiterm frac-
tional diffusion equation for different conditions, the results
also showed that the NIM is direct and straightforward, and
it avoids the volume of calculations resulting from computing
the Adomain polynomials.

In this paper, we will use the NIM to solve inverse heat
conduction problems (1)–(6).

This paper has been organized as follows. In Section 2
the basis idea of the NIM is simply described, and in Sec-
tion 3 determination of unknown coefficient in inverse heat
conduction problem has been verified using the NIM. Illus-
trative examples have been presented in Section 4 and the
conclusion is given in Section 5.

2. The NIM

Consider the general functional equation

𝑢 = 𝑁 (𝑢) + 𝑓, (7)

where 𝑁 is a continuous nonlinear operator from 𝑈 󳨀→𝑉 (𝑈,𝑉 ⊆ 𝐵, 𝐵 is a Banach space), 𝑓 is a known function,
and ‖𝑓(𝑥)‖ ≤ 𝑀, where 𝑀 is a positive constant. Assume
that (7) has the following series solution:

𝑢 = ∞∑
𝑖=0

𝑢𝑖. (8)

The nonlinear operator N can be decomposed as [13]

𝑁(𝑢) = 𝑁(∞∑
𝑖=0

𝑢𝑖)

= 𝑁 (𝑢0) + ∞∑
𝑖=1

{{{𝑁(
𝑖∑
𝑗=0

𝑢𝑗) − 𝑁(𝑖−1∑
𝑗=0

𝑢𝑗)}}} .
(9)

In view of (8) and (9), (7) can be rewritten as

𝑢 = 𝑁 (𝑢) + 𝑓
= 𝑓 + 𝑁 (𝑢0) + ∞∑

𝑖=1

{{{𝑁(
𝑖∑
𝑗=0

𝑢𝑗) − 𝑁(𝑖−1∑
𝑗=0

𝑢𝑗)}}} .
(10)

Define the recursion relation as follows:

𝑢0 = 𝑓,
𝑢1 = 𝑁 (𝑢0) ,

𝑢𝑚+1 = 𝑁 (𝑢0 + 𝑢1 + ⋅ ⋅ ⋅ + 𝑢𝑚)
− 𝑁 (𝑢0 + 𝑢1 + ⋅ ⋅ ⋅ + 𝑢𝑚−1) ,

𝑚 = 1, 2, . . . .

(11)

From (11), we have

𝑢1 + 𝑢2 + ⋅ ⋅ ⋅ + 𝑢𝑚+1 = 𝑁 (𝑢0 + 𝑢1 + ⋅ ⋅ ⋅ + 𝑢𝑚) ,
𝑚 = 1, 2, . . . , (12)

and

𝑢 = 𝑓 + ∞∑
𝑖=1

𝑢𝑖. (13)

If𝑁 is a contraction operator, that is, ‖𝑁(𝑢)−𝑁(V)‖ ≤ 𝐾‖𝑢−
V‖, 0 < 𝐾 < 1, then󵄩󵄩󵄩󵄩𝑢𝑚+1󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝑁 (𝑢0 + 𝑢1 + ⋅ ⋅ ⋅ + 𝑢𝑚)

− 𝑁 (𝑢0 + 𝑢1 + ⋅ ⋅ ⋅ + 𝑢𝑚−1)󵄩󵄩󵄩󵄩 ≤ 𝐾 󵄩󵄩󵄩󵄩𝑢𝑚−1󵄩󵄩󵄩󵄩
≤ 𝐾2 󵄩󵄩󵄩󵄩𝑢𝑚−2󵄩󵄩󵄩󵄩 ≤ ⋅ ⋅ ⋅ ≤ 𝐾𝑚 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩 , 𝑚 = 1, 2, . . . .

(14)

Since the numerical series ∑∞𝑖=0𝐾𝑖‖𝑢0‖ is convergent, there-
fore, the series ∑∞𝑖=0 𝑢𝑖 uniformly converges to a solution of
(7) [16], which is unique in view of the Banach fixed point
theorem [17].

