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Integrable deformations of a Hamilton-Poisson system can be obtained altering its constants of motion. These deformations are
integrable systems that can have various dynamical properties. In this paper, we give integrable deformations of the Kermack-
McKendrick model for epidemics, and we analyze a particular integrable deformation. More precisely, we point out two Poisson
structures that lead to infinitely many Hamilton-Poisson realizations of the considered system. Furthermore, we study the stability
of the equilibrium points, we give the image of the energy-Casimir mapping, and we point out some of its properties.

1. Introduction

Evolution equations represent models for describing phe-
nomena that appear in physics, biology, chemistry, econ-
omy, and engineering. In many situations these evolution
equations can be analyzed in the frame of the Lagrangian
mechanics or the Hamiltonian mechanics. Furthermore,
there are phenomena that are modeled by three-dimensional
systems of differential equations, particularly Hamilton-
Poisson systems. Such systems can be perturbed in order
to obtain a desired behavior. A way to perturb a three-
dimensional Hamilton-Poisson systems consists in alteration
of its constants of motion. This method leads to integrable
deformations of the initial system.

In recent papers, integrable deformations of some par-
ticular Hamilton-Poisson systems were analyzed. In [1],
observing that the constants of motion of the Euler top
determine its equations, integrable deformations of the
Euler top were given. In [2], integrable deformations of the
three-dimensional real valuedMaxwell-Bloch equationswere
obtained by altering the constants ofmotion of the considered
system. In the same manner, in [3], integrable deformations
of the Rikitake system were constructed. These integrable
deformations can be viewed as controlled systems and, in
consequence, a study of modifications in their dynamics

can be performed. Moreover, the integrable deformations
of the above systems are also Hamilton-Poisson systems.
Consequently, they can be analyzed from some standard and
nonstandard Poisson geometry points of view [4].

The study of a three-dimensional Hamilton-Poisson sys-
tem from some standard and nonstandard Poisson geometry
points of view tries to answer the following open problem
formulated by Tudoran et al. [4]: “Is there any connection
between the dynamical properties of a given dynamical
system and the geometry of the image of the energy-Casimir
mapping, and if yes, how can one detect as many as possible
dynamical elements (e.g., equilibria, periodic orbits, homo-
clinic and heteroclinic connections) and dynamical behavior
(e.g., stability, bifurcation phenomena for equilibria, periodic
orbits, homoclinic and heteroclinic connections) by just
looking at the image of this mapping?” Affirmative answers
were given for some particular systems [5–9]. In these cases
the image of the energy-Casimir mapping EC = (𝐻, 𝐶),
where 𝐻 is the Hamiltonian and 𝐶 is a Casimir function, is a
closed subset of R2, namely, the convex hull of the images of
the stable equilibrium points through EC. Furthermore, the
images of the equilibrium points through the energy-Casimir
mapping give an algebraic partition of the set Im(EC), and
the orbits of these systems are bounded. On the other hand,
the image of the energy-Casimirmapping can beR2 ([10, 11]),
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and other connections were observed (for example, there
are unbounded orbits). In [12], taking into account these
facts, some questions regarding the connections between the
dynamics of a Hamilton-Poisson systems and the associated
energy-Casimirmappingwere asked.We recall some of them:
“are the observed properties in every case when Im(EC) ⊊
R2 true?” or “can Im(EC) be a nonconvex set? If yes, do the
observed properties remain true?” One of the goals of this
paper is to give some answers to these questions.

The finding of some counterexamples assumes the study
ofmanyHamilton-Poisson systems, and howwe have already
seen such systems can be obtained using integrable defor-
mations of known integrable systems. Moreover, because the
constants ofmotion𝐻 and𝐶 of the above-mentioned systems
are polynomials, it is a good idea to analyze systems that
have nonpolynomials constants of motion. Such a system
is the well-known system introduced in 1927 by Kermack
and McKendrick [13] and brought back in attention by
Anderson and May, in 1979 [14]. The Kermack-McKendrick
system and its generalizations were widely investigated. We
mention a very short list of works [15–17]. We also notice
the applications of such type of systems in health, networks,
informatics, economics, and finance (see, for example, [18]
and references therein).

The paper is organized as follows. In Section 2, we recall
the Kermack-McKendrick model and we give integrable
deformations of this system. In Section 3, we analyze a par-
ticular integrable deformation of the Kermack-McKendrick
system. More precisely, we point out two Poisson structures
and, in consequence, we obtain two Hamilton-Poisson real-
izations of the considered system. In addition, using these
structures, we construct infinitely many Hamilton-Poisson
realizations of our system. Furthermore, we study the stability
of the equilibrium points, we give the image of the energy-
Casimir mapping, and we point out some of its properties.
The conclusions are presented in the last section.

2. Integrable Deformations of the
Kermack-McKendrick System

Following [1], in this section, we give integrable deformations
of the Kermack-McKendrick system. First, we recall the
epidemic model introduced by Kermack and McKendrick
[13] (for details, see also [19]).

In the mathematical theory of epidemics, a basic model
is given by the Kermack-McKendrick system. This model
intends to describe the spread of the infection within the
population as a function of time. It is considered that the total
population is constant, and it is divided into three distinct
groups. First group is formed by individuals who can catch
the disease, named the susceptibles. At a moment 𝑡 their
number is 𝑆(𝑡). The second group, the infected population,
consists in individuals who have the disease and can transmit
it. Their number is 𝐼(𝑡). Finally, the group of the removed
subjects, in number of 𝑅(𝑡), formed by those who had
the disease, cannot be reinfected and cannot infect other
individuals. In order to obtain the evolution equations, some
assumptions were made. Firstly, the gain in the infective

group is at a rate proportional to the number of infected
subjects and susceptibles, that is, 𝑎𝑆(𝑡)𝐼(𝑡), where 𝑎 > 0
is the infection rate. The susceptibles are lost at the same
rate. Furthermore, the rate of removal of the infected subjects
to the removed group is proportional to the number of the
infected subjects, that is, 𝑏𝐼(𝑡), where 𝑏 > 0 is the removal rate
of the infected subjects. In addition, the incubation period is
negligible, and every pair of individuals has equal probability
of coming into contact with one another. Therefore, the
following equations were deduced:

𝑑𝑆𝑑𝑡 = −𝑎𝑆𝐼
𝑑𝐼𝑑𝑡 = 𝑎𝑆𝐼 − 𝑏𝐼
𝑑𝑅𝑑𝑡 = 𝑏𝐼.

