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We derive exact traveling wave solutions to the (2 + 1)-dimensional Jaulent-Miodek equation by means of the complex method,
and then we illustrate our main result by some computer simulations. It has presented that the applied method is very efficient and
is practically well suited for the nonlinear differential equations that arise in mathematical physics.

1. Introduction and Main Results

Nonlinear differential equations widely describe many
important dynamical systems in various fields of science,
especially in nonlinear optics, plasma physics, solid state
physics, and fluid mechanics. It has aroused widespread
attention in the study of nonlinear differential equations
[1–28]. Exact solutions of nonlinear differential equations
play an important role in the study of mathematical physics
phenomena. Hence, seeking explicit solutions of physics
equations is an interesting and significant subject.

In 2001, Geng et al. [29] developed some (2 + 1)-
dimensional models from the Jaulent-Miodek hierarchy [30].
Over the past few years, many research results for the (2 + 1)-
dimensional Jaulent-Miodek equations have been generated
[31–34], such as the algebraic-geometrical solutions, the
bifurcation and exact solutions, the N-soliton solution, and
Multiple kink solutions for the (2 + 1)-dimensional Jaulent-
Miodek equations.

In 2012, Zhang et al. [35] studied the following (2 + 1)-
dimensional Jaulent-Miodek equation:

𝑎1𝑢𝑥𝑡 + 𝑎2𝑢2𝑥𝑢𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥 − 𝑎3𝑢𝑥𝑥𝑢𝑦 − 𝑎4𝑢𝑥𝑢𝑥𝑦 + 𝑎5𝑢𝑦𝑦
= 0, (1)

where 𝑎𝑖 are constants, 𝑖 = 1, 2, . . . , 5.

Substituting traveling wave transform

𝑢 (𝑥, 𝑦, 𝑡) = V (𝑧) ,
𝑧 = 𝑥 + 𝑙𝑦 + 𝜆𝑡, (2)

into (1), and then integrating it we get

V󸀠󸀠󸀠 − (𝑎1𝜆 + 𝑎5𝑙2) V󸀠 + 𝑙𝑏2 (V󸀠)2 − 𝑎23 (V󸀠)3 − 𝛿 = 0, (3)

where 𝑏 = 𝑎3+𝑎4, 𝑙 and𝜆 are constants, and𝛿 is the integration
constant. Setting 𝑤 = V󸀠, (3) becomes

𝑤󸀠󸀠 − (𝑎1𝜆 + 𝑎5𝑙2)𝑤 + 𝑙𝑏2 𝑤2 − 𝑎23 𝑤3 − 𝛿 = 0. (4)

We say that a meromorphic function 𝜁 belongs to the
class 𝑊 if 𝜁 is an elliptic function, or a rational function of𝑧, or a rational function of 𝑒𝜇𝑧, 𝜇 ∈ C. Only these functions
can satisfy an algebraic addition theorem which was proved
by Weierstrass, so the letter 𝑊 was utilized [36]. In 2006,
Eremenko [36] proved that all meromorphic solutions of the
Kuramoto-Sivashinsky algebraic differential equation belong
to the class 𝑊. Recently, Kudryashov et al. [37, 38] used
Laurent series to seek meromorphic exact solutions of some
nonlinear differential equations. Following their work, the
complex method was proposed by Yuan et al. [39, 40].
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They employed the Nevanlinna value distribution theory to
investigate the existence of meromorphic solutions to some
differential equations and then obtain the representations of
meromorphic solutions to these differential equations [41,
42]. It shows that the complexmethod has a strong theoretical
basis which can proof that meromorphic solutions of certain
differential equations belong to the class 𝑊 and obtain
exact solutions by the indeterminate forms of the solutions.
Besides, this method can be applied to get all traveling wave
exact solutions or general solutions of related differential
equations [43, 44]. In this article, we would like to use the
complex method to obtain exact traveling wave solutions to
the (2 + 1)-dimensional Jaulent-Miodek equation.

Theorem 1. If 𝑎2 ̸= 0, then the meromorphic solutions𝑤 of (4)
belong to the class𝑊. In addition, (4) has the following classes
of solutions.

(i) The rational function solutions

𝑤𝑟,1 (𝑧) = ±√ 6𝑎2
1𝑧 − 𝑧0 +

𝑙𝑏2𝑎2 ,

𝑤𝑟,2 (𝑧) = ±√ 6𝑎2 (
1𝑧 − 𝑧0 −

1𝑧 − 𝑧0 − 𝑧1 −
1𝑧1) +

𝑙𝑏2𝑎2 ,
(5)

where 𝑧0 ∈ C, 𝑧1 ̸= 0. 𝜆 = −𝑙2(4𝑎2𝑎5 − 𝑏2)/4𝑎1𝑎2, 𝛿 =−𝑙3𝑏3/24𝑎22 in the former case, or 𝜆 = −((4𝑎2𝑎5 − 𝑏2)𝑙2𝑧21 +24𝑎2)/4𝑎1𝑎2𝑧21 , 𝛿 = −(𝑙3𝑏3𝑧31 − 72𝑙𝑏𝑎2𝑧1 − 96√6𝑎3/22 )/24𝑎22𝑧31
in the latter case.

