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We consider the motion of a spot under the influence of chemotaxis. We propose a two-component reaction diffusion system with
a global coupling term and a Keller-Segel type chemotaxis term. For the system, we derive the equation of motion of the spot and
the time evolution equation of the tensors. We show the existence of an upper limit for the velocity and a critical intensity for the
chemotaxis, over which there is no circular motion. The chemotaxis suppresses the range of velocity for the circular motion. This
braking effect on velocity originates from the refractory period behind the rear interface of the spot and the negative chemotactic
velocity. The physical interpretation of the results and its plausibility are discussed.

1. Introduction

The behaviors of artificial and biological microswimmers
such as oil droplets, bimetallic nanorods, catalytic Janus
colloids, liposomes, flagellated bacteria, and Volvox have
attracted widespread attention [1]. Under certain circum-
stances, some of these microswimmers are self-propelled
particles, the mobility mechanism of which has been inten-
sively studied [2, 3]. The motion of oil droplets, espe-
cially, has been studied in well-controlled experimental
facilities with sufficient reproducibility. Although symmetric
droplets cannot move in the absence of external force, the
Marangoni effect can cause motion in the presence of an
inhomogeneous chemical substance outside the droplet or
a temperature gradient along the surface [4–6]. Numerical
simulations and theoretical results support this mechanism
and the existence of straight, circular, and complicated
motions of droplets [7, 8], and experimental results qual-
itatively agree with the numerical results [9–12]. Droplet
motion has also been the subject of a review article [13,
14].

In a two-dimensional reaction diffusion (RD) system, the
droplet is often referred to as a spot solution. In order to

systematically describe the motion of spots in an RD system,
the time evolution equation of the spot was derived and the
mechanism of elastic collision of moving spots was clarified
in a previous study [15]. This study was extended by studies
on the drift and rotation bifurcations of spot solutions in RD
systems [16, 17]. In order to describe the deformations of the
spot, tensors were introduced. The bifurcation diagram of
the spot suggested that, with increasing velocity of the spot,
rotation bifurcation occurred causing the straight motion to
become destabilized into circular motion.

In addition to the Marangoni effect, which plays an
important role in the motion of oil droplets, chemotaxis is
an important property of cell migration; it is important in
mass transfer and immunological response in biology. In
inflammatory response, the neutrophils among blood cells
have a remarkable migration potency (chemotaxis) and can
change their form by generating pseudopods toward the
antigen. In biophylaxis, several chemokines (chemoattrac-
tants) are released from the macrophages and mast cells.
Then other immunocompetent cells (neutrophils) respond
to the gradient of the chemoattractant. Consequently, the
immunocompetent cells move unidirectionally to the source
point of the antigen [18].

Hindawi
Advances in Mathematical Physics
Volume 2018, Article ID 6152961, 24 pages
https://doi.org/10.1155/2018/6152961

http://orcid.org/0000-0002-0639-5985
https://doi.org/10.1155/2018/6152961


2 Advances in Mathematical Physics

The mathematical model for chemotaxis was first pro-
posed by Keller and Segel [19], wherein the gradient of
the chemoattractant was taken into consideration for the
flow of amoeba. Neutrophil migration was considered with
a Keller-Segel type chemotaxis term in [20, 21]. In these
studies, the Cahn-Hilliard (CH) equation was employed,
and the kinematic properties and morphological changes
of the crawling cell distribution were shown. In addition
to the chemotaxis of the neutrophil, cancer cell invasion
under haptotaxis was modeled by the CH equation [22, 23].
The haptotactic response of cancer cells is described by
the gradient of the haptoattractant. However, in the above
studies, the gradients of chemoattractant and haptoattractant
are assumed to be constant; there is no feedback between the
cells and these chemical substances.

As described above, with the recent increase in impor-
tance of chemotaxis in biology, medicine, and cytoengineer-
ing [24–27], many experimental and theoretical studies have
been performed. Although there are model systems for the
cell density and concentration of chemotactic substances, no
mathematical analysis has been reported on the motion of
the cell. Inspired by these points, we first propose an RD
system including a naive Keller-Segel type chemotaxis term.
The system is autonomous, the spot secretes a chemotactic
substance, and the motion of the spot is influenced by it. For
the proposed RD system, we apply the method reported in
[16] to derive the equation of motion of the spot and time
evolution equation of the tensors. Based on these equations,
we study the bifurcation from straight motion to circular
motion as well as the upper limit of the velocity of circular
motion. In order to verify the theoretical result, we perform
numerical simulations for the tensor model. The physical
meaning and validity of the results are discussed.

2. Model Equation

We first consider the following three-component RD system
with an activator 𝑢, a chemotactic substance V, and an
inhibitor 𝑤:

𝜏𝜖𝜕𝑢𝜕𝑡 = 𝜖2∇2𝑢 − 𝜖∇ ⋅ (𝑢∇𝜒 (V))
+𝐻 (𝑢 − 𝑝 (𝑤)) − 𝑢 − V,

(1)

𝜕V𝜕𝑡 = ∇2V + 𝑢 − 𝜇V, (2)

𝑇𝜕𝑤𝜕𝑡 = 𝐷∇2𝑤 + 𝑢 + V − 𝑤 −𝑊, (3)

where 𝑝(𝑤) = 𝑝0+𝛼𝑤, 𝑝0, 𝛼, 𝜏, 𝜖, 𝜇, 𝑇,𝐷, and𝑊 are positive
constants, and 𝐻(𝑧) is a step function satisfying 𝐻 = 0 for𝑧 < 0 and𝐻 = 1 for 𝑧 > 0.Throughout this study,we consider
the system in a two-dimensional space, with ∇ = (𝜕𝑥, 𝜕𝑦) and𝜖 ≪ 1. We choose 𝜇 such that the system is monostable.
Here, we fix 𝜇 = 0.3. In the above excitable system, there
are two stationary states: a rest state and an excited state.
The rest state is (𝑢, V, 𝑤) = (0, 0, −𝑊), and the excited state
has spatially nonuniform values of 𝑢, V, and 𝑤. Between the

rest and excited states, there appear boundary layers with
thickness 𝑂(𝜖), connecting the two different states.

When the second term on the right hand side of (1) is
absent, (1)–(3) describe an RD system with one activator and
two inhibitors, which was studied in [28]. In that system,
when 𝜏 is large, the localized domain (motionless spot
solution) of an activator appears. With decreasing 𝜏, the
motionless spot is destabilized through static bifurcation or
oscillatory bifurcation; however, when 𝑇 is small and 𝐷 and𝛼 are large, these bifurcations are suppressed by𝑤. When 𝜏 is
small, the motionless spot is primarily destabilized through
translational bifurcation, causing the spot to move.

In the presence of the second term on the right hand
side of (1), the moving spot is influenced by the chemotaxis.
A system similar to that described by (1)–(3), but with
bistability, was studied in [29]. In that system, the nonlinear
term in (1) was replaced by 𝐻(𝑢 − 𝑝(𝑤)) − 𝑢, and a
front solution was obtained. Furthermore, maze patterns and
branching from a front solution were observed. The stability
analyses of the spot and front solutions were conducted by
applying the singular perturbation method [30].

The time evolution equation for 𝑢 is obtained using the
conservation equation. The diffusion term is derived from−∇ ⋅ J, where the flux J is the sum of the normal diffusion
(random motility) term Jd and the chemotaxis term Jc. That
is, J = Jd + Jc, where Jd = −𝜖2∇𝑢 and Jc = 𝜖𝑢∇𝜒(V). It should
be noted that the signs of these fluxes are different. The sign
of Jc suggests that the chemotaxis term provides a negative
diffusion effect, which suppresses the expansion of 𝑢. The
second term on the right hand side of (1) is the Keller-Segel
type chemotaxis term; we express the chemotactic sensitivity
function 𝜒 as 𝜒(V) = 𝑘𝑐𝜒0(V), where 𝜒0(V) = 𝑓0𝜃V2/(V2 + 𝜃2)
with 𝜃 = 1.0. In order to satisfy the condition max |𝑑𝜒0/𝑑V| =1, we choose 𝑓0 = 8√3/9. We call 𝑘𝑐 the intensity of
chemotaxis [31].

In (3),𝑇 and𝐷 represent the relaxation time and diffusion
constant of 𝑤, respectively. Let us consider a situation in
which 𝑤 plays the role of feedback to suppress the static
bifurcation andoscillatory bifurcation. For the rapid feedback
mechanism,𝑇 and𝐷must be small and large, respectively. In
the limits 𝑇 → 0 and𝐷 → ∞, 𝑤 becomes a time-dependent
but spatially independent variable, which is denoted by⟨𝑤(𝑡)⟩:

⟨𝑤 (𝑡)⟩ = 1Ω0

∫𝑑r𝑤 = 1Ω0

∫𝑑r (𝑢 + V) − 𝑊, (4)

whereΩ0 is the area of the entire system. Replacing𝑤 in 𝑝(𝑤)
by ⟨𝑤(𝑡)⟩, 𝑝(𝑤) becomes a global coupling term. In the case
where𝑇 is very small and𝐷 is very large, we reduce the three-
component RD system to the following two-component RD
system with a global coupling term:

𝜏𝜖𝜕𝑢𝜕𝑡 = 𝜖2∇2𝑢 − 𝜖∇ ⋅ (𝑢∇𝜒 (V)) + 𝑓 {𝑢, V} − V, (5)

𝜕V𝜕𝑡 = ∇2V + 𝑢 − 𝜇V, (6)
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where

𝑓 {𝑢, V} = −𝑢 + 𝐻 (𝑢 − 𝑝 {𝑢, V}) . (7)

The functional𝑝{𝑢, V} represents a global coupling term given
by

𝑝 {𝑢, V} = 𝑝0 + 𝛼 [∫𝑑r (𝑢 + V) − 𝑊] , (8)

where the integral is over the entire domain, and 𝛼 and 𝑊
are rescaled to absorb Ω0: 𝛼󸀠 = 𝛼/Ω0 and𝑊󸀠 = 𝑊Ω0, and
the primes are dropped. 𝛼 corresponds to the intensity of
the global coupling, and the value of 𝑝0 is chosen as 𝑝0 =0.275. Hereinafter, we consider the above two-component RD
system to be described by (5) and (6).

In the absence of chemotaxis, (5) and (6) describe the
same system proposed by Krischer and Mikhailov [32]. This
system had an activator and an inhibitor, and, for large 𝜏,
the motionless spot (localized particle-like structure) in two
dimensions was stable. With decreasing 𝜏 under a large 𝛼, it
was shown that the system had a stable moving spot. In order
to understand intuitively the bifurcation from the motionless
spot to the moving spot, we consider the limit 𝜖 → 0. In the
limit 𝜖 → 0, the boundary layer of 𝑢 becomes an interface,
as shown in Figure 1. The location of the interface is defined
by the condition 𝑢(r, 𝑡) = 𝑝. In this limit, 𝑢 and V satisfy the
relation (𝑢 + V) = 1 (inside the domain) and 0 (outside the
domain), which is obtained from (5). In the limits of 𝛼 → ∞
and 𝜖 → 0, the area of the spot is conserved; using (8), we
obtain

∫𝑑r (𝑢 + V) = 𝑊. (9)

This restriction prohibits the expansion and oscillation of
the spot; the translational bifurcation firstly occurs with
decreasing 𝜏. Even for finite values of a large 𝛼 and small𝜖, the area of the spot is approximately conserved by the
feedbackmechanism.This supports the existence of amoving
spot for small 𝜏 with large 𝛼. In contrast, for small 𝛼, the
static bifurcation or oscillatory bifurcation firstly occurs with
decreasing 𝜏, and the motionless spot is destabilized to form
an expanding wave or is disintegrated by unstable oscillation.

Although the bifurcation from a motionless spot to a
straight moving spot and the collision of two moving spots
were studied in [32], other types of moving spot were not
studied. Recently, the bifurcation of the spot from straight
motion to circular motion was theoretically analyzed for the
system described by (5) and (6) without the chemotaxis term
[16]. The result suggested that there was a critical value 𝜏𝑐 for
the bifurcation of stationary straight motion. Although the
straight motion was stable for 𝜏 > 𝜏𝑐, it was destabilized by
rotation (straight-circular-motion) bifurcation for 𝜏 ≤ 𝜏𝑐.
In other words, the straight motion was destabilized into
circular motion with increasing velocity.