(1)

We denote 𝑆 fl 𝑥, 𝐼 fl 𝑦, 𝑅 fl 𝑧. Then the Kermack-
McKendrick system is written as follows:

𝑥̇ = −𝑎𝑥𝑦
̇𝑦 = 𝑎𝑥𝑦 − 𝑏𝑦

𝑧̇ = 𝑏𝑦,
(2)

where 𝑎, 𝑏 are positive constants.
It is obvious that a constant of motion is given by the total

number of individuals; namely,

𝐼1 (𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧. (3)

We recall the second constant of motion

𝐼2 (𝑥, 𝑦, 𝑧) = ln𝑥 + 𝑎𝑏𝑧. (4)

Differentiating the above constants of motion we obtain

𝑥̇ + ̇𝑦 = −𝑧̇,
𝑥̇𝑥 = −𝑎𝑏 𝑧̇, (5)

and considering 𝑧̇ = 𝑏𝑦, we get system (2). Therefore the
constants ofmotion (3), (4) generate system (2).This property
allows us to obtain integrable deformations of system (2) by
alteration of its constants of motion [1].

Consider as constants of motion the functions

𝐼1 (𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧 + 𝛼 (𝑥, 𝑦, 𝑧) ,
𝐼2 (𝑥, 𝑦, 𝑧) = ln𝑥 + 𝑎𝑏𝑧 + 𝛽 (𝑥, 𝑦, 𝑧) , (6)
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where 𝛼, 𝛽 are arbitrary differentiable functions. As above, we
obtain that these functions generate the following system:

𝑥̇ = −𝑎𝑥𝑦 + 𝑏𝑥𝑦 (𝜕𝑦𝛽 − 𝜕𝑧𝛽) − 𝑎𝑥𝑦𝜕𝑦𝛼
− 𝑏𝑥𝑦 (𝜕𝑦𝛼𝜕𝑧𝛽 − 𝜕𝑧𝛼𝜕𝑦𝛽)

̇𝑦 = 𝑎𝑥𝑦 − 𝑏𝑦 + 𝑎𝑥𝑦𝜕𝑥𝛼 − 𝑏𝑦𝜕𝑧𝛼 + 𝑏𝑥𝑦 (𝜕𝑧𝛽 − 𝜕𝑥𝛽)
+ 𝑏𝑥𝑦 (𝜕𝑥𝛼𝜕𝑧𝛽 − 𝜕𝑧𝛼𝜕𝑥𝛽)

𝑧̇ = 𝑏𝑦 + 𝑏𝑦𝜕𝑦𝛼 − 𝑏𝑥𝑦 (𝜕𝑦𝛽 − 𝜕𝑥𝛽)
− 𝑏𝑥𝑦 (𝜕𝑥𝛼𝜕𝑦𝛽 − 𝜕𝑦𝛼𝜕𝑥𝛽) ,

(7)

where 𝜕𝑥𝑓 fl 𝜕𝑓/𝜕𝑥. If 𝛼 and 𝛽 are constant functions, then
(7) reduces to (2). Therefore, for any differential functions𝛼 and 𝛽, system (7) is an integrable deformation of the
Kermack-McKendrick system.

Remark 1. In order tomaintain constant the total population,
the function 𝛼 vanishes. In this case system (7) becomes

𝑥̇ = −𝑎𝑥𝑦 + 𝑏𝑥𝑦 (𝜕𝑦𝛽 − 𝜕𝑧𝛽)
̇𝑦 = 𝑎𝑥𝑦 − 𝑏𝑦 + 𝑏𝑥𝑦 (𝜕𝑧𝛽 − 𝜕𝑥𝛽)

𝑧̇ = 𝑏𝑦 − 𝑏𝑥𝑦 (𝜕𝑦𝛽 − 𝜕𝑥𝛽) .
(8)

3. Dynamical Properties of an
Integrable Deformation of the
Kermack-McKendrick System

In this section, we consider some particular deforma-
tion functions, and we give some dynamical properties of
the corresponding integrable deformation of the Kermack-
McKendrick system. First, we give Hamilton-Poisson realiza-
tions of this system that provides the geometric framework
of our study. Furthermore, we study the stability of the equi-
librium points. We also give some properties of the energy-
Casimir mapping associated with the considered system.

We consider the following deformation functions:

𝛼 (𝑥, 𝑦, 𝑧) = 𝑔2 𝑦2 + 𝑔2 𝑧2,
𝛽 (𝑥, 𝑦, 𝑧) = 0, (9)

where 𝑔 ∈ R is the deformation parameter. Then system (7)
becomes

𝑥̇ = −𝑎𝑥𝑦 − 𝑎𝑔𝑥𝑦2
̇𝑦 = 𝑎𝑥𝑦 − 𝑏𝑦 − 𝑏𝑔𝑦𝑧

𝑧̇ = 𝑏𝑦 + 𝑏𝑔𝑦2,
(10)

and its constants of motion are given by (6); namely,

𝐶1 (𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧 + 𝑔2𝑦2 + 𝑔2 𝑧2,
𝐼2 (𝑥, 𝑦, 𝑧) = ln𝑥 + 𝑎𝑏𝑧. (11)

In what follows we need constants of motion defined on R3.
We immediately get that the function 𝐶2,

𝐶2 (𝑥, 𝑦, 𝑧) = 𝑥 ⋅ 𝑒(𝑎/𝑏)𝑧, (12)

is a constant of motion of system (10).

3.1. Hamilton-Poisson Realizations. We recall that the
dynamical system generated by the 𝐶1 vector field
f = (𝑓1, 𝑓2, 𝑓3) on a 𝐶∞ manifold 𝑃 ⊆ R3,

ẋ = f (x) , x = (𝑥1, 𝑥2, 𝑥3) , (13)

has the Hamilton-Poisson realization (𝑃, {⋅, ⋅}, 𝐻), if it can be
put in the form

𝑥̇𝑖 = {𝑥𝑖, 𝐻} , 𝑖 ∈ {1, 2, 3} , (14)

where 𝐻 is the Hamiltonian function, and {⋅, ⋅} is a Poisson
bracket on 𝑃.

