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It is of interest to study supergravity solutions preserving a nonminimal fraction of supersymmetries. A necessary condition
for supersymmetry to be preserved is that the space-time admits a Killing spinor and hence a null or time-like Killing vector
field. Any space-time admitting a covariantly constant null vector (CCNV) field belongs to the Kundt class of metrics and more
importantly admits a null Killing vector field. We investigate the existence of additional non-space-like isometries in the class of
higher-dimensional CCNV Kundt metrics in order to produce potential solutions that preserve some supersymmetries.

1. Introduction

Supersymmetric supergravity solutions have been studied in
the context of theAdS/CFT conjecture, themicroscopic prop-
erties of black hole entropy, and the interconnection of string
theory dualities. For example, in five dimensions, solutions
preserving various fractions of supersymmetry of 𝑁 = 2
gauged supergravity have been studied. The Killing spinor
equations imply that supersymmetric solutions preserve 2,
4, 6, or 8 of the supersymmetries. The AdS5 solution with
vanishing gauge field strengths and constant scalars preserves
all of the supersymmetries. Half supersymmetric solutions in
gauged five-dimensional supergravity with vector multiplets
possess two Dirac Killing spinors and hence two time-like
or null Killing vector fields. These solutions have been fully
classified, using the spinorial geometry method, in [1–3].
Indeed, in a number of supergravity theories [4, 5], in order
to preserve some supersymmetry, it is necessary that the
space-time admits a Killing spinor which then yields a null
or time-like Killing vector field (isometry) from its Dirac
current. Therefore, a necessary (but not sufficient) condition
for supersymmetry to be preserved is that the space-time
admits a null or time-like Killing vector field.

In this short communication we study supergravity solu-
tions preserving a nonminimal fraction of supersymmetries
by determining the existence of additional non-space-like

isometries in the class of higher-dimensional Kundt space-
time admitting a covariantly constant null vector field
(CCNV) [6, 7]. CCNV space-time belongs to the Kundt
class because it contains a null Killing vector field which
is geodesic, nonexpanding, shear-free, and nontwisting. The
existence of an additional isometry puts constraints on the
metric functions and the vector field components. Killing
vector fields that are null or time-like locally or globally (for
all values of the coordinate V) are of particular importance. As
an illustration we present two explicit examples in this paper.

A constant scalar invariant (CSI) space-time is a space-
time such that all of the polynomial scalar invariants
constructed from the Riemann tensor and its covariant
derivatives are constant. In three and four dimensions, it
has been proven that all CSI space-times are either locally
homogeneous or belongs to the degenerate Kundt class [8–
10]; it is conjectured that this is true in higher dimensions
as well. The VSI space-times are CSI space-times for which
all of these polynomial scalar invariants vanish.The subset of
CCNV space-times which are also VSI are of interest. Indeed,
it has been shown previously that the higher-dimensional
VSI space-time with fluxes and dilaton is solutions of type
IIB supergravity [11–13]. The higher-dimensional Weyl type
N pp-wave space-times (Weyl and Ricci type are defined
in terms of the alignment classification [14]) are known
to be solutions in type IIB supergravity for an appropriate
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choice of an R-R five-form or an NS-NS form field
[15–19].

In fact, all Ricci type N VSI space-times are solutions
to supergravity and, moreover, there are VSI space-time
solutions of type IIB supergravity which are of Ricci type
III, including the string gyratons, assuming that appropriate
source fields are provided [11–13]. It has been argued that
the VSI supergravity space-time is exact string solutions to
all orders in the string tension. Those VSI space-time in
which supersymmetry is preserved admits a CCNV. Higher-
dimensional VSI space-time solutions to type IIB supergrav-
ity preserving some supersymmetry are of Ricci typeN, Weyl
type III(a), orN [11–13].

It is also known that AdS𝑑 × 𝑆(𝑁−𝑑) space-time is super-
symmetric CSI solutions of IIB supergravity. There is an
amount of another CSI space-time known to be solution
of supergravity admitting supersymmetries [8–10], including
generalizations of AdS × 𝑆 [20], the chiral null models
[15], and the string gyratons [21]. Some explicit examples
of CSI CCNV Ricci type N supergravity space-time have
been constructed [11–13]. The CSI space-times also contain
the universal space-times [22]; a space-time is universal if
every symmetric conserved rank 2 tensor which can be
constructed from the metric, the Riemann tensor, and its
covariant derivatives is proportional to the metric. This
ensures that any quantum correction to such a classical
solution is proportional to the metric and hence is a solu-
tion to all quantum gravity theories defined in terms of
a gravitational Lagrangian. Therefore, a subset of the CSI
space-time will be solutions to all quantum gravity theories
defined in this manner. This suggests that the CSI CCNV
space-times presented in this paper will contain supergravity
solutions.

