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Initial-boundary value problems for 4D Navier-Stokes equations posed on bounded and unbounded 4D parallelepipeds were
considered. The existence and uniqueness of regular global solutions on bounded parallelepipeds and their exponential decay as
well as the existence, uniqueness, and exponential decay of strong solutions on an unbounded parallelepiped have been established
provided that initial data and domains satisfy some special conditions.

1. Introduction

This work concerns the existence and uniqueness of global
strong solutions and sharp decay estimates of solutions to
initial-boundary value problems for the 4D Navier-Stokes
equations:

𝑢𝑡 + (𝑢 ⋅ ∇) 𝑢 = ]Δ𝑢 − ∇𝑝, in Ω × (0, 𝑡) , (1)

∇ ⋅ 𝑢 = 0 in Ω,
𝑢|𝜕Ω = 0, (2)

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , (3)

whereΩ is either a bounded or an unbounded parallelepiped
in R4 with the homogeneous Dirichlet condition on the
boundary of Ω.

Thequestion of decay of the energy forweak solutions had
been stated by J. Leray in [1] and attracts till now attention of
many pure and applied mathematicians [2–9]. In all of these
papers, the decay rate of ‖𝑢‖(𝑡)𝐿2(Ω) was controlled by the first
eigenvalue of the operator𝐴 = −𝑃Δ, where𝑃 is the projection
operator on the solenoidal subspace of 𝐿2(Ω). Obviously, this
approach does not work in unbounded domains; see [6, 7, 9].

It is well known that solutions of the 2D Navier-Stokes
equations posed on smooth bounded domains with the
Dirichlet boundary conditions are globally regular [4, 6–9].
On the other hand, the question of regularity for 3D and 4D

NSE with arbitrary initial data is till now an open problem
even for smooth domains; see [6, 7, 9]. Small initial data help
to solve this problem [6, 7, 9] as well as the so-called “thin”
domains when some size of a domain is small [10, 11]. The
question of regularity becomes more difficult while a domain
is Lipschitzian [10, 12, 13].

In [6, 7, 9, 14], it has been proved that for 3D Lipschitz
domains, bounded and unbounded and small initial data
there exists a unique global strong solution

𝑢, 𝑢𝑡 ∈ 𝐿∞ (0,∞; 𝐿2 (Ω)) ∩ 𝐿2 (0,∞;𝐻1 (Ω)) , (4)

but it was not clear whether

𝑢 ∈ 𝐿∞ (0,∞;𝐻2 (Ω)) (5)

at least for bounded Lipschitz domains.
Our goal here is making some geometrical restrictions, to

prove the existence and uniqueness of strong global solutions
in 4D Lipschitz domains for arbitrary regular initial data as
well as exponential decay of solutions.

In this work, making use of ideas of [15], we have estab-
lished that 𝑢 ∈ 𝑊2,4/3(Ω) for a 4D bounded parallelepiped.
The following inequality holds:

‖𝑢‖2𝐻10 (Ω) (𝑡) + 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2𝐿2(Ω) (𝑡) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝐻2(Ω) exp (−]𝜒𝑡) , (6)

where 𝜒 > 0.
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Our paper has the following structure: Section 1 is
Introduction. Section 2 contains notations and auxiliary facts.
In Section 3, existence, uniqueness, and decay of global
strong solutions on a bounded 4D parallelepiped have been
established. In Section 4, the existence, uniqueness, and decay
of regular solutions on bounded 4D parallelepipeds and
strong solutions on 4D unbounded parallelepipeds have been
demonstrated.

2. Notations and Auxiliary Facts

Let 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) andΩ be a domain inR4.Define as in
[9], p.2-4

𝐷𝑖 = 𝜕𝜕𝑥𝑖 , 𝑖 = 1, 2, 3, 4;
𝐷𝛼 = 4∏

𝑖=1

𝐷𝛼�푖𝑖 , 𝛼 = 4∑
𝑖=1

𝛼𝑖,
𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4) ;
𝑢𝑡 = (𝑢1𝑡, 𝑢2𝑡, 𝑢3𝑡, 𝑢4𝑡) ;
𝐷𝑖𝑢 = (𝐷𝑖𝑢1, 𝐷𝑖𝑢2, 𝐷𝑖𝑢3, 𝐷𝑖𝑢4) .