Considering a smooth function 𝐶 on 𝑃, a Poisson struc-
ture on 𝑃 is generated by the Poisson bracket

{𝑓, 𝑔}𝐶 fl 𝜕 (𝐶, 𝑓, 𝑔)
𝜕 (𝑥1, 𝑥2, 𝑥3) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑥1𝐶 𝜕𝑥2𝐶 𝜕𝑥3𝐶𝜕𝑥1𝑓 𝜕𝑥2𝑓 𝜕𝑥3𝑓𝜕𝑥1𝑔 𝜕𝑥2𝑔 𝜕𝑥3𝑔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, (15)

for every 𝑓, 𝑔 ∈ 𝐶∞(R3,R). In addition, see, for example,
[20], using any smooth function ] on𝑃, a newPoisson bracket
is given by

{𝑓, 𝑔}]𝐶 fl ] ⋅ {𝑓, 𝑔}𝐶 . (16)

In both cases, the function 𝐶 is a Casimir of the Poisson
structure; that is, {𝐶, 𝑓} = 0 for every 𝑓. In coordinates, the
Poisson structure is given in matrix notation

Π]
𝐶 = ]Π𝐶 = ]

[[[
[

0 𝜕𝑧𝐶 −𝜕𝑦𝐶−𝜕𝑧𝐶 0 𝜕𝑥𝐶𝜕𝑦𝐶 −𝜕𝑥𝐶 0
]]]
]

. (17)

Moreover, if there is a smooth function 𝐻 such that system
(13) takes the form ẋ𝑡 = Π]

𝐶 ⋅ ∇𝐻, then (13) is a Hamilton-
Poisson system.

In our case, let 𝑔 ̸= 0 and let

𝐶 (𝑥, 𝑦, 𝑧) = 𝐶1 (𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧 + 𝑔2𝑦2 + 𝑔2 𝑧2. (18)

We obtain the rescaling function ](𝑥, 𝑦, 𝑧) = 𝑏𝑦 ⋅ 𝑒−(𝑎/𝑏)𝑧 and
the Poisson structure generated by 𝐶1:

Π𝐶1 = [[
[

0 𝑔𝑧 + 1 −𝑔𝑦 − 1
−𝑔𝑧 − 1 0 1
𝑔𝑦 + 1 −1 0

]]
]

= [[
[

0 𝑔𝑧 −𝑔𝑦
−𝑔𝑧 0 0
𝑔𝑦 0 0

]]
]

+ [[
[

0 1 −1
−1 0 1
1 −1 0

]]
]

.
(19)



4 Advances in Mathematical Physics

Due to its linearity, the above Poisson structure is a Lie-
Poisson structure on the dual vector space of a Lie algebra,
namely, se(2)∗. Indeed, consider the special Euclidean Lie
group SE(2) of all orientation-preserving isometries (see, for
example, [21]), given by

SE (2) = {{{{{
𝐴 ∈ 𝐺𝐿 (3,R) | 𝐴

= [[
[
1 0 0
𝑢 cos𝜑 − sin𝜑
V sin𝜑 cos𝜑

]]
]

, 𝑢, V ∈ R, 𝜑 ∈ [0, 2𝜋)}}}}}
.

(20)

The corresponding Lie algebra of SE(2) is

se (2) = {{{{{
𝑋 ∈ 𝑔𝑙 (3,R) | 𝑋 = [[

[
0 0 0
𝛽 0 −𝛼
𝛾 𝛼 0

]]
]

, 𝛼, 𝛽, 𝛾

∈ R
}}}}}

,
(21)

with the commutator bracket [𝑋, 𝑌] = 𝑋𝑌 − 𝑌𝑋.
As vector space, se(2) has the basis 𝐵se(2) = {𝑒1, 𝑒2, 𝑒3},

where

𝑒1 = [[
[
0 0 0
0 0 −𝑔
0 𝑔 0

]]
]

,

𝑒2 = [[
[
0 0 0
1 0 0
0 0 0

]]
]

,

𝑒3 = [[
[
0 0 0
0 0 0
1 0 0

]]
]

.

(22)

We obtain the following bracket relations:

[𝑒1, 𝑒2] = 𝑔𝑒3,
[𝑒1, 𝑒3] = −𝑔𝑒2,
[𝑒2, 𝑒3] = 0.

(23)

We consider the bilinear form Θ : se(2) × se(2) → R given
by the matrix (Θ𝑖𝑗)1≤𝑖,𝑗≤3, Θ12 = −Θ21 = 1, Θ13 = −Θ31 = −1,
and Θ23 = −Θ32 = 1. By straightforward computations we
obtain that Θ satisfies condition

Θ (𝑋, [𝑌, 𝑍]) + Θ (𝑌, [𝑍,𝑋]) + Θ (𝑍, [𝑋, 𝑌]) = 0, (24)

for every triplet (𝑋, 𝑌, 𝑍) of elements in se(2). Therefore Θ
is a symplectic cocycle of the Lie algebra se(2). Moreover, it

is not a coboundary since Θ(𝑒2, 𝑒3) = 1 ̸= 0 = 𝑓([𝑒2, 𝑒3]),
for every linear map 𝑓, 𝑓 : se(2) → R. Following [22], the
modified Lie-Poisson structure Π𝐶1 is defined on the dual
space se(2)∗ ≃ R3.

The following result gives a Hamilton-Poisson realization
of the considered system.