1.1. Kundt Metrics and CCNV Space-Times. Any 𝑁-dimen-
sional space-time possessing a CCNV, ℓ, must necessarily
belong to the class of Kundt metrics. Local coordinates
(𝑢, V, 𝑥𝑒) can be chosen, where ℓ = 𝜕V, so that the metric can
be written [6, 7]

𝑑𝑠2 = 2𝑑𝑢 [𝑑V + 𝐻 (𝑢, 𝑥𝑒) 𝑑𝑢 + 𝑊̂𝑒 (𝑢, 𝑥𝑓) 𝑑𝑥𝑒]
+ 𝑔𝑒𝑓 (𝑢, 𝑥𝑔) 𝑑𝑥𝑒𝑑𝑥𝑓,

(1)

where the metric functions are independent of the light-cone
coordinate V.

A Kundt metric admitting a CCNV is CSI if and only if
the transverse metric 𝑔𝑒𝑓 is locally homogeneous [8–10]. Due
to the local homogeneity of 𝑔𝑒𝑓 a coordinate transformation
can be performed so that𝑚𝑖𝑒 in (2) are independent of 𝑢; this
implies that the Riemann tensor is of type II or less [14]. If
a CSI-CCNV metric satisfies 𝑅𝑎𝑏𝑅𝑎𝑏 = 0, then the metric is
VSI, and the Riemann tensor will be of types III,N, orO and
the transverse metric is flat (i.e., 𝑔𝑒𝑓 = 𝛿𝑒𝑓). The constraints
on a CSI CCNV space-time to admit an additional Killing
vector field are obtained as subcases of the cases analyzed
below where the transverse metric is a locally homogeneous
Riemannian manifold.

2. CCNV Space-Time with
Additional Isometries

Let us choose the coframe {𝑚𝑎}

𝑚1 = 𝑛 = 𝑑V + 𝐻𝑑𝑢 + 𝑊̂𝑒𝑑𝑥𝑒, 𝑚2 = 𝑙, 𝑚𝑖 = 𝑚𝑖𝑒𝑑𝑥𝑒, (2)

where 𝑚𝑖𝑒𝑚𝑖𝑓 = 𝑔𝑒𝑓 and 𝑚𝑖𝑒𝑚𝑗𝑒 = 𝛿𝑖𝑗. The frame derivatives
are given by

ℓ = 𝐷1 = 𝜕V,
𝑛 = 𝐷2 = 𝜕𝑢 − 𝐻𝜕V,
𝑚𝑖 = 𝐷𝑖 = 𝑚𝑖𝑒 (𝜕𝑒 − 𝑊̂𝑒𝜕V) .

(3)

The Killing vector field can be written as 𝑋 = 𝑋1𝑛 + 𝑋2ℓ +𝑋𝑖𝑚𝑖. A coordinate transformation ismade to eliminate 𝑊̂3 in
(1) and we rotate the frame in order to set𝑋3 ̸= 0 and𝑋𝑚 = 0
[6].𝑋 is now given by

𝑋 = 𝑋1𝑛 + 𝑋2ℓ + 𝜒𝑚3. (4)

Without loss of generality, we assume that the matrix 𝑚𝑖𝑒 is
upper-triangular. As a note, the indices 𝑒, 𝑓, 𝑔, . . ., range from
3 to𝑁 while the indices𝑚, 𝑛, 𝑟, 𝑝, . . . range from 4 to𝑁.