If𝑁 is a linear operator, from (11) we obtain

𝑢𝑚 = 𝑁(𝑢𝑚−1) , 𝑚 = 1, 2, . . . , (15)

and

𝑢 = 𝑓 + ∞∑
𝑖=1

𝑁(𝑢𝑖−1) . (16)

Apply the NIM to Volterra integral equation of the second
kind as follows:

𝑢 (𝑥) = 𝑓 (𝑥) + ∫𝑥
𝑎
Γ (𝑥, 𝑡, 𝑢 (𝑡)) 𝑑𝑡, 𝑥 ∈ Ω ⊂ 𝑅1, (17)
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whereΩ is a closed subset, |𝑥−𝑎| ≤ ℎ, |𝑡−𝑎| ≤ ℎ, ℎ is a positive
constant, and 𝑓(𝑥) is analytical function. Γ is a continuous
function of its arguments and satisfies Lipschitz Condition;
that is, |Γ(𝑥, 𝑡, Φ)−Γ(𝑥, 𝑡, Ψ)| < 𝐿|Φ−Ψ|, where 𝐿 is a positive
constant independent of 𝑥, 𝑡, Φ, and Ψ.

Let |Γ(𝑥, 𝑡, 𝑢)| ≤ 𝑀, where𝑀 is a positive constant; from
(11) we define

𝑢0 (𝑥) = 𝑓 (𝑥) ,
𝑢1 (𝑥) = ∫𝑥

𝑎
Γ (𝑥, 𝑡, 𝑢0 (𝑡)) 𝑑𝑡,

𝑢𝑚+1 (𝑥) = ∫𝑥
𝑎
(Γ (𝑥, 𝑡, 𝑢0 + ⋅ ⋅ ⋅ + 𝑢𝑚)

− Γ (𝑥, 𝑡, 𝑢0 + ⋅ ⋅ ⋅ + 𝑢𝑚−1)) 𝑑𝑡, 𝑚 = 1, 2, . . . .

(18)

Then the series ∑∞𝑖=0 𝑢𝑖 is uniformly convergent.
In fact,

󵄨󵄨󵄨󵄨𝑢1 (𝑥)󵄨󵄨󵄨󵄨 ≤ ∫𝑥
𝑎

󵄨󵄨󵄨󵄨Γ (𝑥, 𝑡, 𝑢0 (𝑡))󵄨󵄨󵄨󵄨 𝑑𝑡 ≤ 𝑀(𝑥 − 𝑎) ,
󵄨󵄨󵄨󵄨𝑢2 (𝑥)󵄨󵄨󵄨󵄨 ≤ ∫𝑥

𝑎

󵄨󵄨󵄨󵄨Γ (𝑥, 𝑡, 𝑢0 (𝑡) + 𝑢1 (𝑡))
− Γ (𝑥, 𝑡, 𝑢0 (𝑡))󵄨󵄨󵄨󵄨 𝑑𝑡 ≤ 𝐿∫𝑥

𝑎

󵄨󵄨󵄨󵄨𝑢1 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡 ≤ 𝑀𝐿
⋅ (𝑥 − 𝑎)22! ≤ 𝑀𝐿 (𝐿ℎ)

2

2! ,
󵄨󵄨󵄨󵄨𝑢𝑚+1 (𝑥)󵄨󵄨󵄨󵄨 ≤ ∫𝑥

𝑎

󵄨󵄨󵄨󵄨Γ (𝑥, 𝑡, 𝑢0 (𝑡) + ⋅ ⋅ ⋅ + 𝑢𝑚 (𝑡))
− Γ (𝑥, 𝑡, 𝑢0 (𝑡) + ⋅ ⋅ ⋅ + 𝑢𝑚−1 (𝑡))󵄨󵄨󵄨󵄨 𝑑𝑡
≤ 𝐿∫𝑥
𝑎

󵄨󵄨󵄨󵄨𝑢𝑚 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡 ≤ 𝑀𝐿𝑚 (𝑥 − 𝑎)𝑚+1(𝑚 + 1)! ≤ 𝑀𝐿
⋅ (𝐿ℎ)𝑚+1(𝑚 + 1)! , 𝑚 = 1, 2, . . . .