(7)

We denote for scalar functions 𝑓(𝑥) the Banach space𝐿𝑝(Ω), 1 < 𝑝 < +∞ with the norm

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝𝐿�푝(Ω) = ∫
Ω

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝑝 𝑑𝑥, 𝑝 ∈ (1, +∞) ,
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿∞(Ω) = ess sup

Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 . (8)

For 𝑝 = 2, 𝐿2(Ω) is a Hilbert space with the scalar product

(𝑢, V) = ∫
Ω
𝑢 (𝑥) V (𝑥) 𝑑𝑥 and the norm

‖𝑢‖2 = ∫
Ω
|𝑢 (𝑥)|2 𝑑𝑥. (9)

The Sobolev space 𝑊𝑚,𝑝(Ω) is a Banach space with the
norm

‖𝑢‖𝑊�푘,�푝(Ω) = ∑
0≤|𝛼≤𝑘

󵄩󵄩󵄩󵄩𝐷𝛼𝑢󵄩󵄩󵄩󵄩𝐿�푝(Ω) . (10)

When 𝑝 = 2,𝑊𝑚,2(Ω) = 𝐻𝑚(Ω) is a Hilbert space with the
following scalar product and the norm:

((𝑢, V))𝐻�푚(Ω) = ∑
|𝑗|≤𝑚

(𝐷𝑗𝑢,𝐷𝑗V) ,
‖𝑢‖2𝐻�푚(Ω) = ∑

|𝑗|≤𝑚

󵄩󵄩󵄩󵄩󵄩𝐷𝑗𝑢󵄩󵄩󵄩󵄩󵄩2 .
(11)

Let D(Ω) or D(Ω) be the space of 𝐶∞ functions with
compact support in Ω or Ω. The closure of 𝐶∞ functions in𝑊𝑚,𝑝(Ω) is denoted by𝑊𝑚,𝑝0 (Ω) and (𝐻𝑚0 (Ω) when 𝑝 = 2).

Define the auxiliary spaces which are projections for the
solenoidal vector functions,

V = {𝑢 ∈ D (Ω) , ∇ ⋅ 𝑢 = 0} , 𝑉 = the closure of V in 𝐻10 (Ω) , 𝐻 = the closure of V in 𝐿2 (Ω) . (12)

The space 𝐻 is equipped with the natural 𝐿2 inner product.
The space 𝑉 will be equipped with the scalar product

((𝑢, V)) = 4∑
𝑖=1

(𝐷𝑖𝑢,𝐷𝑖V) (13)

when Ω is bounded. If Ω is unbounded, we define the inner
product as the sum of the inner products as follows:

[[𝑢, V]] = (𝑢, V) + ((𝑢, V)) . (14)

We use the usual notations of Sobolev spaces 𝑊𝑘,𝑝, 𝐿𝑝,
and 𝐻𝑘 for vector functions and the following notations for
the norms:

(i) For vector functions 𝑢(𝑥) = (𝑢1(𝑥), 𝑢2(𝑥), 𝑢3(𝑥),𝑢4(𝑥)),
‖𝑢‖𝑝𝐿�푝(Ω) = ∫

Ω
( 4∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖󵄨󵄨󵄨󵄨𝑝)𝑑𝑥,
‖𝑢‖𝑊�푘,�푝(Ω) = ∑

0≤|𝛼|≤𝑘

4∑
𝑖=1

󵄩󵄩󵄩󵄩𝐷𝛼𝑢𝑖󵄩󵄩󵄩󵄩𝐿�푝(Ω) , 𝑝 ∈ (1, +∞) .
(15)

The closures of V in 𝐿2(Ω) and in 𝐻10 (Ω) are the basic
spaces in our study.We denote them by𝐻 and𝑉, respectively.
Remark 1. By definition, 𝑉 is a proper subspace of𝐻10 (Ω).

Define the operator

(𝑢 ⋅ ∇) 𝑢 = 4∑
𝑖=1

𝑢𝑖𝐷𝑖𝑢. (16)
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Lemma2 (the Steklov inequality [16]). Let V ∈ 𝐻10 (0, 𝐿).Then

𝜋2𝐿2 ‖V‖2 (𝑡) ≤ 󵄩󵄩󵄩󵄩V𝑥󵄩󵄩󵄩󵄩2 (𝑡) . (17)

Proof. Let V(𝑡) ∈ 𝐻10 (0, 𝜋), then by the Fourier series,

∫𝜋
0
V2𝑡 (𝑡) 𝑑𝑡 ≥ ∫𝜋

0
V2 (𝑡) 𝑑𝑡. (18)

Inequality (17) follows by a simple scaling.

The next lemmas will be used in estimates.