A subset of the Killing equation can then be written as
follows:

𝑋1,V = 0,
𝑋1,𝑢 + 𝑋2,V = 0,

𝑚3𝑒𝑋1,𝑒 + 𝑋3,V = 0,
𝑚𝑛𝑒𝑋1,𝑒 = 0,

(5)

which imply

𝑋1 = 𝐹1 (𝑢, 𝑥𝑒) ,
𝑋2 = −𝐷2 (𝑋1) V + 𝐹2 (𝑢, 𝑥𝑒) ,
𝑋3 = −𝐷3 (𝑋1) V + 𝐹3 (𝑢, 𝑥𝑒) ,

(6)

and the remaining Killing equations are

𝐷2𝑋2 +∑
𝑖

𝐽𝑖𝑋𝑖 = 0, (7)

𝐷𝑖𝑋2 + 𝐷2𝑋𝑖 − 𝐽𝑖𝑋1 −∑
𝑗

(𝐴𝑗𝑖 + 𝐵𝑖𝑗)𝑋𝑗 = 0, (8)

𝐷𝑗𝑋𝑖 + 𝐷𝑖𝑋𝑗 + 2𝐵(𝑖𝑗)𝑋1 − 2∑
𝑘

Γ𝑘(𝑖𝑗)𝑋𝑘 = 0, (9)
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where

𝐵𝑖𝑗 = 𝑚𝑖𝑒,𝑢𝑚𝑗𝑒,
𝑊𝑖 = 𝑚𝑖𝑒𝑊̂𝑒,
𝐷𝑖𝑗𝑘 ≡ 2𝑚𝑖𝑒,𝑓𝑚[𝑗𝑒𝑚𝑘]𝑓,
𝐽𝑖 ≡ Γ2𝑖2 = 𝐷𝑖𝐻 − 𝐷2𝑊𝑖 − 𝐵𝑗𝑖𝑊𝑗,

𝐴 𝑖𝑗 ≡ 𝐷[𝑗𝑊𝑖] + 𝐷𝑘[𝑖𝑗]𝑊𝑘,

Γ𝑖𝑘𝑗 = −12 (𝐷𝑖𝑗𝑘 + 𝐷𝑗𝑘𝑖 − 𝐷𝑘𝑖𝑗) =
𝑆Γ𝑖𝑘𝑗.

(10)

Further information can be found by taking the Killing
equations and applying the commutation relations. This
produces two cases: (1) 𝐷3𝑋1 = 0 or (2) Γ3𝑛2 = Γ3𝑛3 = Γ3𝑛𝑚 =0.
Case 1 (𝐷3𝑋1 = 0). Using (7) and the definition of 𝐹2 from
(6), we have the fact that 𝑋1 = 𝑐1𝑢 + 𝑐2. If 𝑐1 ̸= 0 we may
always choose coordinates to set 𝑋1 = 𝑢; while if 𝑐1 = 0 we
may choose 𝑐2 = 1.
Subcase 1 (𝐹3 = 0). (i) 𝑐1 ̸= 0,𝑋1 = 𝑢; 𝐹2 must be of the form

𝐹2 = 𝑓2 (𝑥𝑒)
𝑢 + 𝑔2 (𝑢)

𝑢 . (11)

𝐻 and𝑊𝑚 are given in terms of these two functions (where
𝑔󸀠 ≡ 𝑑𝑔/𝑑𝑢)

𝐻 = 𝑓2 (𝑥𝑒)
𝑢2 − 𝑔󸀠2 (𝑢)

𝑢 + 𝑔2 (𝑢)
𝑢2 ,

𝑊𝑚 = 𝐵𝑚 (𝑥𝑒)
𝑢 .

(12)

(ii) 𝑐1 = 0,𝑋1 = 1; 𝐹2,𝑢 = 0, and𝐻 and𝑊𝑛 are
𝐻 = 𝐹2 (𝑥𝑒) + 𝐴0 (𝑢, 𝑥𝑟) ,
𝑊𝑛 = ∫𝐷𝑛𝐴0𝑑𝑢 + 𝐶𝑛 (𝑥𝑒) .

(13)

In either case, the only requirement on the transverse metric
is that it has to be independent of 𝑢. The arbitrary functions
in this case are 𝐹2 and the functions arising from integration.