(ii) The simply periodic solutions

𝑤𝑠,1 (𝑧) = ±√ 32𝑎2 𝜇 coth
𝜇2 (𝑧 − 𝑧0) + 𝑙𝑏2𝑎2 ,

𝑤𝑠,2 (𝑧) = ±√ 32𝑎2 𝜇(coth
𝜇2 (𝑧 − 𝑧0)

− coth
𝜇2 (𝑧 − 𝑧0 − 𝑧1) − coth

𝜇2 𝑧1) + 𝑙𝑏2𝑎2 ,

(6)

where 𝑧0 ∈ C, 𝑧1 ̸= 0. 𝜆 = −((4𝑎2𝑎5 − 𝑏2)𝑙2 + 6𝑎2𝜇2)/4𝑎1𝑎2, 𝛿 = −(𝑙3𝑏3 + 12√6𝜇3𝑎3/22 − 18𝑙𝑏𝑎2𝜇2)/24𝑎22 in
the former case, or 𝜆 = (3𝜇2/2)coth2(𝜇/2)𝑧1 − 𝑙2𝑏2/4𝑎2,𝛿 = √3/2𝑎2𝜇2coth2(𝜇/2)𝑧1(𝜇 coth(𝜇/2)𝑧1 + √3/2𝑎2(𝑙𝑏/2)) −𝑙3𝑏3/24𝑎22 in the latter case.

(iii) The elliptic function solutions

𝑤𝑑 (𝑧) = ±√ 32𝑎2
(−℘ + 𝐸) (4℘𝐸2 + 4℘2𝐸 + 2℘󸀠𝐹 − ℘𝑔2 − 𝐸𝑔2)((12𝐸2 − 𝑔2) ℘ + 4𝐸3 − 3𝐸𝑔2) ℘󸀠 + (4℘3 + 12𝐸℘2 − 3𝑔2℘ − 𝐸𝑔2) 𝐹 + 𝑙𝑏2𝑎2 , (7)

where 𝑔3 = 0, 𝐹2 = 4𝐸3 − 𝑔2𝐸, 𝐸 and 𝑔2 are arbitrary.
Theorem 2. If 𝑎2 ̸= 0, then traveling wave exact solutions of
(3) have the following forms.

(i) The rational function solutions

V𝑟,1 (𝑧) = ±√ 6𝑎2 ln (𝑧 − 𝑧0) +
𝑙𝑏2𝑎2 (𝑧 − 𝑧0) + 𝑐1,

V𝑟,2 (𝑧) = ±√ 6𝑎2 ln
𝑧 − 𝑧0𝑧 − 𝑧1 − 𝑧0

+ ( 𝑙𝑏2𝑎2 − √
6𝑎2
1𝑧1)(𝑧 − 𝑧0) + 𝑐2,

(8)

where 𝑧0 ∈ C, 𝑧1 ̸= 0, 𝑐1 and 𝑐2 are integral constants.
(ii) The simply periodic solutions

V𝑠,1 (𝑧) = ∓√ 32𝑎2 𝜇 ln(coth
2 𝜇2 (𝑧 − 𝑧0) − 1)

+ 𝑙𝑏2𝑎2 (𝑧 − 𝑧0) + 𝑐3,

V𝑠,2 (𝑧) = ∓√ 32𝑎2 𝜇 ln(coth
2 𝜇2 (𝑧 − 𝑧0) − 1)

± √ 32𝑎2 𝜇 ln(coth
2 𝜇2 (𝑧 − 𝑧0 − 𝑧1) − 1)

+ ( 𝑙𝑏2𝑎2 ∓ √
32𝑎2 𝜇 coth

𝜇2 𝑧1) (𝑧 − 𝑧0)
+ 𝑐4,

(9)
where 𝑧0 ∈ C, 𝑧1 ̸= 0, 𝑐3 and 𝑐4 are integral constants.