(19)

Since the numerical series ∑∞𝑖=1(𝑀/𝐿)((𝐿ℎ)𝑚/𝑚!) is conver-
gent, so the series ∑∞𝑖=0 𝑢𝑖(𝑥) uniformly converges to the
solution of (17).

3. Apply NIM to the Inverse Problem

We begin our investigation with a pair of invertible transfor-
mations for (1)-(6):

𝑟 (𝑡) = exp(−∫𝑡
0
(𝑝 (𝑠) − 𝑞24 )𝑑𝑠) , (20)

V (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) 𝑟 (𝑡) exp (𝑞2𝑥) . (21)

We can rewrite (1)–(4) and (5) or (6) as follows:

V𝑡 (𝑥, 𝑡) = V𝑥𝑥 + 𝑟 (𝑡) exp (𝑞2𝑥)𝐹 (𝑥, 𝑡) ,
𝑥 ∈ (0, 1) , 𝑡 ∈ (0, 𝑇] , (22)

V (𝑥, 0) = 𝑓 (𝑥) exp (𝑞2𝑥) , 𝑥 ∈ (0, 1) , (23)

V (0, 𝑡) = 𝑟 (𝑡) 𝑔1 (𝑡) , 𝑡 ∈ (0, 𝑇] , (24)

V (1, 𝑡) = 𝑟 (𝑡) 𝑔2 (𝑡) exp (𝑞2) , 𝑡 ∈ (0, 𝑇] , (25)

such that

𝑟 (𝑡) = V (𝑥∗, 𝑡)𝐸 (𝑡) exp (−𝑞2𝑥∗) , (26)

or

𝑟 (𝑡) = ∫𝑠(𝑡)0 V (𝑥, 𝑡) exp (− (𝑞/2) 𝑥) 𝑑𝑥
𝐸 (𝑡) . (27)

It is clear that the original inverse problem (1)–(6) is
equivalent to the auxiliary problem (22)–(27). If 𝑟(𝑡) can
be made known, then we can use proper method to solve
(22)–(25) which seemed as a direct problem. So the key
to the solution of the inverse problem lies in getting 𝑟(𝑡)
from overspecified data (26) or (27), where 𝑟(𝑡) is related
to unknown function V(𝑥, 𝑡). Cannon JR and Lin YP [1, 18]
have showed the existence and uniqueness of a smooth global
solution pair (V, 𝑟) which depends continuously upon the
data under certain assumptions on the data of the auxiliary
problem (22)–(27). Thus a unique solution pair (𝑢, 𝑝) can
be obtained through the following inverse transformations to
(20) and (21):

𝑢 (𝑥, 𝑡) = V (𝑥, 𝑡)𝑟 (𝑡) exp (−𝑞2𝑥) ,
𝑝 (𝑡) = −𝑟󸀠 (𝑡)𝑟 (𝑡) + 𝑞

2

4 .
(28)

In this paper, we will focus on the numerical approach.
Nowwe proceed to approximate solution pair (V, 𝑟) by the

NIM. By integrating both sides of (22) with respect to 𝑡 from0 to 𝑡 and using (23), we obtain

V (𝑥, 𝑡)
= V (𝑥, 0)
+ ∫𝑡
0
(V𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)) 𝑑𝑠,

(29)

which of the same form as (17) can be solved by the NIM,
where

∫𝑡
0
(V𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)) 𝑑𝑠 (30)
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is a linear operator with respect to V(𝑥, 𝑠). We obtain the re-
cursion relation from (15) and (18) as follows:

V0 (𝑥, 𝑡) = V (𝑥, 0) ,
V1 (𝑥, 𝑡)
= ∫𝑡
0
(V0𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥)𝐹 (𝑥, 𝑠)) 𝑑𝑠,

V𝑚+1 (𝑥, 𝑡)
= ∫𝑡
0
(V𝑚𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)) 𝑑s,

𝑚 = 1, 2, . . . .