Subcase 2 (𝐹3 ̸= 0). The transverse metric is now determined
by

𝑚33 = −∫ 1
𝑋1𝐹3,3𝑑𝑢 + 𝐴1 (𝑥

3, 𝑥𝑟) , (14)

𝑚𝑛𝑟,𝑢 = −𝑚𝑛𝑟,3 𝐹3
𝑚33𝑋1 ,

𝑚3𝑟,𝑢 = −𝐹3,𝑟𝑋1 −
𝑚3[𝑟,3]𝑚33𝐹3

𝑋1 .
(15)

(i) 𝑐1 ̸= 0, 𝑋1 = 𝑢; 𝐹𝑖(𝑢, 𝑥𝑒) (𝑖 = 1, 2) are arbitrary func-
tions,𝐻 is given by

𝐻 = −𝐷2𝐹2 −
𝐷2 (𝐹23 )
2𝑢 − 𝐹3𝐷3𝐹2

𝑢 − 𝐹3𝐷3 (𝐹23 )
2𝑢2 , (16)

and𝑊𝑛 is determined by

𝐷2 (𝑢𝑊𝑛) + 𝐹3𝐷3𝑊𝑛 + 𝐷𝑛 (𝐹2 − 𝑢𝐻) = 0. (17)

(ii) 𝑐1 = 0, 𝑐2 ̸= 0, and𝑋1 = 1; 𝐹2 and 𝐹3 satisfy

𝐷2𝐹2 + 𝐹3𝐷3𝐹2 + 1
2𝐷2 (𝐹

2
3 ) + 1

2𝐹3𝐷3 (𝐹
2
3 ) = 0. (18)

𝐻may be written as

𝐻 = ∫𝑚33𝐷2𝐹3𝑑𝑥3 + 𝐹2 + 1
2𝐹
2
3 + 𝐴2 (𝑢, 𝑥𝑟) . (19)

The only equation for𝑊𝑛 is
𝐹3𝐷3𝑊𝑛 + 𝐷2𝑊𝑛 = 𝐷𝑛 (𝐻) . (20)

(iii)𝑋1 = 0.
We have the following constraints on the functions𝑚𝑖𝑒:

𝐹3,3 = 0,
𝑚𝑛𝑟,3 = 0,

𝐷2 log (𝑚33) = −𝐷3𝐹2𝐹3 − 𝐷2 log (𝐹3) ,
(21)

while the metric functions must be of the form

𝑊𝑛 = −∫ 𝑚33𝐷𝑛𝐹2
𝐹3 𝑑𝑥3 + 𝐸𝑛 (𝑢, 𝑥𝑟) ,

𝐻 − ∫ 𝑚33𝐷2𝐹2
𝐹3 𝑑𝑥3 + 𝐴3 (𝑢, 𝑥𝑟) .

(22)

There are two further subcases depending upon whether
𝑚33,𝑟 = 0 or not; whence we may further integrate to deter-
mine the transverse metric.

Case 2 (Γ3𝑖𝑎 = 0). This implies that the upper-triangular
matrix𝑚𝑖𝑒 takes the form

𝑚33 = 𝑀,3 (𝑢, 𝑥3) ,
𝑚3𝑟 = 0,
𝑚𝑛𝑟 = 𝑚𝑛𝑟 (𝑢, 𝑥𝑟) ,

(23)

while 𝑊𝑛 must satisfy 𝐷3(𝑊𝑛) = 0. The remaining Killing
equations simplify; in particular, 𝐵(𝑚𝑛)𝑋1 = 0, which leads to
two subcases: (1) 𝑋1 = 0 or (2) 𝐵(𝑚𝑛) = 0.
Subcase 1 (𝑋1 = 0, 𝐵(𝑚𝑛) ̸= 0). 𝐹2,𝑟 = 0, 𝐹3,𝑒 = 0, with𝑚𝑖𝑒,𝐻,
and𝑊𝑛 given by (21) and (22).
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Subcase 2 (𝐵(𝑚𝑛) = 0, 𝑋1 ̸= 0). This case is similar to the
subcases dealt with in Subcase 1 (see (11)–(14), (20)–(22)). For
𝑛 < 𝑝, the vanishing of 𝐵(𝑛𝑝) implies that 𝑚𝑛𝑟,𝑢 = 0, the
special formof𝑚𝑖𝑒 implies that𝑚𝑟3 = 0, and the only nonzero
component of the tensor 𝐵 is 𝐵33.