In this study, we assume that the localized domain (spot)
of an activator exists under global feedback in the system
described by (5) and (6). In the system, the chemotactic
substance is secreted from inside the spot, and the motion of
the spot is influenced by the chemotaxis. In order to study the
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Figure 1: Boundary layer and interface.The solid and dotted curves
correspond to 𝑢(r, 𝑡) and 𝑢0(r, 𝑡) = lim𝜖→0𝑢(r, 𝑡) along a radial
direction, respectively, that is, 𝑢(|r|, 𝑡) and 𝑢0(|r|, 𝑡). In the finite𝜖, 𝑢(|r|, 𝑡) has a boundary layer around |r| ∼ 𝑅0 with the thickness of𝜖, where𝑅0 is determined by the condition 𝑢(|r| = 𝑅0) = 𝑝. 𝑢0(|r|, 𝑡)
does not have a boundary layer but has a sharp interface at |r| = 𝑅0.

influence of chemotaxis on the motion of a spot, we apply the
technique reported in [16] to the system described by (5) and
(6). For this purpose, we first derive the radially symmetric
equilibrium solution of (5) and (6) in the limit 𝜖 → 0. In this
limit, (6) becomes

𝜕V𝜕𝑡 = ∇2V + 𝐻 (𝑢 − 𝑝) − 𝛽V, (10)

where 𝛽 = 1 + 𝜇. Setting 𝜕V/𝜕𝑡 = 0 in (10), (10) becomes

( 𝑑2𝑑𝑟2 + 1𝑟 𝑑𝑑𝑟) V − 𝛽V + 𝐻 (𝑅0 − 𝑟) = 0, (11)

where 𝑟 = |r| and 𝑅0 is the equilibrium radius of the
symmetric spot. We impose the boundary conditions on V(𝑟)
as

𝑑V (0)𝑑𝑟 = 0,
V (𝑅0+) = V (𝑅0−) ,
𝑑V (𝑅0+)𝑑𝑟 = 𝑑V (𝑅0−)𝑑𝑟 ,

V (∞) = 0.

(12)

The radially symmetric equilibrium solution of (10) in two
dimensions is given by

V (𝑟)

= {{{{{{{

1𝛽 − 𝑅0√𝛽𝐾1 (√𝛽𝑅0) 𝐼0 (√𝛽𝑟) , 0 < 𝑟 < 𝑅0,
𝑅0√𝛽𝐼1 (√𝛽𝑅0)𝐾0 (√𝛽𝑟) , 𝑅0 < 𝑟 < ∞,

(13)

where 𝐼𝑛 and𝐾𝑛 are the modified Bessel functions of the first
and second kinds of order 𝑛, respectively. The corresponding
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solution of 𝑢(𝑟) is given by 𝑢(𝑟) = 𝐻(𝑅0 −𝑟)−V(𝑟). The above
equilibrium solution is employed to study the motion of the
spot in the following sections.

3. Equation of Motion of the Interface

As 𝜖 is small, the width of the boundary layer is small, and,
therefore, the value of 𝑢 changes sharply while that of V
changes smoothly around the boundary layer.The velocity of
the flat interface is a function of the value of V on the interface.
In order to consider the dynamics of the spot in the system,
we derive the equation of motion of the interface. The time
evolution equation of the interface is described [16, 30, 33] by

𝜏𝑉 = 𝜏𝐶 (ℎ) + 𝜖𝜅 + 𝐿, (14)

where𝐶(ℎ) is the velocity of a flat interface; 𝜅 is the curvature
of the interface, the sign of which is chosen such that it is
positive when the center of the curvature is outside of the
excited domain; and ℎ is the value of V on the interface. 𝑉 is
the normal component of the velocity, and 𝐿 is the Lagrange
multiplier for the constraint of domain area conservation (9).
For the moving spot, this condition corresponds to

∫𝑑𝜔𝑉 (𝜔) = 0, (15)

where 𝑑𝜔 is the infinitesimal length of the interface and the
integral is carried over the entire interface.

We first consider the velocity of the interface in one
dimension in (5) and (6). With the detailed derivations given
in Appendix A, the velocity 𝜏𝐶(ℎ) is obtained as

𝜏𝐶 (ℎ) = 2 (1/2 − ℎ − 𝑝)
[(ℎ + 𝑝) (1 − ℎ − 𝑝)]1/2
+ (𝑑𝜒𝑑V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑖 (
𝑑V𝑑𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑖 ,
(16)

where 𝑝 is a global coupling term (8). 𝜏𝐶(ℎ) consists of two
components: the velocity of the traveling front solution in one
dimension and the chemotactic velocity.

In two dimensions, the velocity of a flat interface directed
along n is given by

𝜏𝐶 (ℎ) = 2 (1/2 − ℎ − 𝑝)
[(ℎ + 𝑝) (1 − ℎ − 𝑝)]1/2 + 𝑘𝑐𝜒

󸀠
0 (V) ( 𝑑V𝑑n)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑖
≡ 𝑃 (ℎ) + 𝑄 (ℎ) (n ⋅ ∇) V|𝑖 ,

(17)

where 𝜒󸀠0(V) = 𝑑𝜒0(V)/𝑑V and 𝐴|𝑖 represents the value of
function 𝐴 evaluated on the interface. n is a unit normal
vector on the interface, and (𝑑V/𝑑n) is a normal derivative.

When the motion of the interface of the spot is slow com-
pared with the relaxation rate of the chemotactic substance,
the left hand side of (10), (𝜕V/𝜕𝑡), is small. In this case, we
deal with the time derivative of V in (10) as a perturbation.

The asymptotic solution of (10) is written by perturbation
expansion using the Green function 𝐺 as

V (r, t) = 𝐺𝐻 − 𝐺𝐺𝜕𝐻𝜕𝑡 + 𝐺𝐺𝐺𝜕
2𝐻𝜕𝑡2 − 𝐺𝐺𝐺𝐺𝜕

3𝐻𝜕𝑡3
+ ⋅ ⋅ ⋅ ,

(18)

where 𝐺 is Green’s function satisfying the equation

(∇2 − 𝛽)𝐺 (r − r󸀠) = −𝛿 (r − r󸀠) . (19)

In (18), 𝐺𝐻 represents the integral

𝐺𝐻 = ∫𝑑r1𝐺 (r − r1)𝐻 (r1, 𝑡) ,
𝐺𝐺𝜕𝐻𝜕𝑡 = ∫𝑑r1𝑑r2𝐺 (r − r1) 𝐺 (r1 − r2)

𝜕𝐻 (r2, 𝑡)𝜕𝑡 ,
⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ,

(20)

for brevity. In this study, we consider the situation in which
themotionless spot is destabilized supercritically and the spot
moves with an arbitrarily small velocity. Then, we can safely
apply the perturbative expansion of V in terms of 𝐺 as in (18).

4. Deformed Spot Dynamics

In this section, we derive the equation of motion of the spot.
In order to describe the deformations of the spot, tensors
are introduced. The tensors depend on time, and the time
evolution equation of the tensors are derived following [16].

4.1. Description of Deformed Spot. We firstly describe the
position and velocity of a deformed spot. The motion of the
spot consists of two components: the motion of the center of
gravity and themotion of the interface relative to the center of
gravity.The center of gravity is denoted by 𝜌, and the velocity
of the center of gravity is given by

𝑑𝜌𝑑𝑡 = 1Ω ∫𝑑𝜔𝑉 (𝜔)R (𝜔) ≡ k, (21)

where Ω is the area of the spot and R(𝜔) is a position vector
measured from the center of gravity.We consider the case that
R(𝜔) is a single valued function of 𝜙𝑟, which is given as

R (𝜔) = 𝑅 (𝜙𝑟) e𝑟, (22)

where e𝑟 is a radial unit vector and 𝑅(𝜙𝑟) is the distance
between the center of gravity and a point on the interface,
which is directed to an angle 𝜙𝑟 with respect to the 𝑥 axis.
Using the definition of R(𝜔), 𝑑𝜔 is given by

𝑑𝜔 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑R𝑑𝜙𝑟
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝜙𝑟 = √𝑅2 + 𝑅󸀠2𝑑𝜙𝑟, (23)

where 𝑅󸀠 = 𝑑𝑅(𝜙𝑟)/𝑑𝜙𝑟. For the deformed spot, the radius is
given by

𝑅 (𝜙𝑟) = 𝑅0 + 𝛿𝑅 (𝜙𝑟, 𝑡) (24)
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with

𝛿𝑅 (𝜙𝑟, 𝑡) = ∞∑
𝑛=−∞

𝑐𝑛 (𝑡) 𝑒i𝑛𝜙𝑟 , (25)

where i = √−1, 𝑅0 is the equilibrium radius of the symmetric
spot, and 𝛿𝑅 corresponds to the deviation. In the expansion
of 𝛿𝑅, 𝑐±𝑛 corresponds to a (2𝜋/𝑛)-periodic deformation.
According to the area conservation equation (9), 𝑐0 = 0.
In addition, we exclude the terms of 𝑛 = ±1 because the
translational motion of the spot is incorporated in 𝜌. Thus,
we set 𝑐±1 = 0. Using (24), the curvature 𝜅 and the normal
component of the velocity 𝑉 are given up to the first order of
the deviations as

𝜅 (𝜙𝑟, 𝑡) = − 1𝑅0 −
1𝑅20

∞∑
𝑛=−∞

(𝑛2 − 1) 𝑐𝑛 (𝑡) 𝑒i𝑛𝜙𝑟 , (26)

𝑉 (𝜙𝑟, 𝑡) = k ⋅ n + ∞∑
𝑛=−∞

̇𝑐𝑛 (𝑡) 𝑒i𝑛𝜙𝑟 , (27)

respectively, where the overdot denotes the time derivative.
For a general function𝐴(r, 𝑡), the Fourier transformation

and its reverse transformation in two dimensions are defined
as

𝐴q (𝑡) = ∫𝑑r𝐴 (r, 𝑡) 𝑒−iq⋅r, (28)

𝐴 (r, 𝑡) = 1
(2𝜋)2 ∫𝑑q𝐴q (𝑡) 𝑒iq⋅r ≡ ∫

q
𝐴q (𝑡) 𝑒iq⋅r, (29)

respectively, where ∫q = ∫𝑑q/(2𝜋)2 for brevity. For an
isolated domain that forms a single loopwithout crossing, the
step function𝐻(𝑢−𝑝) = 𝐻(𝑅− |r−𝜌|) is transformed by the
Fourier transformation as

𝐻q = ∫𝑑r𝐻(𝑢 − 𝑝) 𝑒−iq⋅r = ∫
|r−𝜌|<𝑅

𝑑r𝑒−iq⋅r. (30)

Substituting (24) into (30), we obtain the expansion of𝐻q up
to the first order of 𝛿𝑅 as

𝐻q = 𝐻(0)
q + 𝐻(1)

q ,
𝐻(0)

q = 2𝜋𝑅0𝑞 𝐽1 (𝑞𝑅0) ,
𝐻(1)

q = 2𝜋𝑅0∑
𝑛

𝑐𝑛 (𝑡) i−𝑛𝑒i𝑛𝜙𝑞𝐽𝑛 (𝑞𝑅0) ,
(31)

where 𝑞 = |q|, 𝜙𝑞 is the angle between q and the 𝑥-axis, and𝐽𝑛 is a Bessel function of the first kind of order 𝑛.
4.2. Equation of Motion of a Spot. We derive the equation
of motion of a spot from (14). 𝜏𝐶 is given as functions
of ℎ and ℎ̃ by (17), in which we used the notation ℎ̃ =(𝑑V/𝑑n)|𝑖 = (n ⋅ ∇)V|𝑖. When the velocity of the spot is small,
the deformation of the circle is small. For this situation, we
derive the deviations of ℎ and ℎ̃ from their stationary values

as a power series of 𝜏𝐶. Using (18), we first expand ℎ and ℎ̃ up
to the fourth-order time derivatives as

ℎ = ℎ0 + ℎ1 + ℎ2 + ℎ3 + ℎ4, (32)