Lemma 3 (see: [17] Theorem 7.1, p.14). Let V ∈ 𝐻10 (Ω), then
‖V‖𝐿4(Ω) ≤ 3 ‖∇V‖𝐿2(Ω) . (19)

Lemma 4. Let 𝑏(𝑢, V, 𝑤) = ((𝑢 ⋅ ∇)V, 𝑤), then
|𝑏 (𝑢, V, 𝑤)| ≤ ‖𝑢‖𝐿4(Ω) ‖V‖𝑉 ‖𝑤‖𝐿4(Ω)

≤ 32 ‖𝑢‖𝑉 ‖V‖𝑉 ‖𝑤‖𝑉 (20)

∀𝑢, V, 𝑤 ∈ 𝐻10 (Ω). If 𝑢 ∈ 𝐿∞(0,∞;𝑉), then we can define the
operator 𝐵𝑢 such that 𝐵𝑢 belongs to 𝐿∞(0,∞;𝑉󸀠) and

⟨𝐵𝑢, V⟩ = 𝑏 (𝑢, 𝑢, V) ,
‖𝐵𝑢‖𝐿∞(0,∞;𝑉�耠) ≤ 32 ‖𝑢‖2𝐿∞(0,∞;𝑉) . (21)

3. Existence Theorems

Let Ω be a bounded 4D parallelepiped: Ω = [𝑥 ∈ R4; 𝑥𝑖 ∈(0, 𝐿 𝑖); 𝐿 𝑖 > 0, 𝑖 = 1, 2, 3, 4] which is a Lipschitz domain.
Denote 𝐿 = min(𝐿1, 𝐿2, 𝐿3, 𝐿4). Given 𝑢0 ∈ 𝐻, consider the
following problem:

𝑢𝑡 − ]Δ𝑢 + ∇𝑝 + (𝑢 ⋅ ∇) 𝑢 = 0 in Ω × (0, 𝑡) ,
∇ ⋅ 𝑢 = 0 in Ω × (0, 𝑡) ,
𝑢 = 0

on 𝜕Ω × (0, 𝑡) , 𝑡 > 0,
𝑢 (𝑥, 0) = 𝑢0 (𝑥) , in Ω

(22)

equivalent to the variational problem given by (see [7], [9]
Problem 3.2, p. 191.)

𝑢󸀠 + 𝐴𝑢 + 𝐵𝑢 = 0 in (0, 𝑡) , 𝑡 > 0
𝑢 (0) = 𝑢0, (23)

where 𝐴𝑢 ∈ 𝑉󸀠 such that ⟨𝐴𝑢, V⟩ = ]((𝑢, V)) for all V ∈ 𝑉 and𝐵𝑢 ∈ 𝑉󸀠 such that

⟨𝐵𝑢, V⟩ = 𝑏 (𝑢, 𝑢, V) . (24)

Theorem 5. Given 𝑢0 ∈ 𝐻2(Ω) ∩ 𝑉 andΩ such that

(𝜋𝐿)
1/2

]7/4 − 18 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩1/4 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩 (0)3/4 > 0, (25)

there exists a unique strong solution 𝑢(𝑥, 𝑡) to (22):
𝑢 ∈ 𝐿∞ (0,∞;𝑉) ,
𝑢𝑡 ∈ 𝐿∞ (0,∞;𝐻) ∩ 𝐿2 (0,∞;𝑉) (26)

such that for all Φ : R4 󳨀→ R4 ∈ 𝑉, Φ|𝜕Ω = 0 it satisfies the
following identity:

(𝑢𝑡, Φ) (𝑡) + ]( 4∑
𝑖=1

𝐷𝑖𝑢,𝐷𝑖Φ) (𝑡) + 𝑏 (𝑢,Φ, 𝑢) (𝑡) = 0,
𝑡 > 0.

(27)

Moreover, the following inequalities hold:

‖𝑢‖ (𝑡) ≤ 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩 𝑒−𝜒𝑡,󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩 (𝑡) ≤ 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩 (0) 𝑒−(𝜒/2)𝑡,
| 𝑢‖ (𝑡)𝑉 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩 (0) 𝑒−(3/4)𝜒𝑡,

(28)

where 𝜒 = ]𝜋2∑4𝑖=1(1/𝐿2𝑖 ).
Proof. The estimates that follow may be established on
Galerkin’s approximations (see [14], [6] p. 136-140, [7], [9], p.
192-197.).