(31)

Here, the notation V𝑚𝑥𝑥(𝑥, 𝑠) = 𝜕2V𝑚(𝑥, 𝑠)/𝜕𝑥2. If (29)
satisfies the conditions of (17), then the series V = ∑∞𝑖=0 V𝑖
is convergent and the pair (V, 𝑟) is found; we can obtain the
solution of the inverse problem from (28).

We can summarize the procedure from the analysis
above. Firstly, we change the inverse problem (1)–(6) into the
equivalent problem (22)–(27) from a pair of invertible trans-
formation (21) and (20); secondly, the problem (22)–(25) can
be seemed as a direct problem when 𝑟(𝑡) can be made known
from the overspecified data (26) or (27); thirdly, by integrat-
ing both sides of the (22) with respect to 𝑡 from 0 to 𝑡 and
using (23), (22) has been changed into (29) which of the same
form as (17) can be solved by the NIM; finally, using V(𝑥, 𝑡)
which has been obtained from the third step and (26) or (27),𝑟(𝑡) can be determined; then we can obtain the solution of the
inverse problem (1)–(6) from (28).

4. Illustrative Examples

In this section, several examples of inverse heat conduction
problems are given to illustrate the efficiency and validity of
the NIM.

4.1. Example 1. Consider (1)–(5) with the given data

𝑢 (𝑥, 0) = 𝑥,
𝑢 (0, 𝑡) = 0,
𝑢 (1, 𝑡) = exp (𝑡) ,
𝐹 (𝑥, 𝑡) = − (2 + 𝑥𝑡2) exp (𝑡) ,
𝐸 (𝑡) = 12 exp (𝑡) ,

(32)

with 𝑞 = 2, 𝑥∗ = 1/2.
Using the (31) and letting V0(𝑥, 𝑡) = V(𝑥, 0) = 𝑥 exp(𝑥), we

obtain

V1 (𝑥, 𝑡)
= ∫𝑡
0
{V0𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)} 𝑑𝑠

= (𝑡 − 𝑡33 )𝑥 exp (𝑥) ,
V2 (𝑥, 𝑡)
= ∫𝑡
0
{V1𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)} 𝑑𝑠

= (𝑡 − 𝑡3/3)
2

2! 𝑥 exp (𝑥) ,
V3 (𝑥, 𝑡)
= ∫𝑡
0
{V2𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)} 𝑑𝑠

= (𝑡 − 𝑡3/3)
3

3! 𝑥 exp (𝑥) ,

(33)

and so on. Generally we obtain

V𝑛 (𝑥, 𝑡) = (𝑡 − 𝑡
3/3)𝑛
𝑛! 𝑥 exp (𝑥) , 𝑛 = 0, 1, . . . , (34)

the solution in a closed form is

V (𝑥, 𝑡) = ∞∑
𝑖=0

V𝑖 = exp(𝑡 − 𝑡33 )𝑥 exp (𝑥) , (35)

and using (26)

𝑟 (𝑡) = exp(−𝑡33 ) . (36)

Applying (28), the exact solution of this inverse problem is

𝑢 (𝑥, 𝑡) = 𝑥 exp (𝑡) ,
𝑝 (𝑡) = 1 + 𝑡2. (37)

It can be seen that the same results are obtained using the
variational iteration method [8]. At the same time, it is worth
pointing out that the NIM does not need to approximately
identify the general Lagrange multipliers via the variational
theory. The overall results show the computation efficiency
of the NIM for the studied model.