Proposition 2. Let ] be the rescaling function given by

] (𝑥, 𝑦, 𝑧) = 𝑏𝑦 ⋅ 𝑒−(𝑎/𝑏)𝑧. (25)

If Π𝐶1 is the Poisson structure generated by the Casimir
function 𝐶1,

𝐶1 (𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧 + 𝑔2𝑦2 + 𝑔2 𝑧2, (26)

given by

{𝑥, 𝑦}𝐶1 = 𝑔𝑧 + 1,
{𝑥, 𝑧}𝐶1 = −𝑔𝑦 − 1,
{𝑦, 𝑧}𝐶1 = 1,

(27)

then system (10) has the Hamilton-Poisson realization

(R3, {⋅, ⋅}]𝐶1 , 𝐶2) , (28)

where {𝑓, 𝑔}]𝐶1 = ] ⋅ {𝑓, 𝑔}𝐶1 for any 𝑓, 𝑔 ∈ 𝐶∞(R3,R), and 𝐶2
is the Hamiltonian function given by

𝐶2 (𝑥, 𝑦, 𝑧) = 𝑥 ⋅ 𝑒(𝑎/𝑏)𝑧. (29)

Proof. An easy computation shows that system (10) takes the
formΠ]

𝐶1
⋅∇𝐶2 = (𝑥̇, ̇𝑦, 𝑧̇)𝑡; hence the conclusion follows.

Using the same notations as in Proposition 2, we similarly
obtain the following results.

Proposition 3. Let 𝜇 be the rescaling function given by𝜇(𝑥, 𝑦, 𝑧) = −](𝑥, 𝑦, 𝑧) and let 𝐶2 be a Casimir function. IfΠ𝜇𝐶2 is the Poisson structure generated by 𝐶2 and 𝜇, given in
matrix notation by

Π𝜇𝐶2 = [[
[

0 −𝑎𝑥𝑦 0
𝑎𝑥𝑦 0 −𝑏𝑦
0 𝑏𝑦 0

]]
]

, (30)

then system (10) has the Hamilton-Poisson realization

(R3, {⋅, ⋅}𝜇𝐶2 , 𝐶1) , (31)

where 𝐶1 is the Hamiltonian function.

Remark 4. The above Poisson structures are compatible and

Π]
𝐶1

∇𝐶2 = Π𝜇𝐶2∇𝐶1, (32)

and hence (10) is a bi-Hamiltonian system. Moreover, this
pair of Hamilton-Poisson realizations gives rise to infinitely
many Hamilton-Poisson realizations of system (10) (see
Proposition 5).
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Proposition 5. Let 𝑝, 𝑞, 𝑟, 𝑠 ∈ R such that 𝑝𝑠−𝑞𝑟 = 1, and let
](𝑥, 𝑦, 𝑧) = 𝑏𝑦 ⋅ 𝑒−(𝑎/𝑏)𝑧 be the rescaling function. There exists
infinitely many Hamilton-Poisson realizations of system (10)
given by (R3, Π𝑝,𝑞, 𝐻𝑟,𝑠), where the Hamiltonian 𝐻𝑟,𝑠 is given
by

𝐻𝑟,𝑠 = 𝑟𝐶1 + 𝑠𝐶2
= 𝑟 (𝑥 + 𝑦 + 𝑧 + 𝑔2𝑦2 + 𝑔2 𝑧2) + 𝑠𝑥 ⋅ 𝑒(𝑎/𝑏)𝑧, (33)

the Poisson structure is defined by
Π𝑝,𝑞 = 𝑝Π]

𝐶1
+ 𝑞Π]
𝐶2

, (34)
and a Casimir function of the above Poisson structure is given
by

𝐶𝑝,𝑞 = 𝑝𝐶1 + 𝑞𝐶2
= 𝑝(𝑥 + 𝑦 + 𝑧 + 𝑔2𝑦2 + 𝑔2 𝑧2) + 𝑞𝑥 ⋅ 𝑒(𝑎/𝑏)𝑧. (35)

Proof. It is clear thatΠ𝑝,𝑞 = ](𝑝Π𝐶1 +𝑞Π𝐶2).ThereforeΠ𝑝,𝑞 is
the Poisson structure generated by the Casimir function 𝐶𝑝,𝑞
and the rescaling function ]. Using the Hamilton-Poisson
realizations given in Propositions 2 and 3, we immediately
obtain Π𝑝,𝑞 ⋅ ∇𝐻𝑟,𝑠 = (𝑥̇, ̇𝑦, 𝑧̇)𝑡, which finishes the proof.

3.2. Stability of the Equilibrium Points. The equilibrium
points of system (10) are given by the following families:

E1 = {(𝑀, − 1𝑔 , 𝑎𝑀 − 𝑏𝑏𝑔 ) : 𝑀 ∈ R} ,
E2 = {(𝑁, 0, 𝑃) : 𝑁, 𝑃 ∈ R} .

(36)

We remark that the second family represents the set of
all equilibrium points of Kermack-McKendrick system (2).
Therefore, the existence of another family of equilibrium
points produces changes in the dynamics of initial system (2).
We are concerned with the study of these new equilibrium
points.

Proposition 6. Let 𝑔 ∈ R\ {0} and let 𝑒𝑀1 = (𝑀, −1/𝑔, (𝑎𝑀−𝑏)/𝑏𝑔) ∈ E1 be an equilibrium point of system (10).
(i) If 𝑔(𝑎2𝑀+𝑏2𝑔) < 0, then 𝑒𝑀1 is an unstable equilibrium

point.
(ii) If 𝑔(𝑎2𝑀 + 𝑏2𝑔) > 0, then 𝑒𝑀1 is a nonlinearly stable

equilibrium point.

Proof. (i) Let𝐴 be the matrix of the linear part of our system;
that is,

𝐴 = [[
[
−𝑎𝑦 (1 + 𝑔𝑦) −𝑎𝑥 − 2𝑎𝑔𝑥 0

𝑎𝑦 𝑎𝑥 − 𝑏 − 𝑏𝑔𝑧 −𝑏𝑔𝑦
0 𝑏 + 2𝑏𝑔𝑦 0

]]
]

. (37)

The characteristic roots of 𝐴(𝑒𝑀1 ) are given by

𝜆1 = 0,
𝜆2,3 = ±√−𝑏2 − 𝑎2𝑀𝑔 . (38)

Considering𝑀 such that 𝑔(𝑎2𝑀+𝑏2𝑔) < 0, we conclude that
the equilibrium point 𝑒𝑀1 is unstable.