Estimate I (𝑢 ∈ 𝐿∞(0,∞;𝐻) ∩ 𝐿2(0,∞;𝑉)). Multiply (23) by𝑢 ∈ 𝑉 to obtain

(𝑢𝑡, 𝑢) (𝑡) + (𝐴𝑢, 𝑢) (𝑡) = 0. (29)

It follows from here that

𝑑𝑑𝑡 ‖𝑢‖2 (𝑡) + 2] ‖𝑢‖2𝑉 (𝑡) = 0. (30)

Making use of the Steklov inequalities, we get

‖∇𝑢‖2 (𝑡) ≥ 𝜋2 4∑
𝑖=1

1𝐿2𝑖 ‖𝑢‖2 (𝑡) . (31)

Returning to (30), we obtain

𝑑𝑑𝑡 ‖𝑢‖2 (𝑡) + 2𝜒 ‖𝑢‖2 (𝑡) ≤ 0 (32)

which implies

‖𝑢‖2 (𝑡) ≤ 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2 𝑒−2𝜒𝑡 , 𝜒 = ]𝜋2 4∑
𝑖=1

1𝐿2𝑖 . (33)

This and (30) give

𝑢 ∈ 𝐿∞ (0,∞;𝐻) ∩ 𝐿2 (0,∞;𝑉) . (34)

Estimate II (𝑢𝑡 ∈ 𝐿∞(0,∞;𝐻)∩𝐿2(0,∞;𝑉)). Differentiating
(23) and multiplying by 𝑢𝑡, we get

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡) + 2] 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2𝑉 (𝑡) + 2𝑏 (𝑢𝑡, 𝑢, 𝑢𝑡) (𝑡) = 0. (35)
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We estimate
󵄨󵄨󵄨󵄨𝑏 (𝑢𝑡, 𝑢, 𝑢𝑡) (𝑡)󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩 (𝑡)𝐿4(Ω) ‖𝑢‖𝑉 (𝑡) 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩 (𝑡)𝐿4(Ω) . (36)

By Lemma 3,

2 󵄨󵄨󵄨󵄨𝑏 (𝑢𝑡, 𝑢, 𝑢𝑡) (𝑡)󵄨󵄨󵄨󵄨 ≤ 2 ⋅ 32 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2𝑉 (𝑡) ‖𝑢‖𝑉 (𝑡) (37)

and (35) becomes

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡) + ] 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2𝑉 (𝑡)
+ (] − 18 ‖∇𝑢‖ (𝑡)) 󵄩󵄩󵄩󵄩∇𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡) ≤ 0.

(38)

Making use of (30), we find

] ‖∇𝑢‖2 (𝑡) ≤ ‖𝑢‖ (𝑡) 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩 (𝑡) . (39)

Substituting this into (38), we get

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡) + ] 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2𝑉 (𝑡)
+ (] − 18 ‖𝑢‖1/2 (𝑡) 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩1/2 (𝑡)

]1/2
)󵄩󵄩󵄩󵄩∇𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡) ≤ 0.

(40)

By Lemma 2,

‖𝑢‖ (𝑡) ≤ 𝐿𝜋 ‖∇𝑢‖ (𝑡) . (41)

Substituting this into (40) and using (39), we find

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡) + ] 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2𝑉 (𝑡)
+ (] − 18𝐿1/2 ‖∇𝑢‖1/2 (𝑡) 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩1/2 (𝑡)

]1/2𝜋1/2 )󵄩󵄩󵄩󵄩∇𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡)
≤ 0.

(42)

Again by (39),

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡) + ] 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2𝑉 (𝑡)
+ (] − 18𝐿1/2 ‖𝑢‖1/4 (𝑡) 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩3/4 (𝑡)

]3/4𝜋1/2 )󵄩󵄩󵄩󵄩∇𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡)
≤ 0.

(43)

Rewrite this in the form

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡) + ] 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2𝑉 (𝑡)
+ 𝐿1/2([𝜋1/2/𝐿1/2] ]7/4 − 18 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩1/4 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩3/4 (𝑡)𝜋1/2]3/4 )
⋅ 󵄩󵄩󵄩󵄩∇𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡) ≤ 0.

(44)

Taking into account conditions (25) ofTheorem 5, we get that

[𝜋1/2𝐿1/2 ] ]7/4 − 18 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩1/4 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩3/4 (𝑡) > 0, 𝑡 > 0; (45)

hence (44) reduces to the form

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡) + ] 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2𝑉 (𝑡) ≤ 0. (46)

By the Steklov inequality,

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡) + 𝜒 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡) ≤ 0. (47)

We estimate󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩 (0) ≤ ] 󵄩󵄩󵄩󵄩Δ𝑢0󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩𝐿4(Ω) 󵄩󵄩󵄩󵄩∇𝑢0󵄩󵄩󵄩󵄩𝐿4(Ω)
≤ ] 󵄩󵄩󵄩󵄩Δ𝑢0󵄩󵄩󵄩󵄩 + 𝐶 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝐻2(Ω)∩𝑉
≡ 𝐶 (󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝐻2(Ω)∩𝑉) .

