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The double-equation extended Pom-Pom (DXPP) constitutive model is used to study the macro and micro thermorheological
behaviors of branched polymermelt.The energy equation is deduced based on a slip tensor.Theflowmodel is constructed based on a
weakly-compressible viscoelastic flowmodel combined with DXPPmodel, energy equation, and Tait state equation. A hybrid finite
element method and finite volume method (FEM/FVM) are introduced to solve the above-mentioned model. The distributions of
viscoelastic stress, temperature, backbone orientation, and backbone stretch are given in 4 : 1 planar contraction viscoelastic flows.
The effect of Pom-Pom molecular parameters and a slip parameter on thermorheological behaviors is discussed. The numerical
results show that the backbones are oriented along the direction of fluid flow in most areas and are spin-oriented state near the wall
area with stronger shear of downstream channel. And the temperature along 𝑦 = −1 is little higher in entropy elastic case than one
in energy elastic case. Results demonstrate good agreement with those given in the literatures.

1. Introduction

Branched polymer becomes more and more concerned
because of its unique structural characteristics and proper-
ties, now its development is one of the fastest in macro-
molecular materials. Branched polymer has more complex
thermorheological behavior compared with other polymers,
and its rheological behavior depends on its topological
structure of branched molecules [1, 2]. As compared to the
linear polymer, when the main chain of branched polymer
introduces a certain number and length of branched chains,
the viscoelasticity is significantly different. Branched polymer
in shear flow shows the similar strain softening but has a
longer relaxation time at the end of branched molecular
chains because of the limitation of branched chain.Moreover,
branched polymer in elongation flow has entirely different
strain softening.Therefore, branched has a great influence on
polymer viscoelastic properties.

In recent decades, some researchers have developedmany
viscoelastic constitutive models for describing the rheolog-
ical behavior of polymer based on different theories [3].

Among them, the model based on molecular theory can
more truly reflect the rheological properties of fluid and
can more fully reflect the flow of the fluid [4]. And for
all we know, a branched polymer melt can be considered
as a melt in which a certain concentration of branched
molecules is embedded in a viscous melt. In this, Mcleish
and Larson [1] proposed a Pom-Pom model based on Doi-
Edwards’s peristaltic tubes theory. In the Pom-Pom model,
they simplified each branched molecule to a molecule with
only two branched points at each end, and with a certain
number of arms at each branched points. This model is
not completely consistent with the topological structure of
branched molecules, but it is an important breakthrough in
the field of viscoelastic constitutivemodels.Thismodel intro-
duces the important branched information and distinguishes
the orientation relaxation time and extension relaxation time
of backbone. It can also study the relaxation time of branched
molecules and their effects on the above two relaxation time.
Subsequently, Verbeeten et al. [5] improved the Pom-Pom
model and proposed an extended Pom-Pom (XPP) model
by using the slip tensor. This model overcomes some defects
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of Pom-Pom model, such as the discontinuity of steady-state
stretching, the unrestricted orientation under the high strain,
and the unpredicted second normal stress difference. In
addition, Clemeur et al. [6, 7] proposed a Double Convected
Pom-Pom (DCPP) model in order to solve the problem that
the solution of XPPmodel is not unique. However, the DCPP
model suffered from numerical instability in the numerical
simulation. On the basis of this, Clemeur and Debbaut [8]
proposed a modified DCPP model and Wang et al. [9]
given the Simplified Modified Double Convected Pom-Pom
(S-MDCPP) model with good numerical stability and easy
programmable ability.

Generally, there are two kinds of Pom-Pommolecule con-
stitutive models: single-equationmodel and double-equation
model. Due to the simple solution and easy programming of
the single-equationmodel,many studies have used the single-
equation XPP model to simulate the viscoelastic flows [10–
17], but it cannot describe some micro information. Double-
equation XPP (DXPP) model can describe the microscopic
orientation and stretch of backbone and study the influence of
microscopic molecular parameters on the rheological behav-
ior of branched polymers. However, due to the complexity
of the DXPP model, there are few reports on the numerical
simulation of this model. Therefore, DXPP model is used
to study the microscopic information of the orientation and
stretch of branched molecules in this paper.