ℎ̃ = ℎ̃0 + ℎ̃1 + ℎ̃2 + ℎ̃3 + ℎ̃4, (33)

respectively, where

ℎ0 = ∫
q
𝐺𝑞𝐻q𝑒iq⋅R(𝜔),

ℎ1 = ℎ1,1 + ℎ1,2
= i∫

q
(k ⋅ q) 𝐺2𝑞𝐻q𝑒iq⋅R(𝜔) − ∫

q
𝐺2𝑞 (𝜕𝐻q𝜕𝑡 ) 𝑒iq⋅R(𝜔),

ℎ2 = ℎ2,1 + ℎ2,2 + ℎ2,3
= −i∫

q
(k̇ ⋅ q) 𝐺3𝑞𝐻q𝑒iq⋅R(𝜔)

− ∫
q
(k ⋅ q)2 𝐺3𝑞𝐻q𝑒iq⋅R(𝜔)

+ ∫
q
𝐺3𝑞(𝜕

2𝐻q𝜕𝑡2 )𝑒iq⋅R(𝜔),
ℎ3 = −i∫

q
(k ⋅ q)3 𝐺4𝑞𝐻q𝑒iq⋅R(𝜔),

ℎ4 = ∫
q
(k ⋅ q)4 𝐺5𝑞𝐻q𝑒iq⋅R(𝜔),

(34)

ℎ̃0 = i∫
q
(n ⋅ q) 𝐺𝑞𝐻q𝑒iq⋅R(𝜔),

ℎ̃1 = ℎ̃1,1 + ℎ̃1,2
= −∫

q
(n ⋅ q) (k ⋅ q) 𝐺2𝑞𝐻q𝑒iq⋅R(𝜔)

− i∫
q
(n ⋅ q) 𝐺2𝑞 (𝜕𝐻q𝜕𝑡 ) 𝑒iq⋅R(𝜔),

ℎ̃2 = ℎ̃2,1 + ℎ̃2,2 + ℎ̃2,3
= ∫

q
(n ⋅ q) (k̇ ⋅ q) 𝐺3𝑞𝐻q𝑒iq⋅R(𝜔)

− i∫
q
(n ⋅ q) (k ⋅ q)2 𝐺3𝑞𝐻q𝑒iq⋅R(𝜔)

+ i∫
q
(n ⋅ q) 𝐺3𝑞(𝜕

2𝐻q𝜕𝑡2 )𝑒iq⋅R(𝜔),
ℎ̃3 = ∫

q
(n ⋅ q) (k ⋅ q)3 𝐺4𝑞𝐻q𝑒iq⋅R(𝜔),

ℎ̃4 = i∫
q
(n ⋅ q) (k ⋅ q)4 𝐺5𝑞𝐻q𝑒iq⋅R(𝜔)

(35)
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Figure 2: Dependence of 𝑅0 on 𝑘𝑐 and𝑊 in the stationary state. (a) Dependence of 𝑅0 on 𝑘𝑐. 𝑊 = 1.0.The solid and dashed curves represent
the cases of 𝛼 = 0 and 5, respectively. (b) Dependence of 𝑅0 on𝑊. 𝑘𝑐 = 5.0. The solid and dashed curves represent the cases of 𝛼 = 0.1 and
5.0, respectively.

with

𝐺𝑞 = 1𝑞2 + 𝛽. (36)

In the above expansions, we omitted the term propor-
tional to (q ⋅ v)(𝜕𝐻q/𝜕𝑡) in the expressions of ℎ2 and ℎ̃2.
In the derivation of ℎ3 and ℎ̃3, the terms proportional to(𝜕3𝐻q/𝜕𝑡3), (q⋅v)(𝜕2𝐻q/𝜕𝑡2), (q⋅v)2(𝜕𝐻q/𝜕𝑡), (q⋅v̇)(𝜕𝐻q/𝜕𝑡),(q ⋅ v̈)𝐻q, and (q ⋅ v)(q ⋅ v̇)𝐻q were omitted. In the derivation
of ℎ4 and ℎ̃4, all the terms of the derivatives of v and 𝐻q
with respect to time were omitted.These terms were omitted,
because they include higher order derivatives of time and are
smaller than the remaining terms, or they vanish in the later
integral (1/Ω) ∫ 𝑑𝜔R(𝜔)⋅ due to the orthogonality relation of
trigonometric functions.We remark that we include up to the
third-order of v: ℎ3 and ℎ̃3, for the derivation of the equation
of motion of the spot. The justification for considering terms
up to this order is discussed later. On the other hand, for
the derivation of equations of motion of tensors, we include
up to the fourth order of v: ℎ4 and ℎ̃4. The justification for
considering terms up to this order is discussed in Section 4.4.

When the spot is in a stationary motionless state, we
assume that the spot is a circle with radius 𝑅0. The values
of V and (n ⋅ ∇)V at the interface are denoted as ℎ(0)0 andℎ̃(0)0 , respectively. Using (34), ℎ(0)0 is given by ℎ0 with the
substitutions 𝐻q = 𝐻(0)

q and R = R(0), where R(0) = 𝑅0e𝑟.
Similarly, ℎ̃(0)0 is given using (35). When 𝜖 is small but finite,
substituting ℎ = ℎ(0)0 and ℎ̃ = ℎ̃(0)0 into 𝜏𝐶(ℎ) with 𝑉 = 0, (14)
becomes

𝑃 (ℎ(0)0 ) + 𝑄 (ℎ(0)0 ) ℎ̃(0)0 − 𝜖𝑅0 + 𝐿 = 0, (37)

where 𝜅 = −1/𝑅0 is used. We note that the Lagrange
multiplier 𝐿 in (37) can be absorbed into the constant term𝑝0 in 𝑃(ℎ(0)0 ). In the limit 𝜖 → 0, we can calculate ℎ(0)0 and

ℎ̃(0)0 by using V(𝑟), which is given by (13) (the validation is
given in Appendix B). Using these expressions, (37) gives
the dependence of 𝑅0 on 𝑘𝑐 and 𝑊. The numerical results
obtained by using (13) and (17) are shown in Figure 2(a).
When 𝛼 = 0, 𝑅0 monotonically decreases with 𝑘𝑐. However,
for large 𝛼, 𝑅0 depends weakly on 𝑘𝑐 and it is almost
constant because of the global coupling; large global coupling
suppresses variations in the area of the spot resulting in
constant 𝑅0. The dependence of 𝑅0 on𝑊 when 𝑘𝑐 is large is
shown in Figure 2(b). From (9), it can be seen that, for large𝛼, 𝑅0 approximately satisfies 𝜋𝑅20 ∼ 𝑊, and, therefore, 𝑅0 is
proportional to the square root of𝑊 (see the dashed curve in
Figure 2(b)).

When the spotmoves with an infinitesimal velocity, ℎ andℎ̃ deviate from ℎ(0)0 and ℎ̃(0)0 , respectively. By putting small
deviations as 𝛿ℎ = ℎ − ℎ(0)0 and 𝛿ℎ̃ = ℎ̃ − ℎ̃(0)0 , we iteratively
derive 𝛿ℎ and 𝛿ℎ̃ in a power series of 𝜏𝐶 up to the third
order. The procedure consists of two steps. We first expand𝜏𝐶 given by (17) in a power series of 𝛿ℎ and 𝛿ℎ̃. Then, we
solve the equation in terms of 𝛿ℎ and expand it by 𝜏𝐶. When
the stationary motionless spot is destabilized into a moving
spot, 𝜏𝐶 is expanded up to the second-order of 𝛿ℎ and 𝛿ℎ̃ as
𝜏𝐶
= (𝜕𝑃𝜕ℎ + 𝜕𝑄𝜕ℎ ℎ̃(0)0 )0 𝛿ℎ + (𝑄)0 𝛿ℎ̃
+ 12 [(𝜕

2𝑃𝜕ℎ2 + 𝜕
2𝑄𝜕ℎ2 ℎ̃(0)0 )

0

𝛿ℎ2 + 2(𝜕𝑄𝜕ℎ )0 𝛿ℎ𝛿ℎ̃] ,
(38)

where, for a function 𝐴(ℎ), (𝐴)0 implies 𝐴(ℎ(0)0 ). Up to the
first order of 𝛿ℎ and 𝛿ℎ̃, (38) results in 𝜏𝐶 = (𝜕𝑃/𝜕ℎ +𝜕𝑄/𝜕ℎℎ̃(0)0 )0𝛿ℎ + (𝑄)0𝛿ℎ̃. For higher order corrections, a
supplementary relation between 𝛿ℎ and 𝛿ℎ̃ is necessary. In
order to relate 𝛿ℎ with 𝛿ℎ̃, we consider the profile of V(r) in
the radially symmetric function given by (13), where V(r) is
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a function of 𝑟 (= |r|) denoted by V(𝑟). For this function,(n ⋅ ∇)V = 𝑑V/𝑑𝑟. Then, V(𝑅0 + 𝛿𝑟) and (n ⋅ ∇)V(𝑅0 + 𝛿𝑟)
are expanded around V(𝑅0) and 𝑑V(𝑅0)/𝑑𝑟 for small 𝛿𝑟 as

V (𝑅0 + 𝛿𝑟) ∼ V (𝑅0) + (𝑑V𝑑𝑟)𝑟=𝑅0 𝛿𝑟, (39)

(n ⋅ ∇) V (𝑅0 + 𝛿𝑟) ∼ 𝑑V (𝑅0)𝑑𝑟 + (𝑑2V𝑑𝑟2)
𝑟=𝑅0

𝛿𝑟, (40)

respectively. In (39) and (40), (𝐴(𝑟))𝑟=𝑅0 implies 𝐴(𝑅0). We
make an ansatz that 𝛿ℎ and 𝛿ℎ̃ are not independent but have
a linear relation such that 𝛿ℎ̃ = 𝑘𝛿ℎ with 𝑘 = (V󸀠󸀠/V󸀠)𝑟=𝑅0 ,
where the prime corresponds to the derivative with respect to𝑟. This assumption enables us to calculate 𝛿ℎ as a function of𝜏𝐶. Substituting 𝛿ℎ̃ = 𝑘𝛿ℎ into (38), 𝜏𝐶 becomes a quadratic
equation of 𝛿ℎ as

𝜏𝐶 = (𝑎 + 𝑘𝑏) 𝛿ℎ + 𝑚1𝛿ℎ2, (41)

where

𝑎 = (𝜕𝑃𝜕ℎ + 𝜕𝑄𝜕ℎ ℎ̃(0)0 )0 ,
𝑏 = (𝑄)0 ,
𝑚1 = 12 [(𝜕

2𝑃𝜕ℎ2 + 𝜕
2𝑄𝜕ℎ2 ℎ̃(0)0 )

0

+ 2𝑘(𝜕𝑄𝜕ℎ )0] .
(42)

As a result of numerical calculations, we remark that 𝑏 > 0
and 𝑎 < 0 for small ℎ(0)0 , but 𝑎 > 0 for large ℎ(0)0 . By solving
(41) in terms of 𝛿ℎ for small 𝜏𝐶, the solution is expanded up
to the second order of 𝜏𝐶 as

𝛿ℎ = ( 𝜏𝐶𝑎 + 𝑘𝑏) − 𝑚1𝑎 + 𝑘𝑏 ( 𝜏𝐶𝑎 + 𝑘𝑏)
2 . (43)

Here, it should be noted that although there are two solutions
for (41), we chose one solution such that 𝛿ℎ → 𝜏𝐶/(𝑎 + 𝑘𝑏)
when the second-order term (𝜏𝐶)2 is neglected.