4.2. Example 2. Consider (1)–(5) with the given data
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𝑢 (𝑥, 0) = sin (𝜋2 𝑥) ,
𝑢 (0, 𝑡) = 0,
𝑢 (1, 𝑡) = exp (𝑡) ,
𝐹 (𝑥, 𝑡)
= [(𝜋24 − 𝑡) sin (𝜋2 𝑥) − 𝜋 cos (𝜋2 𝑥)] exp (𝑡) ,

𝐸 (𝑡) = √22 exp (𝑡) ,

(38)

with 𝑞 = 2, 𝑥∗ = 1/2.
Using(31)and lettingV0(𝑥, 𝑡) = V(𝑥, 0) = sin((𝜋/2)𝑥) exp(𝑥),

we have

V1 (𝑥, 𝑡)
= ∫𝑡
0
{V0𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)} 𝑑𝑠

= (𝑡 − 𝑡22 ) sin (𝜋2 𝑥) exp (𝑥) ,
V2 (𝑥, 𝑡)
= ∫𝑡
0
{V1𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)} 𝑑𝑠

= (𝑡 − 𝑡2/2)
2

2! sin (𝜋2 𝑥) exp (𝑥) ,
V3 (𝑥, 𝑡)
= ∫𝑡
0
{V2𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)} 𝑑𝑠

= (𝑡 − 𝑡2/2)
3

3! sin (𝜋2 𝑥) exp (𝑥) ,

(39)

and so on. Generally we obtain

V𝑛 (𝑥, 𝑡) = (𝑡 − 𝑡
2/2)𝑛
𝑛! sin (𝜋2 𝑥) exp (𝑥) ,

𝑛 = 0, 1, . . . ,
(40)

the solution in a closed form is

V (𝑥, 𝑡) = ∞∑
𝑖=0

V𝑖 = exp(𝑡 − 𝑡22 ) sin (𝜋2 𝑥) exp (𝑥) , (41)

and using (26)

𝑟 (𝑡) = exp(−𝑡22 ) . (42)

Applying the (28), the exact solution of this inverse problem
is

𝑢 (𝑥, 𝑡) = sin (𝜋2 𝑥) exp (𝑡) ,
𝑝 (𝑡) = 1 + 𝑡. (43)

4.3. Example 3. Consider (1)–(5) with the given data

𝑢 (𝑥, 0) = cos (𝜋𝑥) + 𝑥,
𝑢 (0, 𝑡) = exp (𝑡) ,
𝑢 (1, 𝑡) = 0,
𝐹 (𝑥, 𝑡) = 𝜋2 exp (𝑡) cos (𝜋𝑥)

− 𝑡2 exp (𝑡) (cos (𝜋𝑥) + 𝑥) ,
𝐸 (𝑡) = (√22 + 14) exp (𝑡) ,

(44)

with 𝑞 = 0, 𝑥∗ = 1/4.
Using (31) and letting V0(𝑥, 𝑡) = V(𝑥, 0) = cos(𝜋𝑥) + 𝑥, we

obtain
V1 (𝑥, 𝑡)
= ∫𝑡
0
{V0𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)} 𝑑𝑠

= −𝑡33 (cos (𝜋𝑥) + 𝑥) ,
V2 (𝑥, 𝑡)
= ∫𝑡
0
{V1𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)} 𝑑𝑠

= 𝑡618 (cos (𝜋𝑥) + 𝑥) ,
V3 (𝑥, 𝑡)
= ∫𝑡
0
{V2𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)} 𝑑𝑠

= − 𝑡9162 (cos (𝜋𝑥) + 𝑥) ,

(45)

and so on. Generally we obtain

V𝑛 (𝑥, 𝑡) = (−𝑡3/3)
𝑛

𝑛! (cos (𝜋𝑥) + 𝑥) , 𝑛 = 0, 1, . . . , (46)

the solution in a closed form is

V (𝑥, 𝑡) = ∞∑
𝑖=0

V𝑖 = exp(−𝑡33 ) (cos (𝜋𝑥) + 𝑥) , (47)

and using (26)

𝑟 (𝑡) = exp(−𝑡 − 𝑡33 ) . (48)
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Applying (28), the exact solution of this inverse problem is

𝑢 (𝑥, 𝑡) = (cos (𝜋𝑥) + 𝑥) exp (𝑡) ,
𝑝 (𝑡) = 1 + 𝑡2. (49)