(48)

This and (46), (47) imply that 𝑢𝑡 ∈ 𝐿∞(0,∞;𝐻) ∩𝐿2(0,∞;𝑉), and
󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝐻2(Ω)∩𝑉 𝑒−𝜒𝑡. (49)

Returning to (39), we get 𝑢 ∈ 𝐿∞(0,∞;𝑉). This and
(33), (49) prove validity of (27), (28), and consequently the
existence part of Theorem 5.

Uniqueness of the Strong Solution. Let 𝑢 and V be two strong
solutions to (22) satisfying (23) and (27). Define 𝑧 = 𝑢 − V.
Then for Φ ∈ 𝑉 we have

(𝑧𝑡, Φ) + (𝐴𝑧,Φ) + 𝑏 (𝑢, 𝑧, Φ) − 𝑏 (𝑧, 𝑧, Φ) = 0. (50)

Taking Φ = 𝑧, we come to the inequality

𝑑𝑑𝑡 ‖𝑧‖2 (𝑡) + 2] ‖𝑧‖2𝑉 (𝑡) = 𝑏 (𝑧, 𝑧, 𝑢) (𝑡)
≤ 18 ‖𝑢‖𝑉 (𝑡) ‖𝑧‖2𝑉 (𝑡)

(51)

that can be rewritten as

𝑑𝑑𝑡 ‖𝑧‖2 (𝑡) + ] ‖𝑧‖2𝑉 (𝑡) + (] − 18 ‖𝑢‖𝑉 (𝑡)) ‖𝑧‖2 (𝑡)𝑉
≤ 0. (52)

Acting in the same manner as by the proof of Estimate II, we
come to the inequality

𝑑𝑑𝑡 ‖𝑧‖2 (𝑡) + ] ‖𝑧‖2𝑉 (𝑡)
+ 𝐿1/2([𝜋1/2/𝐿1/2] ]7/4 − 18 ‖𝑢‖1/4 (𝑡) 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩3/4 (𝑡)𝜋1/2]3/4 )
⋅ ‖𝑧‖2𝑉 (𝑡) ≤ 0.

(53)
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By conditions of Theorem 5,

[𝜋1/2/𝐿1/2] ]7/4 − 18 ‖𝑢‖1/4 (𝑡) 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩3/4 (𝑡)𝜋1/2]3/4 > 0 (54)

for 𝑡 = 0. Taking into account Estimates (28) and using
standard arguments, we get for all 𝑡 > 0

[𝜋1/2/𝐿1/2] ]7/4 − 18 ‖𝑢‖1/4 (𝑡) 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩3/4 (𝑡)𝜋1/2]3/4 > 0. (55)

Hence, (53) becomes

𝑑𝑑𝑡 ‖𝑧‖2 (𝑡) ≤ 0. (56)

This implies 𝑧 ≡ 0 that proves uniqueness of the strong
solution and completes the proof of Theorem 5.

4. More Regularity

Consider the Poisson problem in a bounded domainΩ ∈ R𝑛:
Δ𝑢 = 𝑓 (𝑥) , (𝑥) ∈ Ω,
𝑢|𝜕Ω = 0. (57)

In [15]Theorem 11, p. 120-123, the following has been proved.

Lemma 6. Let

Ω𝜋 = {𝑥 = (𝑥1, . . . , 𝑥𝑛) , 0 < 𝑥𝑖 < 𝜋; 𝑖 = 1, . . . , 𝑛} (58)

then the unique weak solution 𝑢 ∈ 𝐻10 (Ω) of (57) satisfies the
following inequality:

‖𝑢‖𝑊2,�푝(Ω�휋) ≤ 𝐶 (Ω) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿�푝(Ω�휋) . (59)

It is possible to generalize this result for a bounded
parallelepiped inR4.
Theorem 7. The problem (57) posed in a parallelepiped Ω ={(𝑥) ∈ R4, 0 < 𝑥𝑖 < 𝐿 𝑖; 𝑖 = 1, 2, 3, 4}, where 𝑓 ∈ 𝐿𝑝(Ω),1 < 𝑝 ≤ 2, has a solution 𝑢 ∈ 𝑊2,𝑝(Ω). Moreover,

‖𝑢‖𝑊2,�푝(Ω) ≤ 𝐶Ω 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿�푝(Ω) . (60)