(ii) Now, let𝑀 be such that 𝑔(𝑎2𝑀+𝑏2𝑔) > 0. We use the
energy-Casimir method [23]. Let 𝐻𝜑 be the energy-Casimir
function:

𝐻𝜑 (𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧 + 𝑔2𝑦2 + 𝑔2 𝑧2
+ 𝜑 (𝑥 ⋅ 𝑒(𝑎/𝑏)𝑧) , (39)

where 𝜑 : R → R is a smooth real valued function defined
on R.

The first variation of 𝐻𝜑 is given by

𝛿𝐻𝜑 (𝑥, 𝑦, 𝑧)
= [1 + 𝑒(𝑎/𝑏)𝑧 ⋅ 𝜑̇ (𝑥 ⋅ 𝑒(𝑎/𝑏)𝑧)] 𝛿𝑥 + (1 + 𝑔𝑦) 𝛿𝑦

+ [1 + 𝑔𝑧 + 𝑎𝑥𝑏 ⋅ 𝑒(𝑎/𝑏)𝑧 ⋅ 𝜑̇ (𝑥 ⋅ 𝑒(𝑎/𝑏)𝑧)] 𝛿𝑧,
(40)

where 𝜑̇(𝑢) fl 𝑑𝜑/𝑑𝑢. We have

𝛿𝐻𝜑 (𝑒𝑀1 ) = [1 + 𝑒𝑎(𝑎𝑀−𝑏)/𝑏2𝑔 ⋅ 𝜑̇ (𝑀 ⋅ 𝑒𝑎(𝑎𝑀−𝑏)/𝑏2𝑔)]
⋅ (𝛿𝑥 + 𝑎𝑀𝑏 𝛿𝑧) , (41)

which vanishes if and only if

𝜑̇ (𝑀 ⋅ 𝑒𝑎(𝑎𝑀−𝑏)/𝑏2𝑔) = −𝑒−𝑎(𝑎𝑀−𝑏)/𝑏2𝑔. (42)

The second variation of 𝐻𝜑 is given by

𝛿2𝐻𝜑 (𝑥, 𝑦, 𝑧) = 𝑒(2𝑎/𝑏)𝑧 ⋅ 𝜑̈ (𝑥 ⋅ 𝑒(𝑎/𝑏)𝑧) (𝛿𝑥)2
+ 𝑔 (𝛿𝑦)2 + 𝑥 ⋅ 𝑎2𝑏2 ⋅ 𝑒(𝑎/𝑏)𝑧 [𝑔 + 𝜑̇ (𝑥 ⋅ 𝑒(𝑎/𝑏)𝑧) + 𝑥
⋅ 𝑒(𝑎/𝑏)𝑧𝜑̈ (𝑥 ⋅ 𝑒(𝑎/𝑏)𝑧)] (𝛿𝑧)2 + 2𝑎𝑏
⋅ 𝑒(𝑎/𝑏)𝑧 [𝜑̇ (𝑥 ⋅ 𝑒(𝑎/𝑏)𝑧) + 𝑥 ⋅ 𝑒(𝑎/𝑏)𝑧𝜑̈ (𝑥 ⋅ 𝑒(𝑎/𝑏)𝑧)]
⋅ 𝛿𝑥𝛿𝑧.

(43)

Taking into account relation (42), we obtain

𝛿2𝐻𝜑 (𝑒𝑀1 ) = 𝑒2𝑎(𝑎𝑀−𝑏)/𝑏2𝑔 ⋅ 𝜑̈ (𝑀 ⋅ 𝑒𝑎(a𝑀−𝑏)/𝑏2𝑔)
⋅ (𝛿𝑥)2 + 𝑔 (𝛿𝑦)2 + [𝑔 − 𝑀 ⋅ 𝑎2𝑏2 + 𝑀2 ⋅ 𝑎2𝑏2
⋅ 𝑒2𝑎(𝑎𝑀−𝑏)/𝑏2𝑔 ⋅ 𝜑̈ (𝑀 ⋅ 𝑒𝑎(𝑎𝑀−𝑏)/𝑏2𝑔)] (𝛿𝑧)2

+ 2𝑎𝑏 [𝑀 ⋅ 𝑒2𝑎(𝑎𝑀−𝑏)/𝑏2𝑔 ⋅ 𝜑̈ (𝑀 ⋅ 𝑒𝑎(𝑎𝑀−𝑏)/𝑏2𝑔) − 1]
⋅ 𝛿𝑥𝛿𝑧.

(44)
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If 𝑔 > 0, then we choose a function 𝜑 such that relation (42)
holds and

𝜑̈ (𝑀 ⋅ 𝑒𝑎(𝑎𝑀−𝑏)/𝑏2𝑔) > 𝑎2𝑏2𝑔 + 𝑎2𝑀 ⋅ 𝑒−2𝑎(𝑎𝑀−𝑏)/𝑏2𝑔
> 0.

(45)

For example, let

𝜑 (𝑢) = 12 (𝑔 + 𝑎2𝑏2𝑔 + 𝑎2𝑀 ⋅ 𝑒−2𝑎(𝑎𝑀−𝑏)/𝑏2𝑔)
⋅ (𝑢 − 𝑀 ⋅ 𝑒𝑎(𝑎𝑀−𝑏)/𝑏2𝑔)2 − 𝑒−𝑎(𝑎𝑀−𝑏)/𝑏2𝑔𝑢.

(46)

We get that 𝛿2𝐻𝜑(𝑒𝑀1 ) is positive definite. Therefore the
equilibrium point 𝑒𝑀1 is nonlinearly stable.

If 𝑔 < 0, then the same function 𝜑 has the property

𝜑̈ (𝑀 ⋅ 𝑒𝑎(𝑎𝑀−𝑏)/𝑏2𝑔) < 𝑎2𝑏2𝑔 + 𝑎2𝑀 ⋅ 𝑒−2𝑎(𝑎𝑀−𝑏)/𝑏2𝑔
< 0.

(47)

We obtain that 𝛿2𝐻𝜑(𝑒𝑀1 ) is negative definite, and, in conse-
quence, the equilibrium point 𝑒𝑀1 is nonlinearly stable.