In the past twenty or thirty years, the numerical simu-
lation of viscoelastic flow has been developing rapidly and
the main numerical methods are finite element method,
finite volume method, and meshless method. Although there
are many numerical methods, they each have their own
advantages and disadvantages. There is no certain method to
“dominate the world.” There is only one method to solve a
problemwhen appropriate or not.Therefore, the combination
of the merits of various methods to form a hybrid algorithm
will be a trend of numerical simulation [16, 18, 19]. In this
paper, the hybrid finite element method and finite volume
method (FEM/FVM) are proposed based on the advantages
of finite element method and finite volume method and the
characteristics of the solved problem.

In addition, since the actual polymer processing is often a
nonisothermal viscoelastic flow problem, the effects of tem-
perature are also considered. The slip tensor of viscoelastic
fluid actually affects the energy equation; that is, the energy
equation is also different for different slip tensor [20, 21].
Therefore, we will give the derivation of the energy equation
based on the slip tensor and study the influence of the slip
parameter on the temperature.

Above all, the DXPP model is used to study the macro-
and micro-rheological information of branched polymer
melt.The energy equation based on the slip tensor is deduced
and used to study the influence of slip parameters on the
temperature. Subsequently, based on the characteristics of
weakly-compressibility and high specific heat capacity of the
polymer melt, the hybrid FEM/FVMmethod is used to solve
the above model, and the macro and micro thermorheo-
logical properties of the branched polymer are discussed
according to the numerical simulation results.

2. Mathematical Models

2.1. DXPP Model. Through the closed approximation, the
evolution equation of backbone tube orientation tensor S is

∇

S +B ⋅ S + S ⋅ B𝑇 + 2 [(D − B : S)] S = 0, (1)

where
∇

S≡ 𝜕S/𝜕𝑡 + u ⋅ ∇S − S ⋅ ∇u − (∇u)𝑇 ⋅ S denotes the
upper convected time derivative of orientation tensor S; D is
the rate of deformation tensor; the slip tensor B is defined as

B = 3𝛼Λ2
2𝜆0𝑏 S

+ [1 − 𝛼 − 3𝛼Λ4tr (S ⋅ S)2𝜆0𝑏Λ2 + 1
𝜆𝑠 (1 −

1
Λ)] 𝐼

− (1 − 𝛼)
6𝜆0𝑏Λ2 S

−1,

(2)

where 𝛼 is a material parameter, defining the amount of
anisotropy; 𝜆0𝑏 is the relaxation time of the backbone tube
orientation; the exponential stretch relaxation time 𝜆𝑠 =
𝜆0𝑠𝑒−](Λ−1) ensures the stretch relaxes very fast and stays
bounded for high strains; 𝜆0𝑠 is the relaxation time for the
stretch, and ] = 2/𝑞, where 𝑞 is the amount of arms at the
end of a backbone; tr(⋅) is the trace; Λ is the backbone tube
stretch and its material derivative

∙Λ is defined as
∙Λ= Λ (𝐷 : 𝑆) − 1/𝜆𝑠 (Λ − 1) . (3)

Substituting (2) into (1) gives the orientation equation
∇

S +2 [D : S] S + 1
𝜆0𝑏Λ2 [3𝛼Λ

4S ⋅ S

+ (1 − 𝛼 − 3𝛼Λ4tr (S ⋅ S)) S − (1 − 𝛼)
3 𝐼] = 0,

(4)

Viscoelastic stress equation is

𝜏 = 𝐺0 (3Λ2S − I) , (5)

where 𝐺0 is the plateau modulus; I is the unit tensor.
In conclusion, (3) and (4) constitute a DXPP model

describing the backbone tube stretch and orientation using
two decoupled equations; (5) denotes the viscoelastic stress.
Here, the model is extended with a second normal stress
differencewhen𝛼 ̸= 0. By defining 𝜂𝑒 = 𝜆0𝑏𝐺0 as the viscosity
of polymer, We = 𝜆0𝑏𝑈/𝐿 as the Weissenberg number, and𝑟 = 𝜆0𝑏/𝜆0𝑠 as the relaxation time ratio, dimensionless DXPP
model can be written as