Returning to the original problem for the Navier-Stokes
equations,

𝑢𝑡 − ]Δ𝑢 + ∇𝑝 + (𝑢 ⋅ ∇) 𝑢 = 0 in Ω × (0, 𝑡) ,
∇ ⋅ 𝑢 = 0 in Ω × (0, 𝑡) ,
𝑢 = 0

in 𝜕Ω × (0, 𝑡) , 𝑡 > 0,
𝑢 (𝑥, 0) = 𝑢0 (𝑥) in Ω,

(61)

where 𝑢(𝑥) is a vector function from R4 into R4 and 𝑝 is a
real function from R4 into R, and making use of Galerkin
approximations, we establish the following result.

Theorem8. Given 𝑢0 ∈ 𝐻2(Ω)∩𝑉 and a domainΩ satisfying
(25), then problem (61) has a unique regular solution (𝑢, 𝑝)
such that

𝑢 ∈ 𝐿∞ (0,∞;𝑉 ∩𝑊2,4/3 (Ω)) ,
𝑢𝑡 ∈ 𝐿∞ (0,∞;𝐻) ∩ 𝐿2 (0,∞;𝑉) ,
∇𝑝 ∈ 𝐿∞ (0,∞; 𝐿4/3 (Ω))

(62)

which for allΦ(𝑥) ∈ 𝑉 satisfies the following integral identity:

∫
Ω
{𝑢𝑡 + ]Δ𝑢 + (𝑢 ⋅ ∇) 𝑢}Φ𝑑𝑥 = 0. (63)

Moreover,
󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩 (𝑡) + ‖𝑢‖ (𝑡)𝑊2,4/3(Ω) + 󵄩󵄩󵄩󵄩∇𝑝󵄩󵄩󵄩󵄩𝐿4/3(Ω) (𝑡)
≤ 𝐶𝑒−(1/2)𝜒𝑡 , (64)

where 𝜒 = ]𝜋2 ∑4𝑖=1(1/𝐿2𝑖 ) and 𝐶 depends on ‖𝑢0‖𝐻2(Ω).
Proof (decay of 𝑊2,4/3(Ω)-norm). Taking into account that
conditions of Theorem 8 and of Theorem 5 are the same, by
Theorem5,we have a unique strong solution of (61).Hence, to
proveTheorem8, it is sufficient to establish that ‖𝑢‖𝑊2,4 /3(Ω)(𝑡).
First write (22) as

Δ𝑢 = 𝑓 = 1
]
(𝑢𝑡 + ∇𝑝 + (𝑢 ⋅ ∇) 𝑢) . (65)

We estimate

|𝑏 (𝑢, 𝑢, V)| (𝑡) = |((𝑢 ⋅ ∇) 𝑢, V) (𝑡)|
≤ 𝐶 ‖𝑢‖ (𝑡)𝐿4(Ω) ‖𝑢‖ (𝑡)𝑉 ‖V‖ (𝑡)𝐿4(Ω)
≤ 𝐶 ‖𝑢‖2 (𝑡)𝑉 ‖V‖ (𝑡)𝐿4(Ω) .

(66)

Hence by (33), (49), (51),

‖𝐵𝑢‖ (𝑡)𝐿4/3(Ω) = ‖(𝑢 ⋅ ∇) 𝑢‖ (𝑡)𝐿4/3(Ω) ≤ 𝐶𝑒−(3/2)𝜒𝑡 . (67)

Returning to (23) and making use of (67), (49), we obtain

‖𝐴𝑢‖𝐿4/3(Ω) (𝑡) ≤ ‖𝐵𝑢‖𝐿4/3(Ω) (𝑡) + 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩𝐿2(Ω) (𝑡)
≤ 𝐶𝑒−(𝜒/2)𝑡. (68)

By theTheorem of de Rham (see [7, 18]), [9] Propositions 1.1,
1.2, p. 10, one can check that there exists ∇𝑝 such that (see [9])

−∇𝑝 = 𝑢𝑡 + 𝐴𝑢 + 𝐵𝑢 (69)

and󵄩󵄩󵄩󵄩∇𝑝󵄩󵄩󵄩󵄩𝐿4/3(Ω) (𝑡) ≤ 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩𝐿2(Ω) (𝑡) + ‖𝐴𝑢‖𝐿4/3(Ω) (𝑡)
+ ‖𝐵𝑢‖𝐿4/3(Ω) (𝑡) ≤ 𝐶𝑒−(𝜒/2)𝑡. (70)
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Returning to (65) and having 𝑓 ∈ 𝐿4/3(Ω), we obtain, due to
Theorem 7,
‖𝑢‖ (𝑡)𝑊2,4/3(Ω) ≤ 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩𝐿2(Ω) (𝑡) + 󵄩󵄩󵄩󵄩∇𝑝󵄩󵄩󵄩󵄩𝐿4/3(Ω) (𝑡)