(iii) The elliptic function solutions
V𝑑 (𝑧)

= ±√ 32𝑎2 ln(−℘ (𝑧) +
14 (℘
󸀠 (𝑧) + 𝐺℘ (𝑧) − 𝐻)2 − 𝐻)

+ 𝑙𝑏2𝑎2 (𝑧 − 𝑧0) + 𝑐5,
(10)

where 𝑐5 is the integral constant, 𝐺2 = 4𝐻3 − 𝑔2𝐻, 𝑔3 = 0.
The rest of this paper is organized as follows. Sec-

tion 2 introduces some preliminary theory and the complex
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method. In Section 3, we will give the proof of Theorems 1
and 2. Some computer simulations will be given to illustrate
our main results in Section 4. Conclusions are presented at
the end of the paper.

2. Preliminary Theory and
the Complex Method

At first, we give some notations and definitions, and then we
introduce some lemmas and the complex method.

Let 𝑚 ∈ N fl {1, 2, 3, . . .}, 𝑟𝑗 ∈ Z, 𝑗 = 0, 1, . . . , 𝑚, 𝑟 =(𝑟0, 𝑟1, . . . , 𝑟𝑚), and
𝐾𝑟 [𝑤] (𝑧)

fl [𝑤 (𝑧)]𝑟0 [𝑤󸀠 (𝑧)]𝑟1 [𝑤󸀠󸀠 (𝑧)]𝑟2 ⋅ ⋅ ⋅ [𝑤(𝑚) (𝑧)]𝑟𝑚 , (11)

then 𝑑(𝑟) fl ∑𝑚𝑗=0 𝑟𝑗 is the degree of𝐾𝑟[𝑤]. Let the differential
polynomial be defined by

𝐹 (𝑤,𝑤󸀠, . . . , 𝑤(𝑚)) fl ∑
𝑟∈𝐽

𝑎𝑟𝐾𝑟 [𝑤] , (12)

where 𝐽 is a finite index set, and 𝑎𝑟 are constants, then
deg𝐹(𝑤,𝑤󸀠, . . . , 𝑤(𝑚)) fl max𝑟∈𝐽{𝑑(𝑟)} is the degree of 𝐹(𝑤,𝑤󸀠, . . . , 𝑤(𝑚)).

Consider the following differential equation:

𝐹 (𝑤,𝑤󸀠, . . . , 𝑤(𝑚)) = 𝑐𝑤𝑛 + 𝑑, (13)

where 𝑛 ∈ N, 𝑐 ̸= 0, 𝑑 are constants.
Set 𝑝, 𝑞 ∈ N, and meromorphic solutions 𝑤 of (13) have

at least one pole. If (13) has exactly 𝑝 distinct meromorphic
solutions, and their multiplicity of the pole at 𝑧 = 0 is 𝑞, then
(13) is said to satisfy the ⟨𝑝, 𝑞⟩ condition. It could be not easy
to show that the ⟨𝑝, 𝑞⟩ condition of (13) holds, so we need the
weak ⟨𝑝, 𝑞⟩ condition as follows.

Inserting the Laurent series

𝑤 (𝑧) = ∞∑
𝜏=−𝑞

𝛽𝜏𝑧𝜏, 𝛽−𝑞 ̸= 0, 𝑞 > 0, (14)

into (13), we can determine exactly 𝑝 different Laurent
singular parts:

−1∑
𝜏=−𝑞

𝛽𝜏𝑧𝜏; (15)

then (13) is said to satisfy the weak ⟨𝑝, 𝑞⟩ condition.
Given two complex numbers ]1, ]2, Im(]1/]2) > 0, and

let 𝐿 be the discrete subset 𝐿[2]1, 2]2] fl {] | ] = 2𝑐1]1 +2𝑐2]2, 𝑐1, 𝑐2 ∈ Z}, and 𝐿 is isomorphic to Z × Z. Let the
discriminant Δ = Δ(𝑏1, 𝑏2) fl 𝑏31 − 27𝑏22 and

ℎ𝑛 = ℎ𝑛 (𝐿) fl ∑
]∈𝐿\{0}

1
]𝑛
. (16)

Ameromorphic function℘(𝑧) fl ℘(𝑧, 𝑔2, 𝑔3)with double
periods 2]1, 2]2, which satisfies the equation

(℘󸀠 (𝑧))2 = 4℘ (𝑧)3 − 𝑔2℘ (𝑧) − 𝑔3, (17)

in which 𝑔2 = 60ℎ4, 𝑔3 = 140ℎ6, and Δ(𝑔2, 𝑔3) ̸= 0, is called
the Weierstrass elliptic function.

In 2009, Eremenko et al. [45] studied the 𝑚-order Briot-
Bouquet equation (BBEq)

𝐹 (𝑤,𝑤(𝑚)) = 𝑛∑
𝑗=0

𝐹𝑗 (𝑤) (𝑤(𝑚))𝑗 = 0, (18)

where 𝐹𝑗(𝑤) are constant coefficient polynomials,𝑚 ∈ N. For
the𝑚-order BBEq, we have the following lemma.