We(∇S +2 [D : S] S) + 1
Λ2 [3𝛼Λ4S ⋅ S

+ (1 − 𝛼 − 3𝛼Λ4tr (S ⋅ S)) S − (1 − 𝛼)
3 I] = 0,

(6)

We
∙Λ= WeΛ (D : S) − 𝑟𝑒](Λ−1) (Λ − 1) , (7)

𝜏 = 1 − 𝛽
We

(3Λ2S − I) , (8)
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where 𝛽 is the ratio of Newtonian viscosity to total viscosity
and 𝑈 and 𝐿 are the velocity and length of the dimensionless
parameters, respectively.

2.2. Governing Equations. In the polymer processing, the
weakly-compressibility of polymer melt cannot be ignored.
Therefore, the weakly-compressible flow conservation equa-
tion is used to describe the polymer melt flow. For weakly-
compressible viscoelastic flows, the conservation equations
for mass and momentum can be expressed as follows,
respectively,

𝜌𝑡 + ∇ ⋅ (𝜌u) = 0, (9)

𝜌u𝑡 + 𝜌u ⋅ ∇u = 𝜂𝛽
Re

∇2u − ∇ ⋅ 𝑝 + 1
Re

∇ ⋅ 𝜏
+ 𝜂𝛽
3Re∇ (∇ ⋅ u) ,

(10)

where Re = 𝜌𝑟𝑈𝐿/𝜂𝑟 denotes the Reynolds number; 𝜌𝑟 and 𝜂𝑟
are the density and viscosity of the dimensionless parameters,
respectively.

The energy equations of different viscoelastic fluids also
vary due to the different slip tensors. The derivation of the
energy equation based on the XPP fluid slip tensor is given
below.

The general form of the energy equation based on the slip
tensor is as follows:

𝜌𝐶𝑝 ∇𝑇 = −∇𝑄 + 𝜎 : D − (1 − 𝑇𝐻𝑇 + 𝑇
𝜌
𝜕𝜌
𝜕𝑇)

× 𝜎 : (D − B) ,
(11)

where 𝐶𝑝 is the specific heat, 𝑇 is the temperature, 𝑄 is the
heat flux, 𝜎 is the Cauchy stress tensor, 𝐻𝑇 is the material
parameter, and their expressions are

𝑄 = −𝜅∇𝑇,
𝜎 = 3𝐺0Λ2S,

𝐻𝑇 = 1
𝜌
𝜕𝜌
𝜕𝑇 + 𝜉

𝑇.
(12)

Substituting (2) and (12) into (11) gives the energy equation

𝜌𝐶𝑝 ∇𝑇 = 𝜅∇2𝑇 + 𝜉𝜎 : D + (1 − 𝜉) × { 𝛼
2𝐺0𝜆0𝑏𝜎 : 𝜎

+ [1 − 𝛼 − 3𝛼Λ4tr (S ⋅ S)2𝜆0𝑏Λ2 + 1
𝜆𝑠 (1 −

1
Λ)] tr (𝜎)

− 𝐺0 (1 − 𝛼)2𝜆0𝑏 tr (I)} .

(13)

The second term in the right-hand side of (13) reflects
the contribution of entropy elasticity. The last one reflects
the contribution of energy elasticity and 𝜉 ∈ [0, 1]. The
dimensionless energy equation is

Pe𝜌𝐶𝑝 ∇𝑇 = 𝜅∇2𝑇 + Br𝑆𝑇, (14)

where Pe = 𝜌𝑟𝐶0𝑈𝐿/𝜅0 is the Peclet number, Br =𝜂𝑟𝑈2/(𝜅0𝑇𝑟) is the Brinkman number, and 𝑇𝑟, 𝐶0, and 𝜅0 are
the temperature, specific heat, and coefficient of heat transfer
of the nondimensional parameters, respectively, where

𝑆𝑇 = 𝜉𝜎 : D + (1 − 𝜉) × { 𝛼
2𝐺0𝜆0𝑏𝜎 : 𝜎

+ [1 − 𝛼 − 3𝛼Λ4tr (S ⋅ S)2𝜆0𝑏Λ2 + 1
𝜆𝑠 (1 −

1
Λ)] tr (𝜎)

− 𝐺0 (1 − 𝛼)2𝜆0𝑏 tr (I)} .