+ ‖(𝑢 ⋅ ∇) 𝑢‖𝐿4/3(Ω) (𝑡) ≤ 𝐶𝑒−(𝜒/2)𝑡. (71)

By the Sobolev theorems,

‖𝑢‖𝐿4(Ω) (𝑡) ≤ 𝐶 ‖𝑢‖𝑊2,4/3(Ω) (𝑡) ≤ 𝐶𝑒−(𝜒/2)𝑡. (72)
The proof of Theorem 8 is complete.

Remark 9. It follows from (72) that 𝐵𝑢 ∈ 𝐿4/3 and conse-
quently, 𝑓 ∈ 𝐿4/3(Ω) and 𝑢 ∈ 𝑊2,4/3(Ω) in (60). This means
that we cannot achieve better regularity then 𝑢 ∈ 𝑊2,4/3(Ω).
In some sense, this is the superior regularity for the problem
(61). It looks like 𝑛 = 4 is the critical case of the Navier-Stokes
system.

Existence and Decay of a Strong Solution on an Unbounded
4D Domain. Define an unbounded four-dimensional paral-
lelepiped 𝐷 = {𝑥 ∈ R4; 0 < 𝑥𝑖 < 𝐿 𝑖, 𝑖 = 1, 2, 3; 0 < 𝑥4 < +∞}
and let 𝐿𝑚 = min(𝐿1, 𝐿2, 𝐿3).

Given 𝑢0 ∈ 𝐻2(𝐷)∩𝑉, consider in𝐷×(0, 𝑡) the following
problem:
𝑢𝑡 − ]Δ𝑢 + ∇𝑝 + (𝑢 ⋅ ∇) 𝑢 = 0 in 𝐷 × (0, 𝑡) ,

∇ ⋅ 𝑢 = 0 in 𝐷 × (0, 𝑡) ,
𝑢 = 0

on 𝜕𝐷 × (0, 𝑡) , 𝑡 > 0,
lim
𝑥4󳨀→∞

|𝑢 (𝑥, 𝑡)| = 0, 𝑡 > 0,
𝑢 (𝑥, 0) = 𝑢0 (𝑥) in 𝐷.

(73)

Theorem 10. Given 𝑢0 ∈ 𝐻2(𝐷) ∩ 𝑉 and𝐷 such that

( 𝜋𝐿𝑚)
1/2

]7/4 − 18 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩1/4 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩3/4 (0) > 0, (74)

there exists a unique strong solution 𝑢(𝑥, 𝑡) to (73):
𝑢 ∈ 𝐿∞ (0,∞;𝑉) ,
𝑢𝑡 ∈ 𝐿∞ (0,∞;𝐻) ∩ 𝐿2 (0,∞;𝑉) (75)

such that for all Φ : R4 󳨀→ R4 ∈ 𝑉, Φ|𝜕𝐷 = 0, tending
sufficiently rapidly to 0 as 𝑥4 󳨀→ ∞, it satisfies the following
identity:

(𝑢𝑡, Φ) (𝑡) + ]( 4∑
𝑖=1

𝐷𝑖𝑢,𝐷𝑖Φ)(𝑡) + 𝑏 (𝑢, Φ, 𝑢) (𝑡) = 0,
𝑡 > 0.

(76)

Moreover, the following inequalities hold:

‖𝑢‖ (𝑡) ≤ 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩 𝑒−𝜃𝑡,󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩 (𝑡) ≤ 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩 (0) 𝑒−(𝜃/2)𝑡,
| 𝑢‖ (𝑡)𝑉 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩 (0) 𝑒−(3/4)𝜃𝑡,

(77)

where 𝜃 = ]𝜋2∑3𝑖=1(1/𝐿2𝑖 ).