If we assume that 𝐹1,3 ̸= 0 and 𝐹1 is independent of 𝑥𝑟
𝑚33,3
𝑚33 = 𝐹1,33

𝐹1,3 ,

𝑚33,𝑢
𝑚33 = 𝐹1,3𝑢

𝐹1,3 ,
(24)

thus 𝑚33(𝑢, 𝑥3) is entirely defined by 𝐹1. We may now solve
for𝐻 and𝑊𝑛

𝐻 = 𝐷3𝐷2𝐹1
𝐷3 (𝐹1)2

𝐹3 − 𝐷22𝐹1
𝐷3 (𝐹1)2

𝐹1 − 2𝐷(2𝐹3)
𝐷3𝐹1 ,

𝑊𝑛 = −𝐷𝑛𝐹3𝐷3𝐹1 .
(25)

𝐹3 is of the form

𝐹3 = ∫ 𝑚33𝐹1𝐷3𝐷2𝐹1
𝐷3𝐹1 𝑑𝑥3 + 𝐴6 (𝑢, 𝑥𝑟) . (26)

There are differential equations for 𝐹2 in terms of the
arbitrary functions 𝐹1(𝑢, 𝑥3) and 𝐴6(𝑢, 𝑥𝑟). These solutions
are summarized in Table 5.2 in [7].

3. Killing Lie Algebras

There are three particular forms for the Killing vector fields
in CCNV space-times admitting an additional isometry:

(A) 𝑋𝐴 = 𝑐𝑛 + 𝐹2(𝑢, 𝑥𝑒)ℓ + 𝐹3(𝑢, 𝑥𝑒)𝑚3
(B) 𝑋𝐵 = 𝑢𝑛 + [𝐹2(𝑢, 𝑥𝑒) − V]ℓ + 𝐹3(𝑢, 𝑥𝑒)𝑚3
(C) 𝑋𝐶 = 𝐹1(𝑢, 𝑥3)𝑛 + [𝐹2(𝑢, 𝑥𝑒) − 𝐷2𝐹1V]ℓ + [𝐹3(𝑢, 𝑥𝑒) −𝐷3𝐹1V]𝑚3.

To determine if this space-time admits even more isometries
we examine the commutator of𝑋 with ℓ in each case. In case
(A) [𝑋𝐴, ℓ] = 0 and in case (B) [𝑋𝐵, ℓ] = −ℓ, implying that
there are no additional Killing vector fields.

In the most general case 𝑌𝐶 ≡ [𝑋𝐶, ℓ] can yield a new
Killing vector field;𝑌𝐶 = 𝐷2𝐹1ℓ+𝐷3𝐹1𝑚3. However, this will
always be space-like since (𝐷3𝐹1)2 > 0. Note that [𝑌𝐶, ℓ] = 0,
while, in general, [𝑌𝐶, 𝑋𝐶] ̸= 0.
3.1. Globally Non-Space-Like Killing Vector Fields. Let us con-
sider the set of CCNV space-times admitting an additional
non-space-like isometry. Equation (6) implies that the norm
of this vector field must satisfy

𝐷3 (𝑋1)2 V2 + 2 (𝐷2 (𝑋1)𝑋1 − 𝐷3 (𝑋1) 𝐹3) V + 𝐹32

− 2𝑋1𝐹2 ≤ 0.
(27)

If the Killing vector field is non-space-like for all values of V,
then𝐷3(𝑋1)must vanish and𝑋1 is constant.Therefore, those
subcases with𝑋1 nonconstant are excluded.

We need only consider the Killing vector field of the form
𝑋𝐴. In the time-like case, the subcases with 𝑋1 = 0 are no
longer valid as this would imply that 𝐹32 < 0.

In the case that𝑋𝐴 is null, if 𝑐 = 0, 𝐹3 must vanish and 𝐹2
must be constant, implying that 𝑋 is a scalar multiple of ℓ. If
𝑐 ̸= 0we can rescale 𝑛 so that 2𝐹2 = 𝐹32; we can then integrate
out the various cases:

(i) If 𝐹3 = 0, 𝐹2 must vanish as well and the Killing
vector field, 𝑋, is proportional to 𝑛. The remaining
metric functions are now 𝐻 = 𝐴0(𝑢, 𝑥𝑟) and
𝑊𝑛 = ∫𝐷𝑛(𝐴0)𝑑𝑢 + 𝐶𝑛(𝑥𝑒). The transverse metric
is unaffected.