In order to obtain 𝛿ℎ up to the third order of 𝜏𝐶, 𝜏𝐶 given
by (17) is expanded up to the third order of 𝛿ℎ and 𝛿ℎ̃. Using𝛿ℎ̃ = 𝑘𝛿ℎ, 𝜏𝐶 becomes a cubic equation of 𝛿ℎ as

𝜏𝐶 = (𝑎 + 𝑘𝑏) 𝛿ℎ + 𝑚1𝛿ℎ2 + 𝑚2𝛿ℎ3, (44)

where𝑚2 is given by

𝑚2 = 16 [(𝜕
3𝑃𝜕ℎ3 + 𝜕

3𝑄𝜕ℎ3 ℎ̃(0)0 )
0

+ 3𝑘(𝜕2𝑄𝜕ℎ2 )
0

] . (45)

In order to obtain the third-order term of 𝜏𝐶 in 𝛿ℎ, we add
a correction Δ (∼ 𝑂(𝜏𝐶)3) to 𝛿ℎ given by (43) and substitute
it into (44). On solving this equation in terms of Δ, 𝛿ℎ up to
the third order of 𝜏𝐶 is obtained as

𝛿ℎ = ( 𝜏𝐶𝑎 + 𝑘𝑏) − 𝑚1𝑎 + 𝑘𝑏 ( 𝜏𝐶𝑎 + 𝑘𝑏)
2

+ 1𝑎 + 𝑘𝑏 [
2𝑚2

1𝑎 + 𝑘𝑏 − 𝑚2]( 𝜏𝐶𝑎 + 𝑘𝑏)
3 .

(46)

We remark that (46) is obtained by anothermethod; by apply-
ing Cardano’s formula to (44) and expanding the solution up
to the third order of 𝜏𝐶, we obtain the same result as that of
(46).

In the above process, we iteratively derived 𝛿ℎ up to the
third order of 𝜏𝐶. We replace 𝑘𝛿ℎ ∼ 𝛿ℎ̃ in (46), and finally
the power series expansion of 𝑎𝛿ℎ + 𝑏𝛿ℎ̃ in terms of 𝜏𝐶 is
obtained as

𝑎𝛿ℎ + 𝑏𝛿ℎ̃ = 𝑀1 (𝜏𝐶) +𝑀2 (𝜏𝐶)2 +𝑀3 (𝜏𝐶)3 , (47)

where𝑀𝑖 (𝑖 = 1, 2, 3) is defined by

𝑀1 = 1,
𝑀2 = − 𝑚1(𝑎 + 𝑏𝑘)2 ,
𝑀3 = 1

(𝑎 + 𝑏𝑘)3 [
2𝑚2

1𝑎 + 𝑏𝑘 − 𝑚2] .
(48)

In the absence of chemotaxis (𝑄 = 0), (47) reproduces the
result that was obtained in [16].

Using (14) and (47), we derive the equation of motion of
the spot by operating both sides of (47) with (1/Ω) ∫ 𝑑𝜔R(𝜔).
For the left hand side, we put

1Ω ∫𝑑𝜔R (𝜔) 𝛿ℎ = 𝛿h = h1 + h2 + h3,
1Ω ∫𝑑𝜔R (𝜔) 𝛿ℎ̃ = 𝛿h̃ = h̃1 + h̃2 + h̃3,

(49)

where h4 and h̃4 are neglected because these terms are higher
than or equal to 𝑂(k4). For the calculation of the right hand
side of (47), we use (14). The magnitudes of 𝜖𝜅 and 𝐿 were
discussed in [16]; 𝐿 is independent of 𝜙𝑟, and, owing to the
periodicity of the function, ∫𝑑𝜔R(𝜔)𝐿 = ∫ 𝑑𝜔R(𝜔)𝐿3 =∫𝑑𝜔R(𝜔)𝑉2𝐿 = 0. In addition, 𝐿 ∼ 𝑂(k2), and, therefore,∫𝑑𝜔R(𝜔)𝑉𝐿3 can be neglected up to the third order of v.
As the translational motion of the spot is incorporated in 𝜌,
we chose 𝑐±1 = 0 in the expansion of 𝛿𝑅(𝜙𝑟). This results in𝜖 ∫ 𝑑𝜔R(𝜔)𝜅 = 0 up to the first order of the deformation.The
terms 𝜖 ∫ 𝑑𝜔R(𝜔)𝜅𝑉𝐿2 and 𝜖 ∫ 𝑑𝜔R(𝜔)𝜅𝐿2, and the higher
order terms of 𝜖 were small; therefore, they were neglected.
Following the above discussion, we neglect the term (𝜖𝜅 + 𝐿)
in (14).

By carrying the integral over 𝜙𝑟, the following equation is
obtained:

𝑎𝛿h + 𝑏𝛿h̃ = 𝜏k + 34𝑀3𝜏3k |k|2 , (50)

where

𝛿h = h1,1 + h2,1 + h3,
𝛿h̃ = h̃1,1 + h̃2,1 + h̃3. (51)

Here, h1,1 = (1/Ω) ∫ 𝑑𝜔R(𝜔)ℎ1,1. The other terms on the
right hand side of (51) are defined similarly. In the expansion
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Figure 3: Dependence of𝑚, 𝜏𝑐, and 𝑔 on 𝑘𝑐 and𝑊. The solid, dashed, and dotted curves represent𝑚, 𝜏𝑐, and 𝑔, respectively. (a) Dependence
of𝑚, 𝜏𝑐, and 𝑔 on 𝑘𝑐. 𝛼 = 5.0 and𝑊 = 1.0. In the calculation of 𝑔, 𝜏 is chosen as 𝜏 = 𝜏𝑐. As𝑀3 is positive, 𝑔 for the case 𝜏 < (>) 𝜏𝑐 is smaller
(larger) than this curve. (b) Dependence of𝑚, 𝜏𝑐, and 𝑔 on𝑊. 𝛼 = 5.0 and 𝑘𝑐 = 5.0. In the calculation of 𝑔, 𝜏 is chosen as 𝜏 = 𝜏𝑐.

(51), we neglected the terms h1,2 and h2,3, because these terms
yielded only the terms ̇𝑐±1 and ̈𝑐±1, respectively; however,
these terms are set to zero. h2,2 disappeared in the integral
over 𝜙𝑟 owing to the orthogonality relation of trigonometric
functions [15]. Owing to the same reasons, the terms h̃1,2,
h̃2,3, and h̃2,2 did not exist. In the integral over 𝜙𝑟, there is
no contribution from the second-order term of 𝜏𝐶 owing
to the orthogonality relation of trigonometric function. This
supports the justification to include terms up to the third
order of 𝜏𝐶 in (47) for the minimal equation of motion of a
spot. For the balance of order, it is sufficient to include terms
up to the third order of v in 𝛿h and 𝛿h̃.

After practical calculations of 𝛿h and 𝛿h̃, we finally obtain
the equation of motion of the spot as

𝑚k̇ + (𝜏 − 𝜏𝑐) k + 𝑔k |k|2 = 𝑎𝛿h(0)1,1 + 𝑏𝛿h̃(0)1,1, (52)

where 𝛿h(0)1,1 is defined as 𝛿h(0)1,1 = h1,1 −h(0)1,1. Here, h(0)1,1 is given
by h1,1 with the substitutions 𝐻q = 𝐻(0)

q and R = R(0). 𝛿h̃(0)1,1
is similarly defined with 𝛿h(0)1,1. The coefficients 𝑚, 𝜏𝑐, and 𝑔
on the left hand side of (52) are given by

𝑚 = −𝑎𝑅0𝐹 (1, 3, 1, 1) − 𝑏𝑅0𝐹𝑑 (2, 3, 1, 1) , (53)

𝜏𝑐 = −𝑎𝑅0𝐹 (1, 2, 1, 1) − 𝑏𝑅0𝐹𝑑 (2, 2, 1, 1) , (54)

𝑔 = 34𝑀3𝜏3 − 34𝑎𝑅0𝐹 (3, 4, 1, 1)
− 34𝑏𝑅0𝐹𝑑 (4, 4, 1, 1) ,

(55)

respectively, where we defined 𝐹(𝑖, 𝑗, 𝑘, 𝑙) and 𝐹𝑑(𝑖, 𝑗, 𝑘, 𝑙) as
𝐹 (𝑖, 𝑗, 𝑘, 𝑙) = ∫∞

0
𝑑𝑞𝑞𝑖𝐺𝑗𝑞𝐽𝑘𝐽𝑙, (56)

𝐹𝑑 (𝑖, 𝑗, 𝑘, 𝑙) = ∫∞
0
𝑑𝑞𝑞𝑖𝐺𝑗𝑞𝐽𝑘 𝜕𝜕 (𝑞𝑅0)𝐽𝑙, (57)

respectively, where 𝑖, 𝑗, 𝑘, and 𝑙 are integers and 𝐽𝑛(𝑞𝑅0) is
written as 𝐽𝑛 for brevity.

Equation (52) has the same form as the one in the absence
of chemotaxis [16]. It is a Newtonian equation of the spot;
the effective mass 𝑚, damping coefficient 𝜏𝑐, intensity of the
cubic nonlinear term 𝑔, and the right hand side of (52) form
the coupling term between deformation and velocity in the
following subsection. When (𝜏 − 𝜏𝑐) > 0, the motionless
spot is stable; however, the motionless spot is destabilized
into a moving spot for (𝜏 − 𝜏𝑐) < 0. When 𝑔 is positive,
the third-order nonlinear coupling term 𝑔v|v|2 suppresses
the divergence for large |v|. It is necessary that 𝑚, 𝜏𝑐, and𝑔 are positive for the existence of a stable moving spot. The
dependence of𝑚, 𝜏𝑐, and 𝑔 on 𝑘𝑐 and𝑊 is shown in Figure 3.
We see that these parameters are positive and monotonically
increase with 𝑘𝑐 and𝑊.

In the derivation of (47), we made an ansatz for the
relation between 𝛿ℎ and 𝛿ℎ̃ such that 𝛿ℎ̃ = 𝑘𝛿ℎ with 𝑘 =(V󸀠󸀠/V󸀠)𝑟=𝑅0 . Equation (55) suggests that 𝑔 depends explicitly
on 𝑘 through𝑀3. Through preliminary research, it is found
that if 𝑘 is chosen as a positive constant, the property that𝑔 is a positive and monotonically increasing function of 𝑘𝑐
and𝑊 holds. From the above, it is seen that 𝑚, 𝜏𝑐, and 𝑔 are
positive for any value of 𝑘𝑐 and𝑊, and, therefore, we fix𝑊
and examine the motion of the spot in the range 𝑘𝑐 ≥ 0.
4.3. Definitions of Tensors. In order to express the deforma-
tion of the spot, we introduce tensors. We rewrite the vector
form (52) of each component, and, by denoting v = (V1, V2),
the 𝛼 component (𝛼 = 1, 2) of (52) becomes

𝑚V̇𝛼 + (𝜏 − 𝜏𝑐) V𝛼 + 𝑔V𝛼 |k|2 = 𝑎𝛿ℎ(0)1,1(𝛼) + 𝑏𝛿ℎ̃(0)1,1(𝛼), (58)

where 𝛿ℎ(0)1,1(𝛼) and 𝛿ℎ̃(0)1,1(𝛼) correspond to the 𝛼 component
of 𝛿h(0)1,1 and 𝛿h̃(0)1,1, respectively. Using the tensors, the right
hand side of (58) is expressed in a simple form. The second
rank tensor S and the third rank tensorU represent the ellip-
tical deformation and the head-tail asymmetric deformation
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(2𝜋/3-periodic deformation in the radial direction) of the
spot, respectively. These tensors are traceless and symmetric.
The detailed definitions are given in [16]. The deformation𝛿𝑅(𝜙𝑟) is expanded using the coefficients 𝑐𝑛 as given by (25);𝑐±𝑛 corresponds to a (2𝜋/𝑛)-periodic deformation.