Remark 7. Let 𝑒𝑁,𝑃2 = (𝑁, 0, 𝑃) ∈ E2. The eigenvalues of the
characteristic polynomial associated with the linearization of
system (10) at 𝑒𝑁,𝑃2 are given by 𝜆1,2 = 0, 𝜆3 = 𝑎𝑁 − 𝑏 − 𝑏𝑔𝑃.
Therefore the equilibrium point 𝑒𝑁,𝑃2 is unstable in the case𝑎𝑁 − 𝑏 − 𝑏𝑔𝑃 > 0.
3.3. Energy-Casimir Mapping. We consider the Hamilton-
Poisson realization of system (10) given in Proposition 3. The
corresponding energy-Casimir mapping EC : R3 → R2 is
given by

EC (𝑥, 𝑦, 𝑧) = (𝐻 (𝑥, 𝑦, 𝑧) , 𝐶 (𝑥, 𝑦, 𝑧))
= (𝑥 + 𝑦 + 𝑧 + 𝑔2𝑦2 + 𝑔2 𝑧2, 𝑥 ⋅ 𝑒(𝑎/𝑏)𝑧) . (48)

The set

Im (EC) = {(ℎ, 𝑐) ∈ R
2 | (∃) (𝑥, 𝑦, 𝑧)

∈ R
3 : 𝐻 (𝑥, 𝑦, 𝑧) = ℎ, 𝐶 (𝑥, 𝑦, 𝑧) = 𝑐} (49)

is called the image of the energy-Casimir mapping.
We denote by Γ𝑀 the set of images of the equilibrium

points (𝑀, −1/𝑔, (𝑎𝑀 − 𝑏)/𝑏𝑔) through the energy-Casimir
mapping; namely,

Γ𝑀 fl {(ℎ, 𝑐) ∈ R
2 : ℎ = 𝑀 − 1𝑔 + 𝑎22𝑏2𝑔𝑀2, 𝑐 = 𝑀

⋅ 𝑒(𝑎2/𝑏2𝑔)𝑀−𝑎/𝑏𝑔, 𝑀 ∈ R} .
(50)
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Figure 1: The image of the energy-Casimir mapping (𝑔 = 10, 𝑎 =2, 𝑏 = 1).

We also consider the subsets

Γ+𝑀 fl {(ℎ, 𝑐) ∈ Γ𝑀 : 𝑀 > 0} , (51)

Γ−𝑀 fl {(ℎ, 𝑐) ∈ Γ𝑀 : 𝑀 < 0} . (52)

For 𝑔 > 0, we deduce that Γ+𝑀 is the graph of a function 𝑐 =𝜑(ℎ), ℎ > −1/𝑔. Also, for 𝑔 < 0, we have that Γ−𝑀 is the graph
of a function 𝑐 = 𝜓(ℎ), ℎ < −1/𝑔. We define the sets

Σ+𝑔 fl {(ℎ, 𝑐) ∈ R
2 : ℎ > − 1𝑔 , 0 < 𝑐 < 𝜑 (ℎ)}

for 𝑔 > 0,
(53)

Σ−𝑔 fl {(ℎ, 𝑐) ∈ R
2 : ℎ < − 1𝑔 , 𝜓 (ℎ) < 𝑐 < 0}

for 𝑔 < 0.
(54)

The set Im(EC) is described in the next result.

Proposition 8. (i) Let 𝑔 > 0. The image of the energy-Casimir
mapping EC (48) is given by

Im (EC) = {(ℎ, 𝑐) : 𝑐 < 0}
∪ {(ℎ, 𝑐) : ℎ ≥ − 1𝑔 , 𝑐 = 0} ∪ Σ+𝑔 ∪ Γ+𝑀, (55)

where Γ+𝑀 and Σ+𝑔 are given by (51) and (53), respectively
(Figure 1).

(ii) Let 𝑔 < 0. The image of the energy-Casimir mapping
EC (48) is given by

Im (EC) = {(ℎ, 𝑐) : 𝑐 > 0}
∪ {(ℎ, 𝑐) : ℎ ≤ − 1𝑔 , 𝑐 = 0} ∪ Σ−𝑔 ∪ Γ−𝑀, (56)
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Figure 2:The image of the energy-Casimir mapping (𝑔 = −10, 𝑎 =2, 𝑏 = 1).

where Γ−𝑀 and Σ−𝑔 are given by (52) and (54), respectively
(Figure 2).

Proof. (i) Let ℎ ∈ R, 𝑐 ∈ (−∞, 0), arbitrary. Consider 𝑦 =−1/𝑔. The conditions𝐻(𝑥, 𝑦, 𝑧) = ℎ, 𝐶(𝑥, 𝑦, 𝑧) = 𝑐 from (49)
become

𝑥 = ℎ + 1𝑔 − 𝑔2 (𝑧 + 1𝑔)2 fl 𝑓1 (𝑧)
𝑥 = 𝑐 ⋅ 𝑒−(𝑎/𝑏)𝑧 fl 𝑓2 (𝑧) .

(57)

We deduce that the image of the function 𝑓 = 𝑓1 − 𝑓2 is
R; hence the above system has solution for every ℎ and 𝑐.
Therefore {(ℎ, 𝑐) : 𝑐 < 0} ⊂ Im(EC).

The condition 𝑐 = 0 implies 𝑥 = 0; hence the equation𝐻(𝑥, 𝑦, 𝑧) = ℎ has solution if and only if ℎ ≥ −1/𝑔; that is,{(ℎ, 𝑐) : ℎ ≥ −1/𝑔, 𝑐 = 0} ⊂ Im(EC).
It is clear that Γ+𝑀 ⊂ Im(EC). It only remains to proveΣ+𝑔 ⊂ Im(EC) and other pairs (ℎ, 𝑐)donot belong to Im(EC).
Consider the functions

𝑢 (𝑧) = 𝑀 + 𝑎2𝑀22𝑏2𝑔 − 𝑔2 (𝑧 + 1𝑔)2 ,
V (𝑧) = 𝑀 ⋅ 𝑒(𝑎/𝑏)(𝑎𝑀/𝑏𝑔−1/𝑔−𝑧),
𝑓 (𝑧) = 𝑢 (𝑧) − V (𝑧) .