(15)

In addition, a P-V-T equation of state is necessary to
satisfy the completeness of governing equations because of
considering the compressibility of the polymermelt. Tait state
equation [18] is usually considered as the classical empirical
equation and is capable of describing both the liquid and solid
regions. So Tait state equation is used in this paper.

3. Numerical Methods

The flow of brand polymer melts is governed by the con-
servation of mass, momentum, and energy equations, Tait
state equation, together with a DXPP constitutive model.
The numerical simulation of the above model employs
hybrid FEM/FVM [18] method. The momentum equations
are solved by the FEM, in which a discrete elastic viscous
stress split (DEVSS) scheme is used to overcome the elastic
stress instability, and an implicit scheme of iterative weakly-
compressible Crank–Nicolson-based split scheme (WCNBS)
is used to avoid the Ladyzhenskaya–Babuška–Brezzi (LBB)
condition. The energy and DXPP equations are solved by the
FVM, in which an upwind scheme is used for the strongly
convection-dominated problem of the energy equation.

To analyse the accuracy of the algorithm mentioned
above, we construct the DEVSS scheme based on (10) and
consider its discretization in the time domain within a typical
time subinterval [𝑡𝑛, 𝑡𝑛+1], which give us the form of the
Wilson–𝜃method as follows:

𝜌𝑛
Δ𝑡 (u𝑛+1 − u𝑛) = − (∇𝑝)𝑛+𝜃 − ∇ ⋅ (𝜌uu)𝑛+𝜃1

+ ( 𝜂
Re

∇2u)𝑛+𝜃2

+ [(1 − 4/3𝛽) 𝜂
Re

∇ (∇ ⋅ u)]
𝑛+𝜃2

− [2 (1 − 𝛽) 𝜂
Re

∇ ⋅D]
𝑛+𝜃𝐷 + 1

Re
∇

⋅ 𝜏𝑛+𝜃𝜏 ,

(16)

whereD is an added variable for constructingDEVSS scheme,0 ≤ 𝜃, 𝜃1, 𝜃2, 𝜃𝐷, 𝜃𝜏 ≤ 1.
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Table 1: Definition of constants, physical quantities, and source term in (18).

Equation m Γ 𝜙 𝑆𝜑
Energy equation Pe𝜌𝐶𝑝 𝜅 𝑇 Pe𝜌𝐶𝑝 (𝑇 ⋅ ∇u + (∇u)𝑇 ⋅ 𝑇) + Br𝑆𝑇
Orientation equation We 0 S We (S ⋅ ∇u + (∇u)𝑇 ⋅ S − 2[𝐷 : S]S) − 1

Λ2 [3𝛼Λ4S ⋅ S + (1 − 𝛼 − 3𝛼Λ4tr(S ⋅ S)) S −
(1 − 𝛼)
3 𝐼]

Stretch equation We 0 Λ WeΛ (𝐷 : S) − 𝑟𝑒](Λ−1) (Λ − 1)

The truncation error of (16) is

𝑡𝑒𝑟𝑟 = Δ𝑡
2
𝜕
𝜕𝑡 [𝜌u𝑡 + 2𝜃∇ ⋅ 𝑝 + 2𝜃1∇ ⋅ (𝜌uu)

− 2𝜃2 𝜂Re∇2u − 2𝜃2
(1 − 4/3𝛽) 𝜂

Re
∇ (∇ ⋅ u)

+ 2𝜃𝐷 2 (1 − 𝛽) 𝜂Re
∇ ⋅D − 2𝜃𝜏 1Re∇ ⋅ 𝜏] + 𝑂 (Δ𝑡2) .

(17)

Based on formula (17), (16) has the second-order accuracy
when 𝜃 = 𝜃1 = 𝜃2 = 𝜃𝐷 = 𝜃𝜏 = 0.5, which is adopted in
this study for the Crank–Nicolson scheme.