Lemma 3 (see [37, 40, 46]). Let𝑚, 𝑛, 𝑝, 𝑠 ∈ N, deg𝐹(𝑤,𝑤(𝑚))< 𝑛, and a𝑚-order BBEq

𝐹 (𝑤,𝑤(𝑚)) = 𝑐𝑤𝑛 + 𝑑 (19)

satisfies the weak ⟨𝑝, 𝑞⟩ condition; then the meromorphic
solutions 𝑤 belong to the class 𝑊. Suppose for some values
of parameters such solution 𝑤 exists; then other meromorphic
solutions form a one-parametric family (𝑧 − 𝑧0), 𝑧0 ∈ C.
Furthermore, each elliptic solution with pole at 𝑧 = 0 can be
written as

𝑤 (𝑧) = 𝑠−1∑
𝑖=1

𝑞∑
𝑗=2

(−1)𝑗 𝛽−𝑖𝑗(𝑗 − 1)! 𝑑𝑗−2𝑑𝑧𝑗−2 (14 [℘
󸀠 (𝑧) + 𝐶𝑖℘ (𝑧) − 𝐷𝑖 ]

2

− ℘ (𝑧)) + 𝑠−1∑
𝑖=1

𝛽−𝑖12 ℘󸀠 (𝑧) + 𝐶𝑖℘ (𝑧) − 𝐷𝑖
+ 𝑞∑
𝑗=2

(−1)𝑗 𝛽−𝑠𝑗(𝑗 − 1)! 𝑑𝑗−2𝑑𝑧𝑗−2℘ (𝑧) + 𝛽0,

(20)

where 𝛽−𝑖𝑗 are determined by (14), ∑𝑠𝑖=1 𝛽−𝑖1 = 0, and 𝐶2𝑖 =4𝐷3𝑖 − 𝑔2𝐷𝑖 − 𝑔3.
Each rational function solution 𝑤 fl 𝑅(𝑧) is expressed as

𝑅 (𝑧) = 𝑠∑
𝑖=1

𝑞∑
𝑗=1

𝛽𝑖𝑗
(𝑧 − 𝑧𝑖)𝑗 + 𝛽0, (21)

which has 𝑠(≤ 𝑝) distinct poles of multiplicity 𝑞.
Each simply periodic solution 𝑤 fl 𝑅(𝜂) is a rational

function of 𝜂 = 𝑒𝜇𝑧 (𝜇 ∈ C) and is expressed as
𝑅 (𝜂) = 𝑠∑

𝑖=1

𝑞∑
𝑗=1

𝛽𝑖𝑗
(𝜂 − 𝜂𝑖)𝑗 + 𝛽0, (22)

which has 𝑠(≤ 𝑝) distinct poles of multiplicity 𝑞.
Lemma 4 (see [46, 47]). Weierstrass elliptic functions ℘(𝑧)
have an addition formula as below:

℘ (𝑧 − 𝑧0) = −℘ (𝑧0) − ℘ (𝑧)
+ 14 [

℘󸀠 (𝑧) + ℘󸀠 (𝑧0)℘ (𝑧) − ℘ (𝑧0) ]
2 . (23)
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When 𝑔2 = 𝑔3 = 0, Weierstrass elliptic functions can be
degenerated to rational functions according to

℘ (𝑧, 0, 0) = 1𝑧2 . (24)

When Δ(𝑔2, 𝑔3) = 0, it can also be degenerated to simple
periodic functions according to

℘ (𝑧, 3𝑑2, −𝑑3) = 2𝑑 − 3𝑑2 coth2√3𝑑2 𝑧. (25)

By the above definitions and lemmas, we now present the
complex method as below for the convenience of readers.

Step 1. Substitute the transformation 𝑇 : 𝑢(𝑥, 𝑡) → 𝑤(𝑧)
defined by (𝑥, 𝑡) → 𝑧 into a given partial differential equation
(PDE) to yield a nonlinear ordinary differential equation
(ODE).

Step 2. Substitute (14) into theODE to determinewhether the
weak ⟨𝑝, 𝑞⟩ condition holds.

Step 3. Find out meromorphic solutions 𝑤(𝑧) of the ODE
with a pole at 𝑧 = 0, in whichwe have𝑚−1 integral constants.
Step 4. Obtain meromorphic solutions𝑤(𝑧 − 𝑧0) by Lemmas
3 and 4.

Step 5. Substituting the inverse transformation 𝑇−1 into the
meromorphic solutions, we get the exact solutions for the
original PDE.