(ii) If 𝐹3 ̸= 0, the metric functions must satisfy

𝐻 = 𝐴2 (𝑢, 𝑥𝑟) ,
𝐷2 (𝑊𝑛) + 𝐷3 (𝑊𝑛) 𝐹3 = 𝐷𝑛 (𝐴2) ,

(log𝑚33),𝑢 = 𝐷2 (log𝐹3) .
(28)

In this section we have shown that if we require that the
Killing vector field is non-space-like for all values of V, this
puts strong conditions on the permitted form of the Killing
vector field. If we only require that the Killing vector field is
non-space-like in a subset of the space-time there is greater
diversity in the choice of Killing vector fields permitted. We
present two explicit examples in the following subsections,
one which is non-space-like in a region of the space-time and
the other which is globally non-space-like. The CSI CCNV
space-times, admitting globally non-space-like Killing vector
fields, are the above cases where the transverse space is locally
homogeneous.

3.2. Example 1. We first present an explicit example for the
case where 𝑋1 = 𝑢 and 𝐹3 ̸= 0. Assuming that 𝐹3(𝑢, 𝑥𝑖) =𝜖𝑢𝑚33 and 𝜖 is a nonzero constant, we obtain

𝑚𝑖𝑠,𝑢 + 𝜖𝑚𝑖𝑠,3 = 0 (29)

and the transverse metric is thus given by

𝑚𝑖𝑠 = 𝑚𝑖𝑠 (𝑥3 − 𝜖𝑢, 𝑥𝑛) . (30)

We have the algebraic solution

𝑊̂3 = −1𝜖 (𝐻 + 𝐹2,𝑢) − 𝐹2,3 − 𝜖𝑚332, (31)

where 𝐹2(𝑢, 𝑥𝑖) is an arbitrary function and𝐻 is given by

𝐻(𝑢, 𝑥𝑖) = 1
𝑢 [−∫ 𝑆 (𝑧, 𝑥

3 − 𝜖𝑢 + 𝜖𝑧, 𝑥𝑛) 𝑑𝑧

+ 𝐴 (𝑥3 − 𝜖𝑢, 𝑥𝑛)] ,
(32)
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where 𝐴 is an arbitrary function and 𝑆 is given by

𝑆 (𝑢, 𝑥3, 𝑥𝑛) = (𝑢𝐹2,𝑢)𝑢 + 𝜖𝑢𝐹2,3𝑢 + 𝜖2𝑢 (𝑚332)𝑢 . (33)

Furthermore, the solution for 𝑊̂𝑛, 𝑛 = 4, . . . , 𝑁, is

𝑊̂𝑛 (𝑢, 𝑥𝑖) = 1
𝑢 [−∫𝑇𝑛 (𝑧, 𝑥

3 − 𝜖𝑢 + 𝜖𝑧, 𝑥𝑚) 𝑑𝑧

+ 𝐵𝑛 (𝑥3 − 𝜖𝑢, 𝑥𝑚)] ,
(34)

where 𝐵𝑛 are arbitrary functions and 𝑇𝑛 is given by

𝑇𝑛 (𝑢, 𝑥3, 𝑥𝑚) = [(𝑢𝐹2)𝑢 + 𝜖𝑢𝐹2,3 + 𝜖2𝑢𝑚332],𝑛
+ 𝜖𝑚3𝑛𝑚33.

(35)

In this example, the Killing vector field and its magnitude
are given by

𝑋 = 𝑢n + (−V + 𝐹2) ℓ + 𝜖𝑢𝑚33m3,
𝑋𝑎𝑋𝑎 = −2𝑢V + 2𝑢𝐹2 + (𝜖𝑢𝑚33)2 .

(36)

Clearly, the causal character of 𝑋 will depend on the choice
of 𝐹2(𝑢, 𝑥𝑖) and for any fixed (𝑢, 𝑥𝑖) 𝑋 is time-like or null for
appropriately chosen values of V.Moreover, (36) is an example
of case (B); therefore the commutator of𝑋 and ℓ gives rise to
a constant rescaling of ℓ and, in general, there are no more
Killing vector fields.

The additional isometry is only time-like or null locally
(for a restricted range of coordinate values). However, the
solutions can be extended smoothly so that the vector field
is time-like or null on a physically interesting part of space-
time. For example, a solution valid on 𝑢 > 0, V > 0 (with
𝐹2 < 0), can be smoothly matched across 𝑢 = V = 0 to a
solution valid on 𝑢 < 0, V < 0 (with𝐹2 > 0), so that the Killing
vector field is time-like on the resulting coordinate patch.