(58)

Wededuce that there is 𝑧0 ∈ R such that𝑓(𝑧0) = 0 and𝑓(𝑧) <0 for all 𝑧 ∈ R \ {𝑧0}. Moreover, Im(𝑓) = (−∞, 0].
Now, we fix an arbitrary pair (ℎ𝑒𝑀, 𝑐𝑒𝑀) ∈ Γ+𝑀, where ℎ𝑒𝑀 =

𝑀− 1/𝑔 + (𝑎2/2𝑏2𝑔)𝑀2, 𝑐𝑒𝑀 = 𝑀 ⋅ 𝑒(𝑎2/𝑏2𝑔)𝑀−𝑎/𝑏𝑔,𝑀 > 0.We
show that (ℎ, 𝑐𝑒𝑀) ∉ Im(EC) for every ℎ < ℎ𝑒𝑀 and (ℎ, 𝑐𝑒𝑀) ∈
Im(EC) for every ℎ > ℎ𝑒𝑀.

With the above notations, for a pair (ℎ, 𝑐𝑒𝑀) the system
given by (49) becomes

𝑥 = ℎ + 1𝑔 − 𝑔2 (𝑦 + 1𝑔)2 − 𝑔2 (𝑧 + 1𝑔)2

= 𝑢 (𝑧) + ℎ − ℎ𝑒𝑀 − 𝑔2 (𝑦 + 1𝑔)2

𝑥 = 𝑐𝑒𝑀 ⋅ 𝑒−(𝑎/𝑏)𝑧 = V (𝑧) ,
(59)

and hence

𝑓 (𝑧) + ℎ − ℎ𝑒𝑀 = 𝑔2 (𝑦 + 1𝑔)2 . (60)

Because Im(𝑓) = (−∞, 0] we obtain that there is 𝑧 such that𝑓(𝑧) + ℎ − ℎ𝑒𝑀 ≥ 0 for any ℎ > ℎ𝑒𝑀. Consequently, (60)
has solution; that is, (ℎ, 𝑐𝑒𝑀) ∈ Im(EC) for every ℎ > ℎ𝑒𝑀.
Therefore Σ+𝑔 ⊂ Im(EC).

On the other hand, we get that (60) does not have
solutions for ℎ < ℎ𝑒𝑀. Therefore (ℎ, 𝑐𝑒) ∉ Im(EC) for everyℎ < ℎ𝑒𝑀, which finishes the proof of (i).

(ii) The conclusion follows using the same arguments as
in the first case.

Remark 9. The image of the energy-Casimir mapping is a
nonconvex subset ofR2. Moreover, it is not a closed set, and,
clearly, it is not the convex hull of the set of the images of the
stable equilibrium points of the system through the mapEC.

Taking into account the results that have been reported
in the papers [5–9], we notice that our example shows there
is no a general result regarding the properties of the image of
the energy-Casimirmapping. Furthermore, the answer to the
question “can Im(EC) be a nonconvex set?” is affirmative.

Because one of the constants of motion is not a polyno-
mial function, it remains an open problem to establish that
the results observed in the above-mentioned papers are true
in the cases when the constants of motion are polynomials.

Remark 10. Another property that has been reported is the
following. As a closed set, the set Im(EC) has the boundary
given by images of some stable equilibrium points of the
system through the energy-Casimir mapping. In our case,
this property is partially true, in the sense that only a part of
the boundary of Im(EC), namely, the set Γ+𝑀 (51), is formedby
the images of stable equilibrium points through EC (𝑔 > 0,
see Figure 1). If 𝑔 < 0, a similar result is obtained for the setΓ−𝑀 (52) (see Figure 2).

Remark 11. It is easy to see that the image through the energy-
Casimir mapping of a family of equilibrium points that has
the form E(𝑀) = (𝑥(𝑀), 𝑦(𝑀), 𝑧(𝑀)), 𝑀 ∈ R, is a
curve included in Im(EC). In our case, for 𝑔 > 0, we have
EC(E1) = Γ+𝑀 ∪ Γ−,𝑠𝑀 ∪ Γ−,𝑢𝑀 (Figure 1), where the superscripts𝑠 and 𝑢 mean stable and unstable, respectively. On the other
hand, the second family of equilibrium points depends of two
parameters. It is natural to ask about the image of this family
through the energy-Casimir mapping.
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Figure 3:The images of the equilibriumpoints (𝑁, 0, 𝑃) through the
energy-Casimir mapping: Σ2 ∪ Σ3 (𝑔 = 1, 𝑎 = 2, 𝑏 = 1).

In the next result we give the set of all images of the
equilibrium points that belong to E2 through the energy-
Casimir mapping.

Proposition 12. (i) Let 𝑔 > 0.
(a) For all (ℎ, 𝑐) ∈ Im(EC), 𝑐 < 0, there is an equilibrium

point (𝑁, 0, 𝑃) such that EC(𝑁, 0, 𝑃) = (ℎ, 𝑐).
(b) For every 𝑐 ≥ 0, let ℎ𝑒𝑀 = 𝑀−1/𝑔+ (𝑎2/2𝑏2𝑔)𝑀2 such

that 𝑐 = 𝑐𝑒𝑀 = 𝑀 ⋅ 𝑒(𝑎2/𝑏2𝑔)𝑀−𝑎/𝑏𝑔,𝑀 ≥ 0 (see Figure 3). Then
for every ℎ ≥ ℎ𝑒𝑀+1/2𝑔 there is an equilibrium point (𝑁, 0, 𝑃)
such that EC(𝑁, 0, 𝑃) = (ℎ, 𝑐𝑒𝑀).