We first introduce a second-rank tensor 𝑆𝛼𝛽 (𝛼, 𝛽 = 1, 2)
using 𝑐±2 as follows:

𝑆11 = −𝑆22 = 𝑐2 + 𝑐−2 = 𝛿22 cos 2𝜙2,
𝑆12 = 𝑆21 = i (𝑐2 − 𝑐−2) = 𝛿22 sin 2𝜙2,

(59)

where 𝛿2 is a positive constant, which represents the radial
deviation of the spot from 𝑅0, and 𝜙2 is the angle between
the long axis of the ellipse and the 𝑥-axis. The tensor
elements (59) are represented by using a normal vector N =(cos𝜙2, sin𝜙2) along the long axis as

𝑆𝛼𝛽 = 𝛿2 (𝑁𝛼𝑁𝛽 − 𝛿𝛼𝛽2 N2) . (60)

The tensor S is the same as the nematic order parameter
tensor in liquid crystals [34]. For an elliptical spot, 𝑅(𝜙𝑟) is
represented as

𝑅 (𝜙𝑟) = 𝑅0 + 𝛿22 cos 2 (𝜙𝑟 − 𝜙2) . (61)

Next, in order to describe the head-tail asymmetric
deformation, we first define 𝑇1 and 𝑇2 using 𝑐±3 as

𝑇1 = 𝑐3 + 𝑐−3 = 𝛿3 cos 3𝜙3, (62)

𝑇2 = i (𝑐3 − 𝑐−3) = 𝛿3 sin 3𝜙3, (63)

respectively, where 𝛿3 is a positive constant and 𝜙3 is the angle
between one of the long axes of the deformed spot and the 𝑥-
axis. In order to relate 𝑇1 and 𝑇2 with a tensor, we introduce
the third-rank tensor 𝑈𝛼𝛽𝛾 (𝛼, 𝛽, and 𝛾 = 1 or 2). The tensor
elements 𝑈𝛼𝛽𝛾 are represented by using vectors N(𝑚) (𝑚 =1, 2, and 3) as

𝑈𝛼𝛽𝛾 = 4𝛿33 ∑𝑚𝑁(𝑚)
𝛼 𝑁(𝑚)

𝛽 𝑁(𝑚)
𝛾 , (64)

where the normal vectors N(𝑚) are defined by

N(1) = (cos𝜙3, sin𝜙3) ,
N(2) = (cos(𝜙3 + 2𝜋3 ) , sin(𝜙3 + 2𝜋3 )) ,
N(3) = (cos(𝜙3 − 2𝜋3 ) , sin(𝜙3 − 2𝜋3 )) .

(65)

The tensor U is the same as the order parameter for banana
(tetrahedral nematic) liquid crystals in two dimensions [35,
36].We obtain the relations between the tensor elements𝑈𝛼𝛽𝛾
and 𝑇1 and 𝑇2 as 𝑈111 = 𝑇1, 𝑈222 = −𝑇2, and

𝑈111 = −𝑈122 = −𝑈212 = −𝑈221,
𝑈222 = −𝑈112 = −𝑈121 = −𝑈211. (66)

The spot with head-tail asymmetric deformation is repre-
sented as

𝑅 (𝜙𝑟) = 𝑅0 + 𝛿3 cos 3 (𝜙𝑟 − 𝜙3) . (67)

The terms 𝛿ℎ(0)1,1(𝛼) and 𝛿ℎ̃(0)1,1(𝛼) in (58) are expressed using
tensors. The detailed calculations are given in Appendix C.
The final form is as follows:

𝛿ℎ(0)1,1(𝛼) = −𝑎∗∑
𝛽

𝑆𝛼𝛽V𝛽,
𝛿ℎ̃(0)1,1(𝛼) = −𝑎∗∑

𝛽

𝑆𝛼𝛽V𝛽,
(68)

where

𝑎∗ = 𝑎∗1 + 𝑎∗2 ,
𝑎∗1 = −𝑅02 𝐹 (2, 2, 1, 2) ,

(69)

𝑎∗2 = −12 [𝑅0𝐹 (2, 2, 1, 2) − 3𝐹 (1, 2, 1, 1)] , (70)

𝑎∗ = 𝑎∗1 + 𝑎∗2 ,
𝑎∗1 = −𝑅08 [−𝐹 (3, 2, 1, 2) + 3𝐹 (3, 2, 1, 1)]

− 34𝐹 (2, 2, 0, 1) ,
(71)

𝑎∗2 = −2 [𝑅04 𝐹𝑑 (2, 2, 2, 1) − 𝐹𝑑 (1, 2, 1, 1)] . (72)

Thus, (58) is written using 𝑆𝛼𝛽 in the form

𝑚V̇𝛼 + (𝜏 − 𝜏𝑐) V𝛼 + 𝑔V𝛼 |k|2 = −𝑎∑
𝛽

𝑆𝛼𝛽V𝛽, (73)

where 𝑎 = (𝑎𝑎∗ + 𝑏𝑎∗). 𝛿ℎ(0)1,1(𝛼) and 𝛿ℎ̃(0)1,1(𝛼) yield the Sv
term. This is due to the periodicity of the function in the
integral over 𝜙𝑟; in the expansion of 𝛿R(𝜙𝑟) and 𝐻(1)

q (𝜙𝑟),
only 𝑐±2 terms contribute to the nonzero integral, resulting
in the Sv term. Equation (73) suggests that the motionless
spot is destabilized into a moving spot for 𝜏𝑐 > 𝜏, and the
velocity of the spot is approximately given by |v|2 ∼ (𝜏𝑐−𝜏)/𝑔.
The deformation and velocity coupling term Sv modifies the
straight motion of the spot.

4.4. Time Evolution Equations of Tensors. In the previous
subsection, we defined the tensors and described the equation
of motion of the spot by using tensors, including the time-
dependent tensor 𝑆𝛼𝛽. In this subsection, we derive the time
evolution equations of the tensors up to ∼ 𝑂(k4). We first
discuss the order of v, 𝑆𝛼𝛽, and 𝑈𝛼𝛽𝛾, following [16]. From
(73), the motionless spot is critical at 𝜏 = 𝜏𝑐, and the moving
spot occurs supercritically with increasing (𝜏𝑐 − 𝜏). We put𝛿 = 𝜏𝑐 − 𝜏 for the smallness parameter. The time is scaled
by 𝑡̂ = 𝑡𝛿, an all the terms in (73) are of the order 𝑂(𝛿3/2).



10 Advances in Mathematical Physics

Here v ∼ 𝑂(𝛿1/2) and S ∼ 𝑂(𝛿); therefore 𝑆𝛼𝛽 ∼ 𝑂(k2). In
the later calculations, we can confirm that 𝑆𝛼𝛽 ∼ 𝑂(k2) and𝑈𝛼𝛽𝛾 ∼ 𝑂(k3). In the derivation of (73), we omitted the terms
that include higher order derivatives of time. We estimate
these terms, for example, 𝑑2v/𝑑𝑡2 ∼ 𝑂(𝛿5/2), SSv ∼ 𝑂(𝛿5/2),(q ⋅v)𝜕𝐻q/𝜕𝑡 ∼ 𝑂(𝛿5/2), 𝜕3𝐻q/𝜕𝑡3 ∼ 𝑂(𝛿4), (q ⋅v)𝜕2𝐻q/𝜕𝑡2 ∼𝑂(𝛿7/2), (q⋅v)2𝜕𝐻q/𝜕𝑡 ∼ 𝑂(𝛿3), and (q⋅v̇)𝜕𝐻q/𝜕𝑡 ∼ 𝑂(𝛿7/2) in
the expansion of ℎ and ℎ̃. From these estimates, the omission
of those terms is justified.

S and U are composed of 𝑐±2 and 𝑐±3, respectively, so that𝑐±2 ∼ 𝑂(k2) and 𝑐±3 ∼ 𝑂(k3). The coupling terms such as𝑐𝑛𝑐𝑚 (|𝑛|, |𝑚| ≥ 2) are much smaller. Therefore, we linearize
(14) in terms of the deformation 𝛿𝑅. Then, the time evolution
equation of 𝛿𝑅 becomes

𝜏𝜕𝛿𝑅𝜕𝑡 = 𝜖𝑅20 (
𝜕2𝛿𝑅𝜕𝜙2𝑟 + 𝛿𝑅) + 𝑎𝛿ℎ + 𝑏𝛿ℎ̃ + 𝐿. (74)

We consider terms up to the fourth order of v, where 𝛿ℎ and𝛿ℎ̃ are given by

𝛿ℎ = ℎ − ℎ(0)0 = 𝛿ℎ0 + 𝛿ℎ1 + 𝛿ℎ2 + 𝛿ℎ3 + 𝛿ℎ4, (75)

𝛿ℎ̃ = ℎ̃ − ℎ̃(0)0 = 𝛿ℎ̃0 + 𝛿ℎ̃1 + 𝛿ℎ̃2 + 𝛿ℎ̃3 + 𝛿ℎ̃4, (76)

respectively. Here, 𝛿ℎ0 and 𝛿ℎ𝑙 (𝑙 = 1, 2, . . . , 4) are defined
by (34) as 𝛿ℎ0 = ℎ0 − ℎ(0)0 and 𝛿ℎ𝑙 = ℎ𝑙, respectively. 𝛿ℎ̃𝑙 is
similarly defined by (35). We expand 𝛿ℎ1, 𝛿ℎ2, 𝛿ℎ̃1, and 𝛿ℎ̃2
as 𝛿ℎ1 = 𝛿ℎ1,1 + 𝛿ℎ1,2, 𝛿ℎ2 = 𝛿ℎ2,2, 𝛿ℎ̃1 = 𝛿ℎ̃1,1 + 𝛿ℎ̃1,2, and𝛿ℎ̃2 = 𝛿ℎ̃2,2, respectively.

In order to derive the equation of motion of tensors,
we calculate the first-order time derivative of 𝑐𝑛. The linear
combination of ̇𝑐𝑛 results in the equation ofmotion of tensors.
In this process, v̇ terms in 𝛿ℎ2,1 and 𝛿ℎ̃2,1 are neglected
because these terms cause small order terms; ∑𝛾𝑈𝛼𝛽𝛾V̇𝛾 and𝑆𝛼𝛽V̇𝛾 appear in the time evolution equation of 𝑆𝛼𝛽 and 𝑈𝛼𝛽𝛾,
respectively. These terms are ∑𝛾𝑈𝛼𝛽𝛾V̇𝛾 ∼ 𝑂(k6) and 𝑆𝛼𝛽V̇𝛾 ∼𝑂(k5) so that they do not contribute to the equation ofmotion
of tensors. In addition, (𝜕2𝐻q/𝜕𝑡2) terms in 𝛿ℎ2,3 and 𝛿ℎ̃2,3 are
neglected because these terms result in the second-order time
derivative of 𝑐𝑛; these terms are ̈𝑐±2 ∼ 𝑂(k6) and ̈𝑐±3 ∼ 𝑂(k7)
and they are small enough to be neglected.

We first derive the equation of motion of 𝑆𝛼𝛽. Using
(74), we can obtain the time evolution equation of 𝑐±2, and
we derive the time evolution equation of 𝑆𝛼𝛽. The detailed
derivation is given inAppendicesD andE.The time evolution
equation of 𝑆𝛼𝛽 up to 𝑂(k4) is
Γ2 𝑑𝑆𝛼𝛽𝑑𝑡 = −𝐾2𝑆𝛼𝛽 + 𝑏 [V𝛼V𝛽 − 𝛿𝛼𝛽2 |k|2]

+ 𝑏𝑠 [V𝛼V𝛽 − 𝛿𝛼𝛽2 |k|2] |k|2 + 𝑏1∑
𝛾

𝑈𝛼𝛽𝛾V𝛾
+ 𝑐 |k|2 𝑆𝛼𝛽,

(77)

where Γ2 = 𝜏 + 𝑎𝐸2 + 𝑏𝐸2, 𝐾2 = 3𝜖/𝑅20 + 𝑎𝐷2 + 𝑏𝐷2, 𝑏 =𝑎𝐺1 + 𝑏𝐺1, 𝑏𝑠 = −𝑎𝐺𝑠1 − 𝑏𝐺𝑠1, 𝑏1 = −𝑎𝐵3/2 + 𝑏(3𝐴∗ − 𝐵3)/2,
and 𝑐 = −𝑎(2𝑇2,2 − 𝑉2) − 𝑏(2𝑇̃2,2 − 𝑉̃2). All the parameters in
these expressions are given in Appendix E. The second term
in (77) originates from 𝛿ℎ2 and 𝛿ℎ̃2, the third term from 𝛿ℎ4
and 𝛿ℎ̃4, the fourth term from 𝛿ℎ1 and 𝛿ℎ̃1, and the fifth term
from 𝛿ℎ2 and 𝛿ℎ̃2. Thus, in order to consider the terms up to𝑂(k4), 𝛿ℎ4 and 𝛿ℎ̃4 are necessary in the expansion equations
(75) and (76). From the first and second terms in (77), we note
that 𝑆𝛼𝛽 ∼ 𝑂(k2).