As an illustration, suppose that 𝑚3𝑠 are separable as
follows:

𝑚3𝑠 = (𝑥3 − 𝜖𝑢)𝑝𝑠 ℎ𝑠 (𝑥𝑛) (37)

and 𝐹2 has the form
𝐹2 = − 𝜖

2𝑝3 + 1 (𝑥
3 − 𝜖𝑢)2𝑝3+1 ℎ32 + 𝑔 (𝑢, 𝑥𝑛) , (38)

where 𝑝𝑠 are constants and ℎ𝑠 are 𝑔 arbitrary functions.Thus,
from (32)

𝐻 = −𝜖2 (𝑥3 − 𝜖𝑢)2𝑝3−1 [𝑥3 − 𝜖 (𝑝3 + 1) 𝑢] ℎ32 − 𝑔,𝑢
+ 𝑢−1𝐴(𝑥3 − 𝜖𝑢, 𝑥𝑛) ,

(39)

and hence from (31)

𝑊̂3 = −𝜖2𝑝3𝑢 (𝑥3 − 𝜖𝑢)2𝑝3−1 ℎ32

− (𝜖𝑢)−1 𝐴(𝑥3 − 𝜖𝑢, 𝑥𝑛) .
(40)

Lastly, (34) gives

𝑊̂𝑛 = 𝜖 (𝑥3 − 𝜖𝑢)𝑝3

⋅ ℎ3
{
{
{
2 (𝑥3 − 𝜖𝑢)𝑝3
2𝑝3 + 1 [𝑥3 − 𝜖 (𝑝3 + 3

2) 𝑢] ℎ3,𝑛

− (𝑥3 − 𝜖𝑢)𝑝𝑛 ℎ𝑛
}
}
}
− 𝑔,𝑛 + 𝑢−1𝐵𝑛 (𝑥3 − 𝜖𝑢, 𝑥𝑚) .

(41)

3.3. Example 2. A second example belonging to Case 1,
that is, with 𝑋1 = 1, gives the same solutions to (30) for
the transverse metric by assuming that 𝐹3(𝑢, 𝑥𝑖) = 𝜖𝑚33
(although, in this case, the additional isometry is globally
time-like or null). In addition, we have

𝑊̂3 = ∫𝐻,3𝑑𝑢 + 𝜖−1 (𝐹2 + 𝑓) , (42)

where (𝑢, 𝑥𝑖), 𝐹2(𝑥3 − 𝜖𝑢, 𝑥𝑛), and 𝑓(𝑥𝑖) are arbitrary func-
tions. Last, the metric functions 𝑊̂𝑛 are

𝑊̂𝑛 (𝑢, 𝑥𝑖) = ∫
𝑢

𝐿𝑛 (𝑧, 𝑥3 − 𝜖𝑢 + 𝜖𝑧, 𝑥𝑚) 𝑑𝑧

+ 𝐸𝑛 (𝑥3 − 𝜖𝑢, 𝑥𝑚) ,
(43)

with 𝐸𝑛 arbitrary and 𝐿𝑛 given by

𝐿𝑛 (𝑢, 𝑥3, 𝑥𝑚) = 𝐻,𝑛 + 𝜖∫𝐻,3𝑛𝑑𝑢 + 𝑓,𝑛. (44)

The Killing vector field and its magnitude are

𝑋 = n + 𝐹2ℓ + 𝜖𝑚33m3,
𝑋𝑎𝑋𝑎 = 2𝐹2 + (𝜖𝑚33)2 .

(45)

Since 𝐹2 and𝑚33 have the same functional dependence there
always exists an 𝐹2 such that 𝑋 is everywhere time-like or
null.TheKilling vector field (45) is an example of case (A) and
thus 𝑋 and ℓ commute and hence no additional isometries
arise. For instance, suppose that𝐻 = 𝐻(𝑥3 − 𝜖𝑢, 𝑥𝑛) and 𝑓 is
analytic at 𝑥3 = 0 then (42) and (43) simplify to give

𝑊̂3 = −𝜖−1 (𝐻 − 𝐹2 − 𝑓) ,

𝑊̂𝑛 = 𝜖−1
∞

∑
𝑝=0

𝜕𝑛𝜕3𝑝𝑓 (0, 𝑥𝑚)
(𝑥3)𝑝+1
(𝑝 + 1)!