Since the energy equation is deduced based on the slip
tensor and the viscoelastic stress is calculated using a DXPP
model that can describe the backbone orientation and stretch
of the polymer molecules, we will detail the solution of
the energy equation and the DXPP model based on the
nonstaggered grid under the framework of the FVM. The
energy equation and the DXPP model can be normalized as
follows:

𝜕 (𝑚𝜙)
𝜕𝑡 + ∇ ⋅ (𝑚u𝜙) = ∇ ⋅ (Γ∇𝜙) + 𝑆𝜙, (18)

where𝑚, Γ are constants; 𝜙 and 𝑆𝜑 are the physical quantities
and source term which are defined in Table 1.The terms from
left to right in (18) represent the time, convective, diffusive,
and source contributions, respectively.

The discretization of the energy equation (13), orientation
equation (6), and stretch equation (7) can be written as the
following form by a generalized quantity 𝜙; that is,

𝑎𝑃𝜙𝑃 = 𝑎𝐸𝜙𝐸 + 𝑎𝑊𝜙𝑊 + 𝑎𝑁𝜙𝑁 + 𝑎𝑆𝜙𝑆 + 𝑆𝜑, (19)

where 𝑆𝜑 is the source term after discretization in (13), (6),
and (7). The coefficients 𝑎𝐸, 𝑎𝑊, 𝑎𝑁, 𝑎𝑆, and 𝑎𝑃 can be
expressed as the combination of the convection term and the
diffusion term; that is,

𝑎𝐸 = 𝐷𝑒𝐴 (󵄨󵄨󵄨󵄨𝑃𝑒󵄨󵄨󵄨󵄨) +max (−𝐹𝑒, 0) ,
𝑎𝑊 = 𝐷𝑤𝐴 (󵄨󵄨󵄨󵄨𝑃𝑤󵄨󵄨󵄨󵄨) +max (𝐹𝑤, 0) ,
𝑎𝑁 = 𝐷𝑛𝐴 (󵄨󵄨󵄨󵄨𝑃𝑛󵄨󵄨󵄨󵄨) +max (−𝐹𝑛, 0) ,
𝑎𝑆 = 𝐷𝑠𝐴 (󵄨󵄨󵄨󵄨𝑃𝑠󵄨󵄨󵄨󵄨) +max (𝐹𝑠, 0) ,
𝑎𝑃 = 𝑎𝐸 + 𝑎𝑊 + 𝑎𝑁 + 𝑎𝑆 + 𝑚Δ𝑥Δ𝑦

Δ𝑡 ,

(20)

where 𝑃𝑒, 𝑃𝑠, 𝑃𝑤, and 𝑃𝑛 are the Peclet numbers on the cell
faces; 𝐹𝑒, 𝐹𝑠, 𝐹𝑤, and 𝐹𝑛 are the cell faces flux;𝐷𝑒,𝐷𝑠,𝐷𝑤, and𝐷𝑛 are the diffuse derivatives on cell faces.

The form of 𝐴(|𝑃Δ|) can be different under different
discretization schemes for the convection term. In order
to solve the convection-dominated problem caused by the
high specific heat capacity and high Weissenberg number,𝐴(|𝑃Δ|) equals 1 for the upwind scheme in this paper. All the
coefficients are formulated as follows.

𝐹𝑒 = (𝑚𝑢)𝑓𝑒 Δ𝑦,
𝐷𝑒 = 𝜅 Δ𝑦

𝑥𝐸 − 𝑥𝑃 ,

𝑃𝑒 = 𝐹𝑒𝐷𝑒 ,
𝐹𝑤 = (𝑚𝑢)𝑓𝑤 Δ𝑦,
𝐷𝑤 = 𝜅 Δ𝑦

𝑥𝑃 − 𝑥𝑊 ,

𝑃𝑤 = 𝐹𝑤𝐷𝑤 ,
𝐹𝑛 = (𝑚V)𝑓𝑛 Δ𝑥,
𝐷𝑛 = 𝜅 Δ𝑥

𝑦𝑁 − 𝑦𝑃 ,

𝑃𝑛 = 𝐹𝑛𝐷𝑛 ,
𝐹𝑠 = (𝑚V)𝑓𝑠 Δ𝑥,
𝐷𝑠 = 𝜅 Δ𝑥

𝑦𝑃 − 𝑦𝑆 ,

𝑃𝑠 = 𝐹𝑠𝐷𝑠 .