Next, we consider the time evolution equation of 𝑈𝛼𝛽𝛾.
Following procedures similar to those for 𝑆𝛼𝛽, the time
evolution equation of 𝑈𝛼𝛽𝛾 up to 𝑂(k4) is

Γ3 𝑑𝑈𝛼𝛽𝛾𝑑𝑡 = −𝐾3𝑈𝛼𝛽𝛾 + 4𝑑1 [V𝛼V𝛽V𝛾
− |k|24 (𝛿𝛼𝛽V𝛾 + 𝛿𝛽𝛾V𝛼 + 𝛿𝛾𝛼V𝛽)]

+ 2𝑑23 [𝑆𝛼𝛽V𝛾 + 𝑆𝛽𝛾V𝛼 + 𝑆𝛾𝛼V𝛽

−∑
𝜂

V𝜂2 (𝛿𝛼𝛽𝑆𝛾𝜂 + 𝛿𝛽𝛾𝑆𝛼𝜂 + 𝛿𝛾𝛼𝑆𝛽𝜂)] ,

(78)

where Γ3 = 𝜏 + 𝑎𝐸3 + 𝑏𝐸3 and 𝐾3 = 8𝜖/𝑅20 + 𝑎𝐷3 + 𝑏𝐷3. 𝑑1
and 𝑑2 are defined as

𝑑1 = −𝑅04 [𝑎𝐹 (3, 4, 1, 3) + 𝑏𝐹𝑑 (4, 4, 1, 3)] , (79)

𝑑2 = −𝑎𝑅02 [𝐹 (2, 2, 2, 3) + 𝐹𝑑 (2, 2, 1, 1)]
− 𝑏𝑅02 [𝐹𝑑 (3, 2, 2, 3)
+ 14 (𝐹 (3, 2, 1, 3) − 3𝐹 (3, 2, 1, 1))]

− 𝑏2 [𝐹 (2, 2, 0, 1) + 𝐹 (2, 2, 1, 2)] ,

(80)

respectively. In the above equation, all the terms are ∼ 𝑂(k3).
The terms of 𝑂(k4) disappeared because of the orthogonality
relation of trigonometric functions. The next higher order
term is 𝑂(k5), which is not included in expansions 𝛿ℎ and𝛿ℎ̃ in (75) and (76). The second term in (78) originates from𝛿ℎ3 and 𝛿ℎ̃3, and the third term from 𝛿ℎ1 and 𝛿ℎ̃1. From the
first and second terms in (78), we note that 𝑈𝛼𝛽𝛾 ∼ 𝑂(k3).
5. Tensor Model

Using (73), (77), and (78), we discuss the stationary solution,
the stability conditions of straight motion, and the critical
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velocity of circular motion. For the sake of convenience, we
rescale (73), (77), and (78) into

𝑑V𝛼𝑑𝑡 = 𝛾V𝛼 − V𝛼 |k|2 − 𝑎󸀠∑
𝛽

𝑆𝛼𝛽V𝛽, (81)

𝑑𝑆𝛼𝛽𝑑𝑡 = −𝜅𝑆𝛼𝛽 + 𝑏󸀠 [V𝛼V𝛽 − 12 |k|2 𝛿𝛼𝛽]
+ 𝑏󸀠𝑠 [V𝛼V𝛽 − 12 |k|2 𝛿𝛼𝛽] |k|2
+ 𝑏󸀠1∑

𝛾

𝑈𝛼𝛽𝛾V𝛾 + 𝑐󸀠 |k|2 𝑆𝛼𝛽,
(82)

𝑑𝑈𝛼𝛽𝛾𝑑𝑡 = −𝐾𝑈𝛼𝛽𝛾
+ 𝑑󸀠1 [V𝛼V𝛽V𝛾 − |k|24 (𝛿𝛼𝛽V𝛾 + 𝛿𝛽𝛾V𝛼 + 𝛿𝛾𝛼V𝛽)]

+ 𝑑󸀠23 [𝑆𝛼𝛽V𝛾 + 𝑆𝛽𝛾V𝛼 + 𝑆𝛾𝛼V𝛽

−∑
𝜂

V𝜂2 (𝛿𝛼𝛽𝑆𝛾𝜂 + 𝛿𝛽𝛾𝑆𝛼𝜂 + 𝛿𝛾𝛼𝑆𝛽𝜂)] ,

(83)

respectively. We name (81)–(83) as the full tensor model [37].
In the above full tensormodel, we chose parameters such that𝑔/𝑚 = 1 and put 𝛾 = (𝜏𝑐 − 𝜏)/𝑚 and 𝑎󸀠 = 𝑎/𝑚 in (81). The
other rescaled parameters in (82) and (83) were 𝜅 = 𝐾2/Γ2,𝑏󸀠 = 𝑏/Γ2, 𝑏󸀠𝑠 = 𝑏𝑠/Γ2, 𝑏󸀠1 = 𝑏1/Γ2, 𝑐󸀠 = 𝑐/Γ2, 𝐾 = 𝐾3/Γ3,𝑑󸀠1 = 2𝑑1/Γ3, and 𝑑󸀠2 = 𝑑2/Γ3.

We summarize the coefficients in (81)–(83) as follows.𝛾 is a damping coefficient in the time evolution equation
of V𝛼; although the motionless spot is stable for 𝛾 < 0,
the motionless spot is destabilized for 𝛾 > 0 and there
appears a moving spot. 𝜅 and 𝐾 are damping coefficients in
the time evolution equations of 𝑆𝛼𝛽 and 𝑈𝛼𝛽𝛾, respectively.
In this study, we fix 𝐾 as a positive constant and consider
𝜅 in the range 𝜅 > 0. 𝑏󸀠 and 𝑏󸀠𝑠 are coefficients of the
quadratic and fourth order of v, respectively, in the time
evolution equation of 𝑆𝛼𝛽. The term 𝑏󸀠𝑠 can be absorbed into
𝑏󸀠 with the replacement 𝑏󸀠 → (𝑏󸀠 + 𝑏󸀠𝑠|k|2). From the results,
it can be seen that the term 𝑏󸀠 is enhanced (suppressed)
when the sign of 𝑏󸀠𝑠 is the same as (different from) that of
𝑏󸀠. 𝑑󸀠1 is the coefficient of the cubic term of v in the time
evolution equation of 𝑈𝛼𝛽𝛾. These terms cause deformations
with increasing velocity. The other parameters are coupling
coefficients of deformation and velocity. 𝑎󸀠 and 𝑑󸀠2 are the
coupling coefficients of 𝑆𝛼𝛽V𝛽 and 𝑆𝛼𝛽V𝛾, respectively, and
these terms influence the time evolution of V𝛼 and 𝑈𝛼𝛽𝛾,
respectively. 𝑏󸀠1 and 𝑐󸀠 are the coupling coefficients of 𝑈𝛼𝛽𝛾V𝛾
and |k|2𝑆𝛼𝛽, respectively. When 𝑏󸀠1 = 0, 𝑈𝛼𝛽𝛾 is decoupled
from V𝛼 and 𝑆𝛼𝛽. 𝑐󸀠|k|2𝑆𝛼𝛽 can be absorbed into−𝜅𝑆𝛼𝛽with the

replacement 𝜅 → (𝜅 − 𝑐󸀠|k|2). Then, the term 𝜅 is suppressed
(enhanced) when 𝑐󸀠 is positive (negative), with |k|2 ̸= 0.

The dependence of 𝑎󸀠, 𝑏󸀠, 𝑏󸀠𝑠, 𝑐󸀠, 𝑏󸀠1, 𝑑󸀠1, and 𝑑󸀠2 on 𝑘𝑐 is
shown in Figure 4. In each figure, these parameters (shown
on the vertical axis) are scaled by 𝑅20. We see that both 𝑎󸀠 and
𝑏󸀠 are negative, and 𝑏󸀠1, 𝑐󸀠 ̸= 0 even at 𝑘𝑐 = 0. Although 𝑏󸀠1 is a
monotonically increasing function of 𝑘𝑐, 𝑐󸀠 is amonotonically
decreasing function of 𝑘𝑐. 𝑑󸀠1 and 𝑑󸀠2 are positive but 𝑑󸀠1 is
much smaller than 𝑑󸀠2.

Henceforth, we drop the primes on the parameters in the
full tensor model (81)–(83). In the full tensor model, when𝐾
is large and v is small, the effect of𝑈𝛼𝛽𝛾 on 𝑆𝛼𝛽 is small in (82).
In this case, we put 𝑏1 = 0, and the V𝛼, 𝑆𝛼𝛽, and 𝑈𝛼𝛽𝛾 system
described by (81)–(83) is reduced to a V𝛼 and 𝑆𝛼𝛽 system. We
call this system the reduced tensor model.

6. Stationary Solution and Phase Diagrams

In the following subsections, we consider the stationary
solution and phase diagrams. For this, we rewrite V𝛼, 𝑆𝛼𝛽, and𝑈𝛼𝛽𝛾 by introducing the following variables:

V1 = V cos𝜙,
V2 = V sin𝜙,
𝑆11 = 𝑠2 cos 2𝜃,
𝑆12 = 𝑠2 sin 2𝜃,
𝑈111 = 𝑐3 + 𝑐−3,
𝑈222 = −i (𝑐3 − 𝑐−3) ,
𝑐±3 = 𝛿32 𝑒∓i3𝜙3 ≡ 𝑧4𝑒∓i3𝜑,

(84)

where we choose V, 𝑠, 𝑧 > 0. From (81), we obtain the time
evolution equations of V and 𝜙 as

𝑑𝑑𝑡V = V (𝛾 − V2) − 12𝑎𝑠V cos 2 (𝜃 − 𝜙) , (85)

𝑑𝑑𝑡𝜙 = −12𝑎𝑠 sin 2 (𝜃 − 𝜙) , (86)

respectively. From (82), we obtain the time evolution equa-
tions of 𝑠 and 𝜃 as

𝑑𝑑𝑡𝑠 = −𝜅𝑠 + 𝑏V2 cos 2 (𝜃 − 𝜙) + 𝑏𝑠V4 cos 2 (𝜃 − 𝜙)
+ 𝑏1𝑧V cos (2𝜃 + 𝜙 − 3𝜑) + 𝑐V2𝑠,

(87)

𝑑𝑑𝑡𝜃 = −𝑏V
2

2𝑠 sin 2 (𝜃 − 𝜙) − 𝑏𝑠V42𝑠 sin 2 (𝜃 − 𝜙)
+ 𝑏1𝑧V2𝑠 sin (3𝜑 − 𝜙 − 2𝜃) ,

(88)
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Figure 4: Dependence of 𝑎󸀠, 𝑏󸀠, 𝑏󸀠𝑠, 𝑐󸀠, 𝑏󸀠1, 𝑑󸀠1, and 𝑑󸀠2 on 𝑘𝑐. 𝛼 = 5.0 and𝑊 = 1.0. All the parameters in the vertical axis are scaled by 𝑅20. (a) 𝑎󸀠
and 𝑏󸀠. The solid and dashed curves represent 𝑎󸀠 and 𝑏󸀠, respectively. (b) 𝑏󸀠𝑠. (c) 𝑐󸀠. (d) 𝑏󸀠1. (e) 𝑑󸀠1 and 𝑑󸀠2. The solid and dashed curves represent𝑑󸀠1 and 𝑑󸀠2, respectively.

respectively. From (83), we obtain the time evolution equa-
tions of 𝑧 and 𝜑 as

𝑑𝑑𝑡𝑧 = −𝐾𝑧 + 𝑑1V3 cos 3 (𝜑 − 𝜙)
+ 𝑑2𝑠V cos (3𝜑 − 2𝜃 − 𝜙) ,

(89)

𝑑𝑑𝑡𝜑 = −𝑑13𝑧V3 sin 3 (𝜑 − 𝜙)
− 𝑑23𝑧𝑠V sin (3𝜑 − 2𝜃 − 𝜙) .