+ 𝐸𝑛 (𝑥3 − 𝜖𝑢, 𝑥𝑚) .

(46)

This explicit solution is an example of a space-time admitting
2 global null or time-like Killing vector fields, and thus it
preserves a nonminimal fraction of supersymmetries.
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4. Discussion

The CCNV space-times discussed in this paper will preserve
a nonminimal fraction of supersymmetries, if they are solu-
tions of some supergravity theory. To show that there are
indeedCCNVspace-times that are solutions to a supergravity
theory, we note that there exist VSI and CSI space-times
which are solutions to supergravity theories [11–13]. The CSI
and VSI solutions admit a covariantly constant null vector
(i.e., they are CCNV-CSI space-times) or are constructed
from the warped product of a CCNV-VSI space-time and a
locally homogeneous Riemannian manifold.

The construction of CSI solutions for supergravity theo-
ries was motivated by the observation that AdS𝑑 × 𝑆(𝐷−𝑑) is
a supersymmetric exact solution of supergravity (for certain
values of (𝐷, 𝑑) and for particular ratios of the radii of
curvature of the two space forms; in particular, 𝑑 = 5, 𝐷 =
10, and AdS5×𝑆5).Themore general𝐷-dimensional product
space-time𝑀𝑑 × 𝐾(𝐷−𝑑) (in brief𝑀 × 𝐾) can be considered
as a Freund–Rubin background. For example, for (𝐷, 𝑑) =
(11, 4), (11, 7), and (5, 5) it is sufficient that 𝑀 and 𝐾 are
Einstein. Since 𝑀 × 𝐾 is a Freund–Rubin background,
if 𝑀 is any Lorentzian Einstein manifold and 𝐾 is any
Riemannian Einstein manifold (with the same ratio of the
radii of curvature as in the AdS × 𝑆 case), then 𝑀 × 𝐾
will be a solution of some supergravity theory without any
consideration of preservation of supersymmetry, where the
fluxes are given purely in terms of the volume forms of the
relevant factor(s). In general, 𝑀 must have negative scalar
curvature and 𝐾 will have positive scalar curvature in order
to satisfy the supergravity equations of motion.

There are many examples of CSI space-times in the
Freund–Rubin𝑀 × 𝐾 supergravity set. 𝐾 could be a homo-
geneous space or a space of constant curvature. One must
askwhether these CSI solutions preserve any supersymmetry.
The condition for preservation of supersymmetry demands
that𝑀 and𝐾 admit Killing spinors which imply the existence
of Killing vectors. In this paper we have examined the class
of space-time that will potentially admit more than one
Killing spinor without requiring that it is solution to some
supergravity theory. Noting that a CCNV space-time will
be CSI if the transverse metric is locally homogeneous we
can relate particular instances of the two examples presented
in Section 3 to subcases of known CCNV-CSI supergravity
solutions.

For example, requiring that the transverse space is flat
leads to the condition that 𝑚33 = 1 and the two CCNV
examples in Section 3 will contain the subclass of CCNV-
VSI 𝜖 = 0 space-time admitting two time-like or null Killing
vectors [11]. The Ricci type N CCNV-VSI 𝜖 = 0 space-time
has been shown to be solution to superstring and heterotic
string theory [15]. Similarly, imposing the condition that the
transverse metric is locally homogeneous will yield CCNV-
CSI space-time admitting two non-space-like Killing vectors
which can be related to subcases of known CCNV-CSI
solutions of supergravity theories. As a simple example in
five dimensions, we may choose the transverse space to be
𝑆3 with unit radius; then for an appropriate choice of metric

functions, the example in Section 3.3 corresponds to the
metric given by (10) and (11) in [12] admitting an additional
null or time-likeKilling vector field.Themetric, togetherwith
a constant dilaton and appropriate antisymmetric field, is an
exact solution of bosonic string theory.

Motivated by the examples of CCNV-CSI space-times
given in the literature, it is worthwhile to ask if the CCNV
space-time admitting additional Killing vector fields will
contain supergravity solutions beyond the CSI or VSI exam-
ples. By removing the condition for the transverse space to
be locally homogeneous, such a solution would preserve a
nonminimal fraction of supersymmetries while reducing the
number of space-like symmetries.This will be investigated in
future work in the context of five-dimensional bosonic string
theory.
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