3. Proof of Main Results

Proof of Theorem 1. Substituting (14) into (4) we have 𝑝 = 2,𝑞 = 1, 𝛽−1 = ±√6/𝑎2, 𝛽0 = 𝑙𝑏/2𝑎2, 𝛽1 = −√6((4𝑎2𝑎5 −𝑏2)𝑙2 + 4𝜆𝑎1𝑎2)/24𝑎3/22 , 𝛽2 = −((6𝑏𝑎2𝑎5 − 𝑏3)𝑙3 + 6𝑙𝑏𝜆𝑎1𝑎2 +12𝛿𝑎22)/48𝑎22 and 𝛽3 is an arbitrary constant.
Therefore, (4) is a second-order BBEq and satisfies

weak ⟨2, 1⟩ condition. Hence, by Lemma 3, we obtain that
meromorphic solutions of (4) belong to 𝑊. We will show
meromorphic solutions of (4) in the following.

By (21), we infer that the indeterminate rational solutions
of (4) are

𝑅1 (𝑧) = 𝛽11𝑧 + 𝛽12𝑧 − 𝑧1 + 𝛽10, (26)

with pole at 𝑧 = 0.
Substituting 𝑅1(𝑧) into (4), we have

𝑅1,1 (𝑧) = ±√ 6𝑎2
1𝑧 + 𝑙𝑏2𝑎2 , (27)

where 𝜆 = −𝑙2(4𝑎2𝑎5 − 𝑏2)/4𝑎1𝑎2 and 𝛿 = −𝑙3𝑏3/24𝑎22 .
𝑅1,2 (𝑧) = ±√ 6𝑎2 (

1𝑧 − 1𝑧 − 𝑧1 −
1𝑧1) +

𝑙𝑏2𝑎2 , (28)

where 𝜆 = −((4𝑎2𝑎5 − 𝑏2)𝑙2𝑧21 + 24𝑎2)/4𝑎1𝑎2𝑧21 and 𝛿 =−(𝑙3𝑏3𝑧31 − 72𝑙𝑏𝑎2𝑧1 − 96√6𝑎3/22 )/24𝑎22𝑧31 .
So the rational solutions of (4) are

𝑤𝑟,1 (𝑧) = ±√ 6𝑎2
1𝑧 − 𝑧0 +

𝑙𝑏2𝑎2 ,

𝑤𝑟,2 (𝑧) = ±√ 6𝑎2 (
1𝑧 − 𝑧0 −

1𝑧 − 𝑧0 − 𝑧1 −
1𝑧1)

+ 𝑙𝑏2𝑎2 ,

(29)

where 𝑧0 ∈ C, 𝑧1 ̸= 0. 𝜆 = −𝑙2(4𝑎2𝑎5 − 𝑏2)/4𝑎1𝑎2, 𝛿 =−𝑙3𝑏3/24𝑎22 in the former case, or 𝜆 = −((4𝑎2𝑎5 − 𝑏2)𝑙2𝑧21 +24𝑎2)/4𝑎1𝑎2𝑧21 , 𝛿 = −(𝑙3𝑏3𝑧31 − 72𝑙𝑏𝑎2𝑧1 − 96√6𝑎3/22 )/24𝑎22𝑧31
in the latter case.

To obtain simply periodic solutions, let 𝜂 = 𝑒𝜇𝑧, and
substitute 𝑤 = 𝑅(𝜂) into Eq. (4), then
𝜇2 (𝜂𝑅󸀠 + 𝜂2𝑅󸀠󸀠) − (𝑎1𝜆 + 𝑎5𝑙2) 𝜂 + 𝑙𝑏2 𝜂2 − 𝑎23 𝜂3 − 𝛿

= 0.
(30)

Substituting

𝑅2 (𝑧) = 𝛽21𝜂 − 1 + 𝛽22(𝜂 − 𝜂1) + 𝛽20, (31)

into (30), we obtain that

𝑅2,1 (𝑧) = ±√ 6𝑎2 𝜇(
1𝜂 − 1 + 12) + 𝑙𝑏2𝑎2 ,

𝑅2,2 (𝑧) = ±√ 6𝑎2 𝜇(
1𝜂 − 1 − 𝜂1𝜂 − 𝜂1 −

𝜂1 + 12 (𝜂1 − 1))
+ 𝑙𝑏2𝑎2 ,

(32)

where 𝜆 = −((4𝑎2𝑎5 − 𝑏2)𝑙2 + 6𝑎2𝜇2)/4𝑎1𝑎2, 𝛿 = −(𝑙3𝑏3 +12√6𝜇3𝑎3/22 − 18𝑙𝑏𝑎2𝜇2)/24𝑎22 in the former case, or 𝜆 =3𝜇2(𝜂1 + 1)2/2(𝜂1 − 1)2 − 𝑙2𝑏2/4𝑎2, 𝛿 = 3(𝜂1 + 1)2((√2𝑎2/3𝜇 +𝑙𝑏/2)𝜂1 + √2𝑎2/3𝜇 − 𝑙𝑏/2)𝜇2/2𝑎2(𝜂1 − 1)3 − 𝑙3𝑏3/24𝑎32 in the
latter case.