(90)

Using (85)–(90), we theoretically derive the stationary
solution and phase diagrams. In order to verify the theoretical
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result, we perform simulations of the reduced tensor model.
For the numerical calculations, we employ the fourth-order
Runge-Kutta algorithm with the time increment Δ𝑡 = 1.0 ×10−4 and fix the parameters as 𝑎 = 𝑏 = −1, 𝐾 = 0.3, 𝑑1 = 0.1,
and 𝑑2 = 0.5.
6.1. Stationary Solution. For the reduced and full tensor
models, we consider the stationary solution of the moving
spot, which moves straight in the 𝑥 direction. This situation
corresponds to 𝜙 = 0. In the case of 𝑏1 = 𝑏𝑠 = 𝑐 = 0, the
stationary solution of (85) and (86) becomes V20 = 𝛾/(1 + 𝐵)
with 𝐵 = 𝑎𝑏/2𝜅. In order to avoid the divergence of V20, we
assume that 𝑎𝑏 > 0. For 𝑐 ̸= 0, we consider the dependence
of the stationary solution of 𝑠, 𝑧, 𝜃, and 𝜑 on the signs of 𝑎
and 𝑏. In the stationary state of (86) with 𝜙 = 0, there are two
stationary solutions of 𝜃 depending on the sign of 𝑎 and 𝑏: (I)𝑎 and 𝑏 are positive with 𝜃0 = 𝑙𝜋 and (II) 𝑎 and 𝑏 are negative
with 𝜃0 = (𝑙 + 1/2)𝜋, where 𝑙 is an integer. Using (87)–(90),
the stationary solution of case (I) is

𝑠0 = [(𝑏 + 𝑏𝑠V
2
0)𝐾 + 𝑏1𝑑1V20

𝐾(𝜅 − 𝑐V20) − 𝑑2𝑏1V20 ] V
2
0,

𝑧0 = cos 3𝜑0 [𝑑1 (𝜅 − 𝑐V
2
0) + 𝑑2 (𝑏 + 𝑏𝑠V20)

𝐾 (𝜅 − 𝑐V20) − 𝑑2𝑏1V20 ] V30,
(91)

where 𝜑0 satisfies sin 3𝜑0 = 0 and V0 is a stationary solution of
V, which is determined later. On the other hand, for case (II),
the stationary solution is

𝑠0 = −[(𝑏 + 𝑏𝑠V
2
0)𝐾 + 𝑏1𝑑1V20

𝐾(𝜅 − 𝑐V20) − 𝑑2𝑏1V20 ] V
2
0,

𝑧0 = cos 3𝜑0 [𝑑1 (𝜅 − 𝑐V
2
0) + 𝑑2 (𝑏 + 𝑏𝑠V20)

𝐾 (𝜅 − 𝑐V20) − 𝑑2𝑏1V20 ] V30.
(92)

From these results, it is seen that 𝑧0 has the same expression
irrespective of the signs of 𝑎 and 𝑏. As 𝑧0 is positive, 𝜑0
satisfying sin 3𝜑0 = 0 is chosen as

(i) 𝜑0 = 2𝑚3 𝜋,
if [𝑑1 (𝜅 − 𝑐V20) + 𝑑2 (𝑏 + 𝑏𝑠V20)𝐾 (𝜅 − 𝑐V20) − V20𝑑2𝑏1 ] > 0,

(ii) 𝜑0 = (2𝑚 + 1)3 𝜋,
if [𝑑1 (𝜅 − 𝑐V20) + 𝑑2 (𝑏 + 𝑏𝑠V20)𝐾 (𝜅 − 𝑐V20) − V20𝑑2𝑏1 ] < 0.

(93)

For both cases ((I) and (II)), the stationary solution of 𝑧0 is
given by

𝑧0 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑1 (𝜅 − 𝑐V20) + 𝑑2 (𝑏 + 𝑏𝑠V20)
𝐾 (𝜅 − 𝑐V20) − 𝑑2𝑏1V20

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 V
3
0. (94)

In both cases ((I) and (II)), by substituting 𝑠0 into (85) in the
stationary state, we obtain two stationary solutions V0,± as

V20,± = 1𝑓1 [𝑓2 ± √𝑓3]
with 𝑓1 = 2 [𝐾𝑐 + 𝑑2𝑏1 − 12𝑎 (𝑏1𝑑1 + 𝐾𝑏𝑠)] ,
𝑓2 = (12𝑎𝑏 + 𝜅 + 𝛾𝑐)𝐾 + 𝛾𝑑2𝑏1,
𝑓3 = [(12𝑎𝑏 − 𝜅 + 𝛾𝑐)𝐾 + 𝛾𝑑2𝑏1]

2 + 2𝑎𝜅 [(𝑏 + 𝑏𝑠𝛾)𝐾2 + 𝛾𝑏1𝑑1𝐾] .

(95)

In order to satisfy the condition that V20,± → 𝛾/(1 + 𝐵) in the
limits 𝑏1, 𝑏𝑠, and 𝑐 → 0, only V20,− exists. In the physical images
of the moving spot in cases (I) and (II) with 𝜑0 = 0, the long
axes of the elliptical domain are parallel and perpendicular to
the moving direction, respectively [16].

6.2. Stability of Straight Motion in the Reduced Tensor Model.
When 𝐾 is large in (89), 𝑧 is rapidly damped to zero. In
addition, when V is small, the influences of 𝑧 on 𝑠 and 𝜃 in
(87) and (88) are small. For this case, we discuss the stability
of the straight motion of the spot by setting 𝑏1 = 0 in (87) and

(88). Using (86) and (88), we can derive the time evolution
equation of 𝜓 = 𝜃 − 𝜙 as

𝑑𝜓𝑑𝑡 = −12 (−𝑎𝑠 + 𝑏V
2

𝑠 + 𝑏𝑠V4𝑠 ) sin 2𝜓. (96)

For the stationary states V = V0,−, 𝑠 = 𝑠0, we discuss
the stability condition of the straight motion. From (96), the
stationary solution 𝜓0 satisfies 2𝜓0 = 2𝑙𝜋 or (2𝑙 + 1)𝜋, and
their corresponding stability conditions are (−𝑎𝑠0+𝑏V20,−/𝑠0+𝑏𝑠V40,−/𝑠0) > 0 or (−𝑎𝑠0+𝑏V20,−/𝑠0+𝑏𝑠V40,−/𝑠0) < 0, respectively.
Since 𝑎 and 𝑏 are negative in our RD system, as shown in
Figure 4(a), we consider the case of 𝜓0 = 𝜋/2 as follows.
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Figure 5: Phase diagram of spot motion. 𝑎 = 𝑏 = −1 and 𝑏𝑠 = 0.05. Data are obtained by the analysis of (96). M, S, and C in the figure
represent regions of nomotion, straight motion, and circular motion, respectively.Themark ∗ represents the data obtained by the simulation
of the reduced tensor model. (a) Phase diagram in the 𝜅-𝛾 plane. The solid, dashed, and dotted curves correspond to the cases of 𝑐 = 0, 0.2,
and −0.2, respectively. The upper (lower) region of each curve corresponds to the region of circular (straight) motion, and the region 𝛾 ≤ 0
corresponds to the region of no motion. (b) Phase diagram in the 𝑐-𝛾 plane. The solid, dashed, and dotted curves correspond to cases of𝜅 = 0.2, 0.5, and 0.8, respectively. The region across each curve is the same as in (a). (c) Phase diagram in the 𝑐-𝜅 plane. The solid, dashed,
and dotted curves correspond to the cases of 𝛾 = 0.25, 0.5, and 1.0, respectively. The upper (lower) region of each curve corresponds to the
region of straight (circular) motion.

In this case, the stability condition is calculated using the𝑠0 given by (92). The bifurcation of straight-circular motion,
when 𝑏𝑠 = 𝑐 = 0, was already studied in [16], and the critical
value for the straight motion is expressed as

𝛾𝑐 = 𝜅2𝑎𝑏 +
𝜅2 . (97)

The phase diagram in the 𝜅-𝛾 plane is shown by the solid
curve in Figure 5(a). When 𝛾 ≤ 0, the motionless spot is
stable. When 𝛾 is in the range 0 < 𝛾 ≤ 𝛾𝑐, the spot moves
straight. However, when 𝛾 > 𝛾𝑐, the straight motion become
unstable and changes into circular motion. On the other
hand, when 𝑏𝑠 ̸= 0 and 𝑐 ̸= 0, the stability condition for
straight motion is

𝑎[𝑏V20,− + 𝑏𝑠V40,−𝜅 − 𝑐V20,− ] < 𝜅 − 𝑐V20,−. (98)

The phase diagram is a curved surface in 𝜅-𝛾-𝑐 space; the
boundary of different motions of spot is obtained by using
(98). The phase diagram in the 𝜅-𝛾 plane is shown in
Figure 5(a) with dashed and dotted curves. Comparing the
curves with that for the case when 𝑏𝑠 = 𝑐 = 0 (the solid
curve), it can be seen that when 𝑐 > 0, the parameter region
for the circular motion is larger. However, when 𝑐 < 0,
the parameter region for the circular motion is smaller. We
can explain this result using (87); the term 𝑐V2𝑠 essentially
reduces the parameter 𝜅 of the damping term −𝜅𝑠 such that
the damping term becomes −(𝜅 − 𝑐V2)𝑠. When 𝑐 is positive
(negative), the term 𝑐V2𝑠 effectively reduces (increases) 𝜅 so
that the deformation 𝑠 becomes large (small). This leads to
positive (negative) 𝑐 results in the larger parameter region

of the circular motion. In our RD system, 𝑐 is negative and|𝑐| monotonically increases with 𝑘𝑐 (see Figure 4(c)), and
the parameter region for circular motion becomes smaller
as the intensity of chemotaxis increases. The phase diagrams
in the 𝑐-𝛾 plane and 𝑐-𝜅 plane are shown in Figures 5(b)
and 5(c), respectively. Figure 5(b) suggests that the parameter
region for the circular motion is smaller for a larger value
of 𝜅. Equation (87) suggests that a larger value of 𝜅 damps𝑠 strongly such that the deformation is small, resulting in a
smaller region of the circular motion. On the other hand,
Figure 5(c) suggests that the parameter region for the circular
motion is larger for a larger value of 𝛾. Equation (85) suggests
that a large positive value of 𝛾 enhances V such that the
deformation becomes large, resulting in a larger region of
circular motion. In each figure, the simulation results for the
reduced tensor model are shown; they agree well with the
theoretical results.

6.3. Dependence of Critical Velocity on Parameters. In the
previous subsection, we showed that a spot appears in the
circular motion when 𝛾 > 𝛾𝑐. In this parameter region, we
examine the stationary circular motion of the spot with a
constant angular frequency 𝜔 and velocity V𝑟. For this, we set𝑏1 = 0 and substitute V = V𝑟, 𝑠 = 𝑠𝑟, 𝜃 = 𝜔𝑡 + 𝜁/2, and 𝜙 = 𝜔𝑡
into (85)–(88), and obtain the relations among 𝜁, 𝑠𝑟, V𝑟, and𝜔.The calculation is straightforward; the final expressions are
shown.

We first consider the case when 𝑏𝑠 = 𝑐 = 0, where up to𝑂(k3) terms are considered, and obtain the relations cos 𝜁 =𝜅/𝑎𝑠𝑟, 𝑠2𝑟 = 𝑏V2𝑟/𝑎, V2𝑟 = (𝛾−𝜅/2),𝜔2 = (𝑎𝑏/4)(V2𝑟−V2𝑐 ), and V2𝑐 =𝜅2/𝑎𝑏. When the spot rotates with an angular frequency 𝜔, 𝜔
satisfies 𝜔2 ≥ 0, and this condition leads to V𝑟 ≥ V𝑐 [16]. The
dependence of the critical velocity V𝑐 for the stable angular
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Figure 6: Dependence of the critical velocity V𝑐, V𝑐,±, ΔV2𝑐 , and 𝑐∗ on 𝜅 and 𝑐. 𝑎 = 𝑏 = −1. The mark ∗ represents data obtained by the
simulation of the reduced tensor model. (a) Dependence of V2𝑐 on 𝜅. 𝑏𝑠 = 𝑐 = 0. (b) Dependence of V2𝑐,+ on 𝜅. 𝑏𝑠 = −0.2 and 𝑐 = −0.25.
(c) Dependence of V2𝑐,± on 𝜅. 𝑏𝑠 = 0.05. The curves with filled (∙) and open (∘) circles correspond to the cases of 𝑐 = −0.25 and 𝑐 = −0.5,
respectively. The solid and dashed curves represent V2𝑐,− and V2𝑐,+, respectively. (d) Dependence of ΔV2𝑐 on 𝑐. 𝑏𝑠 = 0.05. The solid, dashed, and
dotted curves correspond to 𝜅 = 0.1, 0.5, and 0.8, respectively. (e) Dependence of 𝑐∗ on 𝜅. 𝑏𝑠 = 0.05.

frequency on 𝜅 (≥ 0) is shown in Figure 6(a). In this case,
there is a lower limit of velocity V𝑐 for the circular motion but
no upper limit of velocity for the same.