(21)

In this paper, the hybrid FEM/FVM method described
above is used to solve the weakly-compressible flow model
based on the DXPP constitutive model. Details are as follows.

Step 1. Initialize physical quantities velocity (u), pressure (𝑝),
density (𝜌), temperature (𝑇), orientation tensor (S), stretch(Λ), and stress (𝜏).
Step 2. Solve the momentum and mass conservation equa-
tions to calculateu,𝑝, and𝜌under the framework of the FEM.

Step 3. Solve the energy equation and the DXPP constitutive
equation to obtain 𝑇, S, and Λ under the framework of the
FVM.
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Figure 1: The 4 : 1 planar contraction flow geometry and computational mesh.

Step 4. Use expression (8) to calculate the polymer stress (𝜏).
Step 5. Substitute 𝜏 into the momentum equation (10) to
ensure the calculation of the coupling of the physical quan-
tities.

4. Numerical Simulation and Analysis

The 4 : 1 planar contraction flow is a benchmark test example
and has been widely studied [9–11]. In the 4 : 1 planar
contraction flow, the fluid flows into the narrower channel
from the wider channel with a simple shear flow far from the
contraction region, a pure elongation flow along the central
axis, a complex strong shear flow near the wall, and a mixture
of shear and elongation flows near the reentrant corners.
In fact, the contraction flow widely exists in the processing
of polymer materials, such as the polymer extrusion and
injection molding. Therefore, this example not only verifies
the correctness of the proposed algorithmandmodel, but also
provides the basis for the processing of polymer materials.

The sketches of the lower half of the 4 : 1 planar contrac-
tion geometry and computationalmesh are shown in Figure 1.
The lengths of upstream and downstream channel are both
16𝐿, in which 𝐿 denotes the height of downstream channel.
The structured triangular mesh and rectangular mesh are
used in FEM and FVM, respectively. It is noted that the mesh
is refined in the near of the reentrant corner.

The initial and boundary conditions are as follows.
At the entry (𝑥 = −16), 𝑢 = 3/128(16−𝑦2), V = 0,𝑇entry =523, 𝜏𝑥𝑥 = 2We(1 − 𝛽)(𝜕𝑢/𝜕𝑦)2,

𝜏𝑥𝑦 = (1 − 𝛽) 𝜕𝑢
𝜕𝑦 ,

𝜏𝑦𝑦 = 0.
(22)

At the exit (𝑥 = 16): V = 0, 𝑝 = 0.
On the solid boundaries, 𝑢 = V = 0, 𝑇𝑤 = 323, 𝜕𝜏𝑥𝑥/𝜕𝑥 =𝜕𝜏𝑥𝑦/𝜕𝑥 = 𝜕𝜏𝑦𝑦/𝜕𝑥.
On the axis of symmetry (𝑦 = 0), V = 0, 𝜕𝑇/𝜕𝑦 = 0,𝜏𝑥𝑦 = 0.
We choose the polymer High-Density Polyethylene

(HDPE) Sclair 2714 made by Nova Chemicals Inc. as fluid.
The material parameters of HDPE, which are obtained from
the materials database of Moldflow software, are shown in
Tables 2 and 3, respectively.

Table 2: Tait state equation parameters of HDPE.

Parameter Value
𝑏1,𝑚 (m3/kg) 1.264 × 103

𝑏2,𝑚 (m3/kg⋅K) 9.847 × 10−7

𝑏3,𝑚 (Pa) 1.062 × 108

𝑏4,𝑚 (1/K) 4.726 × 103

𝑏5 (K) 4.052 × 102

𝑏1,𝑠 (m3/kg) 1.12 × 103

𝑏2,𝑠 (m3/kg⋅K) 5.852 × 10−7

𝑏3,𝑠 (Pa) 2.43 × 108

𝑏4,𝑠 (1/K) 2.339 × 103

𝑏6 (K/Pa) 1.6 × 10−7

𝑏7 (m3/kg) 1.44 × 10−4

𝑏8 (1/K) 0.1425
𝑏9 (1/Pa) 2.527 × 10−8

Table 3: Property parameters of HDPE.