(ii) Let 𝑔 < 0.
(a) For all (ℎ, 𝑐) ∈ Im(EC), 𝑐 > 0, there is an equilibrium

point (𝑁, 0, 𝑃) such that EC(𝑁, 0, 𝑃) = (ℎ, 𝑐).
(b) For every 𝑐 ≤ 0, let ℎ𝑒𝑀 = 𝑀 − 1/𝑔 + (𝑎2/2𝑏2𝑔)𝑀2

such that 𝑐 = 𝑐𝑒𝑀 = 𝑀 ⋅ 𝑒(𝑎2/𝑏2𝑔)𝑀−𝑎/𝑏𝑔,𝑀 ≤ 0. Then for everyℎ ≤ ℎ𝑒𝑀+1/2𝑔 there is an equilibrium point (𝑁, 0, 𝑃) such that
EC(𝑁, 0, 𝑃) = (ℎ, 𝑐𝑒𝑀).
Proof. (i) We have

EC (𝑁, 0, 𝑃) = (𝑁 + 𝑃 + 𝑔2𝑃2, 𝑁 ⋅ 𝑒(𝑎/𝑏)𝑃) = (ℎ, 𝑐) , (61)

and hence

𝑁 = 𝑐 ⋅ 𝑒−(𝑎/𝑏)𝑃,
𝑐 ⋅ 𝑒−(𝑎/𝑏)𝑃 + 𝑃 + 𝑔2𝑃2 = ℎ. (62)

We denote

𝑓 (𝑃) = 𝑐 ⋅ 𝑒−(𝑎/𝑏)𝑃 + 𝑃 + 𝑔2𝑃2 − ℎ. (63)

(a) If 𝑐 < 0, then the image of the function 𝑓 is R. Therefore
there is 𝑃 ∈ R such that 𝑓(𝑃) = 0. Consequently, there is an
equilibrium point (𝑁, 0, 𝑃) such that EC(𝑁, 0, 𝑃) = (ℎ, 𝑐).

(b) For each 𝑀 ≥ 0, let (ℎ𝑒𝑀, 𝑐𝑒𝑀) ∈ Γ+𝑀; that is, ℎ𝑒𝑀 =
𝑀 − 1/𝑔 + (𝑎2/2𝑏2𝑔)𝑀2, 𝑐𝑒𝑀 = 𝑀 ⋅ 𝑒(𝑎2/𝑏2𝑔)𝑀−𝑎/𝑏𝑔. If 𝑐 = 𝑐𝑒𝑀,
then the function 𝑓 (63) becomes

𝑓 (𝑃) = 𝑀 ⋅ 𝑒(𝑎/𝑏)(𝑎𝑀/𝑏𝑔−1/𝑔−𝑃) + 𝑃 + 𝑔2𝑃2 − ℎ. (64)

We obtain Im𝑓 = [ℎ𝑒𝑀 + 1/2𝑔 − ℎ,∞), where ℎ𝑒𝑀 + 1/2𝑔 −ℎ = 𝑓(𝑎𝑀/𝑏𝑔 − 1/𝑔). Therefore the equation 𝑓(𝑃) = 0 has
solutions if and only if ℎ ≥ ℎ𝑒𝑀+1/2𝑔, and conclusion follows.

(ii) It is analogous.

Remark 13. Because EC(E2) ⊂ Im(EC), from the above
Proposition we deduce that if 𝑔 > 0, then EC(E2) = Σ2 ∪Σ3, where Σ2 contains all the points (ℎ, 𝑐) situated within
EC(0, 0, 𝑃), that is, 𝑐 = 0, ℎ ≥ −1/2𝑔, andEC(𝑀, 0, 𝑎𝑀/𝑏𝑔−1/𝑔), 𝑀 ≥ 0, that is, Γ2 (see Figure 3). A similar result is
obtained in the case 𝑔 < 0.
4. Conclusions

In [4], Tudoran et al. have considered the energy-Casimir
mapping associated with a Hamilton-Poisson system and
have proposed an open problem regarding the connections
between dynamical properties of a Hamilton-Poisson sys-
tem and the corresponding energy-Casimir mapping. The
observed properties remain true for some particular systems
[5–9]. It was natural to ask if there are other cases [12].
In our paper, we have considered such a case, obtained by
using integrable deformations of the Kermack-McKendrick
model. We have given Hamilton-Poisson realizations of the
considered system. We have also studied the stability of
the new family of equilibrium points that has developed in
the considered dynamics. Furthermore, we have pointed out
some properties of the energy-Casimir mapping associated
with the considered system.

In our case, the image of the energy-Casimir mapping
has other properties than those reported for other systems,
which leaves room for further studies such as the existence
of the periodic orbits of the considered system around some
nonlinearly stable equilibrium points that belong to the first
family, as well as homoclinic and heteroclinic orbits.
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[15] N. Bacaër, “The model of Kermack and McKendrick for the
plague epidemic in Bombay and the type reproduction number
with seasonality,” Journal of Mathematical Biology, vol. 64, no.
3, pp. 403–422, 2012.

[16] Y. Chen, S. Zou, and J. Yang, “Global analysis of an SIR epidemic
model with infection age and saturated incidence,” Nonlinear
Analysis: Real World Applications, vol. 30, pp. 16–31, 2016.

[17] Z. Hu, W. Ma, and S. Ruan, “Analysis of SIR epidemic models
with nonlinear incidence rate and treatment,” Mathematical
Biosciences, vol. 238, no. 1, pp. 12–20, 2012.

[18] H. S. Rodrigues, “Application of SIR epidemiological model:
new trends,” Journal of Applied Mathematics and Informatics,
vol. 10, pp. 92–97, 2016.

[19] J. D. Murray, Mathematical Biology I. An Introduction, vol. 1,
Springer, New York, NY, USA, 2002.

[20] R. M. Tudoran, “A normal form of completely integrable
systems,” Journal of Geometry and Physics, vol. 62, no. 5, pp.
1167–1174, 2012.

[21] R.M.Adams, R. Biggs, andC.C. Remsing, “Single-input control
systems on the Euclidean group SE(2),”European Journal of Pure
and Applied Mathematics, vol. 5, no. 1, pp. 1–15, 2012.

[22] P. Libermann and C.-M. Marle, Symplectic geometry and ana-
lytical mechanics, vol. 35 ofMathematics and its Applications, D.
Reidel Publishing Co., Dordrecht, 1987.

[23] D. D. Holm, J. E. Marsden, T. Ratiu, and A.Weinstein, “Nonlin-
ear stability of fluid and plasma equilibria,” Physics Reports, vol.
123, no. 1-2, 116 pages, 1985.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