4.4. Example 4. Consider (1)–(4) and (6) with the given data

𝑢 (𝑥, 0) = cos (𝜋𝑥) + 𝑥,
𝑢 (0, 𝑡) = exp (𝑡) ,
𝑢 (1, 𝑡) = 0,
𝐹 (𝑥, 𝑡) = (𝜋2 + 2𝑡) exp (𝑡) cos (𝜋𝑥) + 2𝑥𝑡 exp (𝑡) ,
𝐸 (𝑡)
= {{{

sin ((𝜋/2) (1 + √𝑡))
𝜋 + (1 + √𝑡)

2

8 }}} exp (𝑡) ,

(50)

with 𝑞 = 0, 𝑠(𝑡) = (1/2)(1 + √𝑡).
Using (31) and letting V0(𝑥, 𝑡) = V(𝑥, 0) = cos(𝜋𝑥) + 𝑥, we

have

V1 (𝑥, 𝑡) = ∫𝑡
0
{V0𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)} 𝑑𝑠

= 𝑡2 (cos (𝜋𝑥) + 𝑥) ,
V2 (𝑥, 𝑡) = ∫𝑡

0
{V1𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)} 𝑑𝑠

= 𝑡42! (cos (𝜋𝑥) + 𝑥) ,
V3 (𝑥, 𝑡) = ∫𝑡

0
{V2𝑥𝑥 (𝑥, 𝑠) + 𝑟 (𝑠) exp (𝑞2𝑥) 𝐹 (𝑥, 𝑠)} 𝑑𝑠

= 𝑡63! (cos (𝜋𝑥) + 𝑥) ,

(51)

and so on. Generally we obtain

V𝑛 (𝑥, 𝑡) = (𝑡
2)𝑛
𝑛! (cos (𝜋𝑥) + 𝑥) , 𝑛 = 0, 1, . . . , (52)

the solution in a closed form is

V (𝑥, 𝑡) = ∞∑
𝑖=0

V𝑖 = exp (𝑡2) (cos (𝜋𝑥) + 𝑥) , (53)

and using (27)

𝑟 (𝑡) = exp (𝑡2 − 𝑡) . (54)

Applying (28), the exact solution of this inverse problem is

𝑢 (𝑥, 𝑡) = (cos (𝜋𝑥) + 𝑥) exp (𝑡) ,
𝑝 (𝑡) = 1 − 2𝑡. (55)

We obtain the following conclusion from the examples above.
Comparing the NIM with the variational iteration method,
it does not need to approximately identify the general
Lagrange multipliers via the variational theory and reduces
the computational difficulties; comparing this method with
other numerical method, for instance, the finite difference
method [4], it does not require discretization of the variables,
then it is not effected by computation round-off errors, and
one is not faced with necessity of large computer memory and
time. It provides the solutionwith high accuracy andminimal
calculation in a rapidly convergent series which lead to the
solution in a closed form by using the initial condition only.
The solutions obtained are highly in agreement with the exact
solutions.

5. Conclusion

In this work, we have successfully utilized the NIM to an
inverse heat conduction problem. It is observed that the
present method reduces the computational difficulties of
variational iteration method, it does not need to approxi-
mately identify the general Lagrange multipliers via complex
calculation, and all the calculation can be made in simple
manipulations. It does not require discretization of the vari-
ables; it is not effected by computation round-off errors and
not faced with necessity of large computer memory and time.
It provides the solution with high accuracy and minimal cal-
culation in a rapidly convergent series where the series may
lead to the solution in a closed form by using the initial condi-
tion only.The solutions obtained are highly in agreementwith
the exact solutions; thus we can say the NIM is very simple
and straightforward for the studied model.

Data Availability

(1) The new iteration method in this paper was used to
support this study and is available at doi:10.1016/j.jmaa
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studies are cited at relevant places within the text as [13, 14].
(2) The theory of the existence and uniqueness of solution
under studied problem was used to support this study and
is available at doi:10.1088/0266-5611/4/1/006; these studies
are cited at relevant places within the text as [1, 18]. (3)
Examples 1 and 2 in this study are available at doi:10.1016/j.
physleta.2008.02.042 and are cited at relevant places within
the text as [8].
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