Inserting 𝜂 = 𝑒𝜇𝑧 into (32), we can get simply periodic
solutions to (4) with pole at 𝑧 = 0
𝑤𝑠0,1 (𝑧) = ±√ 32𝑎2 𝜇 coth

𝜇2 𝑧 + 𝑙𝑏2𝑎2 ,
𝑤𝑠0,2 (𝑧)
= ±√ 32𝑎2 𝜇 (coth

𝜇2 𝑧 − coth
𝜇2 (𝑧 − 𝑧1) − coth

𝜇2 𝑧1)
+ 𝑙𝑏2𝑎2 ,

(33)
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where 𝜆 = −((4𝑎2𝑎5 − 𝑏2)𝑙2 + 6𝑎2𝜇2)/4𝑎1𝑎2, 𝛿 = −(𝑙3𝑏3 +12√6𝜇3𝑎3/22 − 18𝑙𝑏𝑎2𝜇2)/24𝑎22 in the former case, or 𝜆 =(3𝜇2/2)coth2(𝜇/2)𝑧1 − 𝑙2𝑏2/4𝑎2, 𝛿 = √3/2𝑎2𝜇2coth2(𝜇/2)𝑧1(𝜇 coth(𝜇/2)𝑧1 + √3/2𝑎2(𝑙𝑏/2)) − 𝑙3𝑏3/24𝑎22 in the latter
case.

So simply periodic solutions of (4) are

𝑤𝑠,1 (𝑧) = ±√ 32𝑎2 𝜇 coth
𝜇2 (𝑧 − 𝑧0) + 𝑙𝑏2𝑎2 ,

𝑤𝑠,2 (𝑧) = ±√ 32𝑎2 𝜇(coth
𝜇2 (𝑧 − 𝑧0)

− coth
𝜇2 (𝑧 − 𝑧0 − 𝑧1) − coth

𝜇2 𝑧1) + 𝑙𝑏2𝑎2 ,

(34)

where 𝑧0 ∈ C, 𝑧1 ̸= 0. 𝜆 = −((4𝑎2𝑎5 − 𝑏2)𝑙2 + 6𝑎2𝜇2)/4𝑎1𝑎2, 𝛿 = −(𝑙3𝑏3 + 12√6𝜇3𝑎3/22 − 18𝑙𝑏𝑎2𝜇2)/24𝑎22 in
the former case, or 𝜆 = (3𝜇2/2)coth2(𝜇/2)𝑧1 − 𝑙2𝑏2/4𝑎2,𝛿 = √3/2𝑎2𝜇2coth2(𝜇/2)𝑧1(𝜇 coth(𝜇/2)𝑧1 + √3/2𝑎2(𝑙𝑏/2)) −𝑙3𝑏3/24𝑎22 in the latter case.

From (20), we have the indeterminate relations to elliptic
solutions of (4) with pole at 𝑧 = 0

𝑤𝑑1 (𝑧) = 𝛽−12 ℘󸀠 (𝑧) + 𝐶1℘ (𝑧) − 𝐷1 + 𝛽30, (35)

where 𝐶21 = 4𝐷31 − 𝑔2𝐷1 − 𝑔3. Making use of Lemma 4 to𝑤𝑑1(𝑧), and considering the results obtained above, we infer
that 𝛽30 = 𝑙𝑏/2𝑎2, 𝑔3 = 0, 𝐶1 = 𝐷1 = 0. So we obtain

𝑤𝑑1 (𝑧) = ±√ 32𝑎2
℘󸀠 (𝑧)℘ (𝑧) + 𝑙𝑏2𝑎2 , (36)

where 𝑔3 = 0.
Thus, the elliptic function solutions of (4) are

𝑤𝑑 (𝑧) = ±√ 32𝑎2
℘󸀠 (𝑧 − 𝑧0, 𝑔2, 0)℘ (𝑧 − 𝑧0, 𝑔2, 0) +

𝑙𝑏2𝑎2 , (37)

where 𝑧0 ∈ C, 𝑔3 = 0, 𝑔2 is arbitrary. Applying the addition
formula, we can rewrite it as