Parameter Value
n 0.3794
𝜏∗ (Pa) 105985
𝐷1 (Pa⋅s) 5.769 × 1013

𝐷2 (K) 233.15
𝐷3 (K/Pa) 0.1
𝐴1 32.344
𝐴2 (K) 51.6
𝐶𝑝 (J/kg⋅C) 2795
𝜅 (W/m⋅C) 0.238
𝜌 (kg/m3) 737.69

4.1. Numerical Solutions of Stress. The numerical results for
the first normal stress 𝜏𝑥𝑥, first normal stress difference 𝑁1,
and second normal stress difference 𝑁2 near the reentrant
corner are illustrated in Figures 2(a), 2(b), and 2(c), respec-
tively. It is seen that the stress contours near the reentrant
corner are smooth and 𝑁2 is not zero. This proves that the
given FEM/FVMmethod is feasible.

A series of meshes is used for the FEM/FVM method
to ensure spatial convergence based on salient-corner vortex
cell size. Mesh characteristics, detailing numbers of elements
(FEM/FVM) or volumes (SLFV) [22] and smallest mesh
spacing employed, and salient-corner vortex cell size are
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Figure 2: Stress contours near the reentrant corner.

Table 4: Mesh convergence: salient-corner vortex cell size (Re = 0.0).

𝑊𝑒
M1 M2 M3 M∗(SLFV)

Elements 𝑅min Elements 𝑅min Elements 𝑅min Volumes 𝑅min

3048 0.08 4064 0.06 6096 0.04 3600/7200 0.08/0.04
1.0 0.211 0.209 0.209 0.209
5.0 0.241 0.240 0.240 0.239
10.0 0.250 0.249 0.248 0.247

provided in Table 4. Moreover, the quantitative information
regarding mesh convergence of the salient-corner vortex cell
size is compared to the results in literature [22] for the Re =0, covering the range 1 ≤ We ≤ 10. The information in
Table 4 demonstrates that convergence withmesh refinement
has been achieved for the range of parameters considered.

Figure 3 shows the numerical results for the stress 𝜏𝑥𝑥
along the axis of symmetry with different values of the
amount of arms 𝑞 and relaxation time ratio 𝑟. The values
of stress 𝜏𝑥𝑥 increase with the values of 𝑞 increase and they
have obvious changes near the reentrant corner. However, the
values of 𝜏𝑥𝑥 are almost no change when the 𝑞 increases to a
certain extent. In addition, the values of 𝜏𝑥𝑥 under different
values of 𝑞 tend to be consistent when the flow is fully
developed. For different values of 𝑟, the values of 𝜏𝑥𝑥 have
similar change trends with different values of 𝑞 except they
decrease with the values of 𝑟 increase.
4.2. Numerical Solutions of Temperature. Figure 4 shows the
distribution of the temperature near the reentrant corner at
different Peclet numbers when the Weissenberg number is
fixed to 1.0. It is observed from Figure 4 that the temperature
is lower near the wall, and low-temperature region is getting
smaller and smaller with the increasing of Pe number. This is
because the effect of heat convection gradually increases with
the increase of Pe number. Then it causes the heat transport
ratio of heat convection to heat dissipation changes.

The temperature along 𝑦 = −1 with different slip
parameters 𝜉 is shown in Figure 5. It is seen that the
temperature values are slightly higher when 𝜉 = 1 than those
when 𝜉 = 0; that is, the temperature of the entropy elasticity
is slightly higher than that of the energy elasticity. This is
consistent with the result of literature [20].

4.3. Numerical Solutions of Backbone Orientation. The Pom-
Pom molecular model describes the relaxation time of
branched macromolecules separately on two different time
scales and introduces backbone stretch parameters to
describe the tensile behavior. Using the DXPP model allows
one to investigate the complexity rheological behavior on the
molecular scale.