Proof. Obviously, the variational formulation of (73) is also
(23). Repeating the proof of Theorem 5, we can prove the
existence and uniqueness of the strong solution to problem
(73). Using the Steklov inequalities with respect to variables𝑥1, 𝑥2, 𝑥3, we obtain

‖∇𝑢‖2 ≥ 3∑
𝑖=1

𝜋2𝐿2𝑖 ‖𝑢‖2 + 󵄩󵄩󵄩󵄩𝐷4𝑢󵄩󵄩󵄩󵄩
2 . (78)

hence, (23) becomes

𝑑𝑑𝑡 ‖𝑢‖2 (𝑡) + 2]
3∑
𝑖=1

𝜋2𝐿2𝑖 ‖𝑢‖2 (𝑡) + 2] 󵄩󵄩󵄩󵄩𝐷4𝑢󵄩󵄩󵄩󵄩
2 (𝑡) ≤ 0. (79)

This implies

‖𝑢‖2 (𝑡) ≤ 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2 𝑒−2𝜃𝑡. (80)

Repeating the proof of Estimate II of Theorem 5, we find

󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2 (𝑡) ≤ 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩2 (0) 𝑒−𝜃𝑡 (81)

and

‖𝑢‖2𝑉 (𝑡) ≤ 1] 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩 (𝑡) ‖𝑢‖ (𝑡)
≤ 1

]
󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩 (0) 𝑒−(3/2)𝜃𝑡.

(82)

Decay for Pressure. In order to obtain decay for‖∇𝑝‖𝐿4/3(𝐷)(𝑡), we start with
‖(𝑢 ⋅ ∇) 𝑢‖𝐿4/3(𝐷) (𝑡) = ‖𝐵𝑢‖(𝐿4(𝐷))�耠 (𝑡) , (83)

where (𝐿4(𝐷))󸀠 is the dual to the space 𝐿4(𝐷). Since
𝐴𝑢 = −𝑢𝑡 − 𝐵𝑢, (84)

then by (81) and (83),

‖𝐴𝑢‖ (𝑡)𝐿4/3(Ω) ≤ 𝑐1𝑒−(1/2)𝜃𝑡. (85)

Moreover, by (69),
󵄩󵄩󵄩󵄩∇𝑝󵄩󵄩󵄩󵄩𝐿4/3(𝐷) (𝑡) ≤ 󵄩󵄩󵄩󵄩𝑢𝑡󵄩󵄩󵄩󵄩𝐿2(𝐷) (𝑡) + ‖𝐴𝑢‖𝐿4/3(𝐷) (𝑡)

+ ‖𝐵𝑢‖𝐿4/3(𝐷) (𝑡) ≤ 𝑐2𝑒−(1/2)𝜃𝑡. (86)

Jointly (80), (81), and (86) prove Theorem 10.

Conclusions. In our work, we tried to respond to some ques-
tions posed by J. Leray [1], namely, regularity of global solu-
tions of the Navier-Stokes equations and their decay. There-
fore, our results can be divided into two parts: the first one
concerns decay of global regular solutions of the 4D Navier-
Stokes equations posed on bounded 4D parallelepipeds. It is
known that there exist global regular solutions for the 2D
Navier-Stokes equations posed on smooth bounded domains
[4, 6, 8, 9], but regularity in nonsmooth (Lipschitz) domains
is not obvious. For bounded 4D parallelepipeds, we have
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established the existence of a unique global regular solution
which decays exponentially as 𝑡 󳨀→ +∞ provided that initial
data satisfies (25). We demonstrated that the decay rate is
different for different norms; see (77), where 𝜃 is defined by
the geometrical characteristics of a domain Ω.

The second part of our work concerns decay of solutions
for the 4D Navier-Stokes equations posed on an unbounded
parallelepiped. In existing publications [3, 4, 6, 9], the decay
rate of ‖𝑢‖𝐿2(Ω)(𝑡) is controlled by the first eigenvalue of the
operator 𝐴 = −𝑃Δ, where 𝑃 is the projection operator on
a solenoidal subspace of 𝐿2(Ω). It is clear that this approach
does not work in unbounded domains.

On the other hand, our approach based on the Steklov
inequalities allowed us to estimate the decay rate of a strong
solution for the 4D Navier-Stokes equations posed on an
unbounded 4D parallelepiped.

We must emphasize that this estimate is the first one
which gives an explicit value of the decay rate for unbounded
4D domains. Results established in our work can be used
in constructing of numerical schemes for solving initial-
boundary value problems for the Navier-Stokes equations
appearing in Mechanics of viscous liquid. From the physical
point of view, decay estimates show that the decay rate of
perturbations of solutions caused by the initial data is bigger
for bigger values of viscosity ] and smaller sizes of 4D
parallelepipeds.

My interest for the 4D Navier-Stokes equations is purely
mathematical and, on my opinion, can not be extended to
higher dimensions beyond 4. I must also note that there are
publications on the existence of weak solutions for 4DNavier-
Stokes equations [7], [9] p.189-197.
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