𝑤𝑑 (𝑧) = ±√ 32𝑎2
(−℘ + 𝐸) (4℘𝐸2 + 4℘2𝐸 + 2℘󸀠𝐹 − ℘𝑔2 − 𝐸𝑔2)((12𝐸2 − 𝑔2) ℘ + 4𝐸3 − 3𝐸𝑔2) ℘󸀠 + (4℘3 + 12𝐸℘2 − 3𝑔2℘ − 𝐸𝑔2) 𝐹 + 𝑙𝑏2𝑎2 , (38)

where 𝑔3 = 0, 𝐹2 = 4𝐸3 − 𝑔2𝐸, 𝐸 and 𝑔2 are arbitrary.
Proof of Theorem 2. ByTheorem 1, we can obtain the rational
function solutions of (3) which are

V𝑟,1 (𝑧) = ∫𝑤𝑟,1 (𝑧) 𝑑𝑧 = ∫(±√ 6𝑎2
1𝑧 − 𝑧0

+ 𝑙𝑏2𝑎2)𝑑𝑧 = ±√
6𝑎2 ln (𝑧 − 𝑧0) +

𝑙𝑏2𝑎2 (𝑧
− 𝑧0) + 𝑐1,

V𝑟,2 (𝑧) = ∫𝑤𝑟,2 (𝑧) 𝑑𝑧

= ∫(±√ 6𝑎2 (
1𝑧 − 𝑧0 −

1𝑧 − 𝑧0 − 𝑧1 −
1𝑧1)

+ 𝑙𝑏2𝑎2)𝑑𝑧 = ±√
6𝑎2 ln

𝑧 − 𝑧0𝑧 − 𝑧1 − 𝑧0 + (
𝑙𝑏2𝑎2

∓ √ 6𝑎2
1𝑧1)(𝑧 − 𝑧0) + 𝑐2,

(39)

where 𝑧0 ∈ C, 𝑧1 ̸= 0, 𝑐1 and 𝑐2 are integral constants.

The simply periodic solutions of (3) are

V𝑠,1 (𝑧) = ∫𝑤𝑠,1 (𝑧) 𝑑𝑧 = ∫(±√ 32𝑎2 𝜇 coth
𝜇2 (𝑧 − 𝑧0)

+ 𝑙𝑏2𝑎2)𝑑𝑧 = ∓√
32𝑎2 𝜇 ln(coth

2 𝜇2 (𝑧 − 𝑧0)
− 1) + 𝑙𝑏2𝑎2 (𝑧 − 𝑧0) + 𝑐3,

V𝑠,2 (𝑧) = ∫𝑤𝑠,2 (𝑧) 𝑑𝑧
= ∫(±√ 32𝑎2 𝜇(coth

𝜇2 (𝑧 − 𝑧0)

− coth
𝜇2 (𝑧 − 𝑧0 − 𝑧1) − coth

𝜇2 𝑧1))𝑑𝑧

= ∓√ 32𝑎2 𝜇 ln(coth
2 𝜇2 (𝑧 − 𝑧0) − 1) ± √ 32𝑎2 𝜇

⋅ ln(coth2 𝜇2 (𝑧 − 𝑧0 − 𝑧1) − 1) + ( 𝑙𝑏2𝑎2 ∓ √
32𝑎2 𝜇

⋅ coth 𝜇2 𝑧1)(𝑧 − 𝑧0) + 𝑐4,

(40)

where 𝑧0 ∈ C, 𝑧1 ̸= 0, 𝑐3 and 𝑐4 are integral constants.
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Figure 1: The solution of the (2 + 1)-dimensional Jaulent-Miodek equation corresponding to 𝑤𝑟,2(𝑧), (a) 𝑡 = −5, (b) 𝑡 = 0, and (c) 𝑡 = 5.
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Figure 2: The solution of the (2 + 1)-dimensional Jaulent-Miodek equation corresponding to 𝑤𝑠,2(𝑧), (a) 𝑡 = −5, (b) 𝑡 = 0, and (c) 𝑡 = 5.

The elliptic function solutions of (3) are

V𝑑,2 (𝑧) = ∫𝑤𝑑 (𝑧) 𝑑𝑧
= ∫(±√ 32𝑎2

℘󸀠 (𝑧 − 𝑧0)℘ (𝑧 − 𝑧0) +
𝑙𝑏2𝑎2)𝑑𝑧

= ±√ 32𝑎2 ln℘ (𝑧 − 𝑧0) +
𝑙𝑏2𝑎2 (𝑧 − 𝑧0) + 𝑐5

= ±√ 32𝑎2 ln(−℘ (𝑧) +
14 (℘
󸀠 (𝑧) + 𝐺℘ (𝑧) − 𝐻)2 − 𝐻)

+ 𝑙𝑏2𝑎2 (𝑧 − 𝑧0) + 𝑐5,

(41)

where 𝑐5 is the integral constant,𝐺2 = 4𝐻3−𝑔2𝐻,𝑔3 = 0.
4. Computer Simulations

In this section, we illustrate our main results by some
computer simulations. We carry out further analysis to the
properties of the new solutions as in the following figures.