The most intuitive way to describe the backbone ori-
entation of branched polymer molecules on the molecular
scale is to use the specific information of the second-order
orientation tensor S. The ellipse method is adopted to obtain
the backbone orientation state for two-dimensional cases.
For ellipse method, the eigenvalues and eigenvectors are first
obtained by computing the second-order matrix correspond-
ing to S, and then the eigenvectors and eigenvalues represent
themajor axis’s direction and length of the orientation ellipse,
respectively.

The backbone orientation in 4 : 1 planar contraction flow
is shown in Figure 6.As can be seen in Figure 6, the backbones
are oriented along the direction of fluid flow in most areas;
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Figure 3: The influence of different parameters on 𝜏𝑥𝑥: (a) 𝑞 and (b) 𝑟.
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Figure 4: Temperature distributions with increasing Pe number.

the backbones are spin-oriented state near the wall area with
stronger shear of downstream channel.This is because abrupt
contraction flow area and rapid increase fluid velocity lead
to backbone quickly spin near the reentrant corner. Near the
wall and away from the area of the reentrant corner, the shear
stress is the largest, and the backbone orientates first along
the wall and then spins with the flow. Along symmetry axis,
the backbone near the reentrant corner is first stretched and
exhibits uniaxial tension state due to the velocity gradient
increases; then the other backbones are in turn oriented in
the horizontal axis.

4.4. Numerical Solutions of Backbone Stretch. In Figure 7,
backbone stretch contours for differentWenumbers are given
with Pe = 1000, 𝑞 = 5, and 𝑟 = 3. It can be seen
that the backbone stretch increases significantly as the We
number increases. And maximum stretch increases as the
We number increases and occurs at the downstream wall
near reentrant corner, which is the position indicated by
the arrow in the circular enlargement area in Figure 7. It
is noted that maximum stretch does not appear near the
central axis of the channel where a pure elongation flow is.
It is different from our usual idea, because it is related to
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Figure 6: The backbone orientation distribution.
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Figure 7: Backbone stretch (Λ) contours for different We numbers.
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Figure 8: The influence of different parameters on backbone stretch (Λ): (a) 𝑞 and (b) 𝑟.

the size of angle vortex, the fluid stretching thickening [17],
and shear rate distribution. The appearance of this fact will
help to understand the phenomenon of polymer wall slip and
extrusion instability.

Figure 8 shows the numerical results for backbone stretch
along the axis of symmetry with different values of the
amount of arms 𝑞 and relaxation time ratio 𝑟 with We =10. It is observed that the value of Λ is increasing with the
increasing value of 𝑞 and there are obvious changes near the
reentrant corner. However, the value ofΛ is almost no change
when 𝑞 increases to a certain extent. In addition, the values
of Λ under different values of 𝑞 tend to be consistent when
the flow is fully developed. For different values of 𝑟, backbone
stretches have similar change trends with different values of𝑞 except they are decreasing with the increasing values of 𝑟.
5. Conclusions

In this paper, the DXPP constitutive model, which describes
backbone orientation and stretch, is used to study the
thermorheological behaviors of branched polymer melt. The
hybrid FEM/FVMmethod is used to solve the nonisothermal
weakly-compressible viscoelastic flow model coupled with
a DXPP model. The distribution of viscoelastic stress, tem-
perature, and backbone orientation and stretch are given.
The effect of Pom-Pom molecular parameters and a slip
parameter on thermorheological behaviors is studied. All
numerical results can prove the models and numerical
methods mentioned above are valid.

For 4 : 1 planar contraction flow, the backbone orientation
is along the flow direction in most of contraction area and is

spin in the downstream stronger shear near wall area. Stress
increases with the increase of the value of 𝑞 and decreases
with the increase of the value of 𝑟. The backbone stretch
increases with the increase of the values of We number and𝑞, and it decreases with the increase of the values of 𝑟. The
variable trend of stress and backbone stretch for the different
values of 𝑟 is the same with the full development of polymer
melt flow. In addition, the temperature along the centre line is
little higher in entropy elastic case than one in energy elastic
case. The macroscopic thermal rheological behavior in the
flow field is a true reflection of the microscopic topological
structure of the polymer melt. The characterization of the
microscopic information helps to further study the flow-
induced residual stress and other complicated behaviors in
the process of polymer melt processing and provide a theo-
retical basis to improve the polymer product performance.
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