(1) By employing the complex method, we are able to
obtain the rational solutions 𝑤𝑟,1(𝑧) and 𝑤𝑟,2(𝑧) of (4).
Figure 1 shows shape of solutions 𝑤𝑟,2(𝑧) for 𝑎2 = 6, 𝑏 = −24,𝑙 = 1, 𝜆 = −1, 𝑧0 = 0, and 𝑧1 = 1 within the interval−5 ≤ 𝑥, 𝑦 ≤ 5. Note that they have one generation pole which
are showed by Figure 1.

(2) By applying the complex method, we achieve the
simply periodic solutions 𝑤𝑠,1(𝑧) and 𝑤𝑠,2(𝑧) of (4). The
solutions 𝑤𝑠,1(𝑧) and 𝑤𝑠,2(𝑧) come from the hyperbolic
function. Figure 2 shows the shape of solutions 𝑤𝑠,1(𝑧) for𝑎2 = 6, 𝑏 = −24, 𝑙 = 1, 𝜆 = −1, 𝑧0 = 0, and 𝜇 = 1 within
the interval −2𝜋 ≤ 𝑥, 𝑦 ≤ 2𝜋.

(3) By using the complex method, we are able to get the
rational solutions V𝑟,1(𝑧) and V𝑟,2(𝑧) of (3). Figure 3 shows the
shape of solutions V𝑟,2(𝑧) for 𝑎2 = 6, 𝑏 = 6, 𝑙 = 1, 𝜆 = −1,𝑧0 = 0, 𝑧1 = 6, and 𝑐2 = 0 within the interval −5 ≤ 𝑥, 𝑦 ≤ 5.
Note that they have one generation pole which are showed by
Figure 3.

(4) By employing the complex method, we obtain the
simply periodic solutions V𝑠,1(𝑧) and V𝑠,2(𝑧) of (3). The
solutions V𝑠,1(𝑧) and V𝑠,2(𝑧) are in terms of the hyperbolic
function solution. Figure 4 shows the shape of solutions
V𝑠,1(𝑧) for 𝑎2 = 6, 𝑏 = 6, 𝑙 = 1, 𝜆 = −1, 𝑧0 = 0, 𝜇 = 1,
and 𝑐3 = 0 within the interval −2𝜋 ≤ 𝑥, 𝑦 ≤ 2𝜋. It may be
observed from Figure 4 that when 𝑡 increases, there would
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Figure 3: The solution of the (2 + 1)-dimensional Jaulent-Miodek equation corresponding to V𝑟,2(𝑧), (a) 𝑡 = −5, (b) 𝑡 = 0, and (c) 𝑡 = 5.

8

6

4

2

0

−2

−4

−2

2 −2−
−0 0




x

v

y

(a)

0

−10

−20

−30

−2

2 −2−
−0 0




x

v

y

(b)

4
3
2
1

−1
−2

0

−3
−4
−5

−2

2
−2−−0

0



x

v

y

(c)

Figure 4: The solution of the (2 + 1)-dimensional Jaulent-Miodek equation corresponding to V𝑠,1(𝑧), (a) 𝑡 = −5, (b) 𝑡 = 0, and (c) 𝑡 = 5.

be a delay for the appearance of the peak within the natural
topology of traveling wave solution.

5. Conclusions

In summary, we have utilized the complex method to con-
struct exact solutions of the nonlinear evolution equation.
We first show that meromorphic solutions of the (2 + 1)-
dimensional Jaulent-Miodek equation belong to the class𝑊,
and then we obtain the exact traveling wave solutions for this
equation. To our knowledge, the solutions in this paper have
not been reported in former literature. The simply periodic
solutions 𝑤𝑠,2(𝑧), V𝑠,2(𝑧) and the rational solutions 𝑤𝑟,2(𝑧),
V𝑟,2(𝑧) are not only new but also not degenerated successively
by the elliptic function solutions. We expand the results in
[32, 33].

Based on the previousworks [32, 33], the complexmethod
allows us to confirm that meromorphic solutions of the
differential equation belong to the class𝑊 easily. By the inde-
terminate forms of the solutions, we can find meromorphic
solutions 𝑤(𝑧) for the differential equation with a pole at𝑧 = 0; then we are able to obtain all meromorphic solutions𝑤(𝑧−𝑧0), 𝑧0 ∈ C for the differential equationwith an arbitrary
pole. The results demonstrate that the applied method is
direct and efficientmethod, which allows us to do tedious and

complicated algebraic calculation. We can apply the idea of
this study to other nonlinear evolution equations.
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