Next, we consider the case when 𝑏𝑠 ̸= 0 and 𝑐 ̸= 0, where
up to 𝑂(k4) terms are considered. After similar calculations
to the case of 𝑏𝑠 = 𝑐 = 0, we obtain the relations cos 𝜁 =(𝜅−𝑐V2𝑟)/𝑎𝑠𝑟, 𝑠2𝑟 = (𝑏V2𝑟 +𝑏𝑠V4𝑟)/𝑎, V2𝑟 = (𝛾−𝜅/2)/(1−𝑐/2), and𝜔2 = (𝑎𝑏𝑠−𝑐2)V4𝑟/4+(𝑎𝑏+2𝜅𝑐)V2𝑟/4−𝜅2/4. In this case,𝜔2 is a
quartic function of V𝑟. For the condition𝜔2 ≥ 0, there are two
cases depending on the sign of (𝑎𝑏𝑠−𝑐2). When (𝑎𝑏𝑠−𝑐2) > 0,𝜔2 exists for V2𝑟 ≥ V2𝑐,+, where V

2
𝑐,± are the solutions of 𝜔2 = 0,

which are given by V2𝑐,± = [−(𝑎𝑏 + 2𝜅𝑐) ± √𝐷𝑟]/[2(𝑎𝑏𝑠 − 𝑐2)]
with 𝐷𝑟 = (𝑎𝑏 + 2𝜅𝑐)2 + 4𝜅2(𝑎𝑏𝑠 − 𝑐2). The dependence of
V2𝑐,+ on 𝜅 is shown in Figure 6(b); there is only a lower limit
of velocity V𝑐,+. This property is the same with the case when𝑏𝑐 = 𝑐 = 0. On the other hand, when (𝑎𝑏𝑠 − 𝑐2) < 0, 𝜔2 exists
in a certain range of V2𝑟 ; V

2
𝑐,+ ≤ V2𝑟 ≤ V2𝑐,− under the condition𝐷𝑟 ≥ 0. In this case, there is a lower limit and an upper limit of

velocity, V𝑐,+ and V𝑐,−, respectively. The gap between V2𝑐,− and
V2𝑐,+ is defined by ΔV2𝑐 = V2𝑐,− − V2𝑐,+ = √𝐷𝑟/(𝑐2 − 𝑎𝑏𝑠). Let
us consider two limiting cases. In the limit |𝑐| → ∞, V2𝑐,±
and ΔV2𝑐 → 0. That is, the circular motion cannot exist. On
the other hand, for small |𝑐| and |𝑏𝑠| ≪ 1, we expand V2𝑐,±
in terms of 𝑐 and 𝑏𝑠 and obtain V2𝑐,+ ∼ 𝜅2/(𝑎𝑏 + 2𝜅𝑐) and
V2𝑐,− ∼ (𝑎𝑏 + 2𝜅𝑐)/(𝑐2 − 𝑎𝑏𝑠). Thus, in the limits 𝑏𝑠 and 𝑐 → 0,
V2𝑐,+ → 𝜅2/𝑎𝑏, V2𝑐,− → ∞, and ΔV2𝑐 → ∞. This suggests that
V𝑐,+ → V𝑐 and there is no upper limit of velocity, which are
the same with the case when 𝑏𝑠 = 𝑐 = 0. From the numerical
results shown in Figures 4(a), 4(b), and 4(c), (𝑎𝑏𝑠 − 𝑐2) < 0
in our RD system; therefore, it turns out that V2𝑟 exists only
in a finite range, V2𝑐,+ ≤ V2𝑟 ≤ V2𝑐,−. For larger |𝑐|, the gapΔV2𝑐,± is smaller, as shown in Figure 6(c). The dependence
of ΔV2𝑐 on 𝑐 is shown in Figure 6(d), which suggests thatΔV2𝑐 monotonically decreases with increasing |𝑐|. Since |𝑐|
increases monotonically as 𝑘𝑐 increases (Figure 4(c)), ΔV2𝑐
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Figure 7: Dependence of velocity and radius on 𝑐 in the stationary circular motion. Data are obtained by the simulation of the reduced tensor
model. 𝑏𝑠 = 0.1. The solid, dashed, and dotted curves correspond to (𝛾, 𝜅) = (0.25, 0.1), (0.5, 0.2), and (1.0, 0.3), respectively. (a) Dependence
of V on 𝑐. (b) Dependence of 𝑅𝑐 on 𝑐.

decreases as the chemotaxis increases. When the condition𝐷𝑟 = 0 is satisfied, V𝑐,− = V𝑐,+ and ΔV2𝑐 = 0, which yields the
critical value 𝑐∗ as

𝑐∗ = −(𝑎𝑏)
2 + 4𝜅2 (𝑎𝑏𝑠)
4𝜅𝑎𝑏 . (99)

When |𝑐| > |𝑐∗|, 𝐷𝑟 < 0, and, therefore, V2𝑐,± does not exist.
There is no parameter region of 𝛾 for a positive value of 𝜅;
the circular motion does not occur for any values of 𝛾. The
dependence of 𝑐∗ on 𝜅 is shown in Figure 6(e). Equation (99)
can be positive for large 𝜅. However, when 𝑐 is chosen as a
positive value, the velocities V and 𝑠 increase monotonically
with increasing 𝛾, and, therefore, the system diverges in the
simulation. For this reason, 𝑐∗ is shown in the range 𝑐∗ ≤ 0.

In order to verify the above theoretical results, the
simulation results for the reduced tensor model are shown
in each figure. The results obtained via simulation agree well
with the theoretical results. In Figures 6(a) and 6(b), for given𝜅 and 𝑐, there is only a lower limit of 𝛾 for the circular
motion of the spot, resulting in V𝑐 and V𝑐,+, respectively. On
the other hand, in Figure 6(c), for given 𝜅 and 𝑐, there is
not only a lower limit of 𝛾 but also an upper limit of 𝛾 for
the circular motion of the spot, resulting in V𝑐,+ and V𝑐,−,
respectively. However, in Figure 6(e), for given 𝜅 and 𝑐∗, there
is no parameter region of 𝛾 for the circular motion of the
spot.

The dependence of the stationary velocity and radius of
the circular motion on 𝑐 are shown in Figure 7. The velocity
V increases monotonically with increasing 𝑐, as shown in
Figure 7(a).The corresponding radius of the spotmotion𝑅𝑐 is
shown in Figure 7(b). For fixed values of 𝛾 and 𝜅, V decreases
and 𝑅𝑐 increases as |𝑐| increases in the range 𝑐 ≤ 0. The
effect of chemotaxis is incorporated in 𝑐, and 𝑐 is negative;|𝑐| increases as the intensity of chemotaxis 𝑘𝑐 increases in our
RD system (Figure 4(c)). Thus, it is seen that the chemotaxis
reduces V and increases 𝑅𝑐.

From the above analyses on (85)–(88) with 𝑏1 = 0, we
conclude four points on the properties of stationary circular
motion. (i) There is a lower limit of velocity. (ii) Although
there is no upper limit for the velocity when up to𝑂(k3) terms
are considered, there will be an upper limit for the velocity if
up to 𝑂(k4) terms are considered. (iii) The range of velocity
decreases as the chemotaxis increases. (iv) There is a critical
value 𝑐∗ (corresponding critical intensity of the chemotaxis
is denoted by 𝑘∗𝑐 ) such that when |𝑐| > |𝑐∗| (𝑘𝑐 > 𝑘∗𝑐 ), the
circular motion does not occur for any values of 𝛾.
6.4. Simulation of the Full Tensor Model. In this subsection,
we examine the effect of 𝑈𝛼𝛽𝛾 on V𝛼 and 𝑆𝛼𝛽. For this, we
consider the case of 𝑏1 ̸= 0. The data are obtained by the
simulation of the full tensor model.

The phase diagrams of the spot motion are shown in
Figure 8. The phase diagrams in the 𝑐-𝛾 plane and 𝑐-𝜅 plane
are shown in Figures 8(a) and 8(b), respectively. We note
that the behaviors in the full tensor model are similar to that
in the reduced model (Figures 5(b) and 5(c)). For positive
(negative) 𝑏1, the region of the circular motion is larger
(smaller). The phase diagrams in the 𝑏1-𝛾 plane and 𝑏1-𝜅
plane are shown in Figures 8(c) and 8(d), respectively. The
behaviors are similar to the phase diagrams in the 𝑐-𝛾 plane
and 𝑐-𝜅 plane.This result suggests that the effect of∑𝛾𝑈𝛼𝛽𝛾V𝛾
on the time evolution equation of 𝑆𝛼𝛽 is similar to that of|k|2𝑆𝛼𝛽.

The phase diagram of spot motion in the 𝑐-𝑏1 plane is
shown in Figure 9. It can be seen that the circular motion
occurs in the parameter region of positive and large values of𝑐 and 𝑏1. 𝑆𝛼𝛽 and𝑈𝛼𝛽𝛾 measure the elliptical deformation and
head-tail asymmetric deformation of the spot, respectively;
these deformations lead to the circular motion.

The effects of 𝑐 and 𝑏1 on the stationary velocity V
and the corresponding radius of circular motion 𝑅𝑐 are
shown in Figure 10. On comparing these figures, it can
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Figure 8: Phase diagram of spot motion. Data are obtained by the simulation of the full tensor model. 𝑏𝑠 = 0.1. M, S, and C in the figure
represent regions of no motion, straight motion, and circular motion, respectively. (a) Phase diagram in the 𝑐-𝛾 plane. 𝜅 = 0.8. The solid,
dashed, and dotted curves correspond to the cases of 𝑏1 = 0, 0.25, and −0.25, respectively.The upper (lower) region of each curve corresponds
to the region of circular (straight) motion, and the region 𝛾 ≤ 0 corresponds to the region of no motion. (b) Phase diagram in the 𝑐-𝜅 plane.𝛾 = 0.5. The solid, dashed, and dotted curves correspond to the cases of 𝑏1 = 0, 0.25, and −0.25, respectively. The upper (lower) region of
each curve corresponds to the region of straight (circular) motion. (c) Phase diagram in the 𝑏1-𝛾 plane. 𝜅 = 0.8. The solid, dashed, and dotted
curves correspond to the cases of 𝑐 = 0, 0.25, and −0.25, respectively. The region across each curve is the same as in (a). (d) Phase diagram in
the 𝑏1-𝜅 plane. 𝛾 = 0.5. The solid, dashed, and dotted curves correspond to the cases of 𝑐 = 0, 0.25, and −0.25, respectively. The region across
each curve is the same as in (b).

be seen that although V and 𝑅𝑐 depend on 𝑐 and 𝑏1, the
influences of 𝑏1 on V and 𝑅𝑐 are much smaller than those of𝑐.

The dependence of the critical velocity V𝑐,± and 𝑐∗ on 𝜅 is
shown in Figure 11. There exists a critical velocity V𝑐± for 𝑏1 ̸=0 as shown in Figure 11(a). For larger 𝑏1, the gap ΔV2𝑐 is larger.
This suggests that 𝑏1∑𝛾𝑈𝛼𝛽𝛾V𝛾 enhances the circularmotion,
which is consistent with the results shown in Figure 8. For
positive 𝑏1, |𝑐∗| becomes larger than that in the reduced
tensor model (solid curve) as shown in Figure 11(b). On the
other hand, for negative 𝑏1, there is no 𝑐∗. In our system,𝑏1 is positive and increases as the intensity of chemotaxis 𝑘𝑐
increases as shown in Figure 4(d). Thus, 𝑐∗ still exists in the
full tensor model, and |𝑐∗| is larger than that in the reduced
model.

7. Discussions

In this section, we discuss the physical origins of the braking
effect observed in the previous section. For our RD system,
we derived the time evolution equation of 𝑆𝛼𝛽 up to 𝑂(k4)
(see (77)). There were three terms of 𝑂(k4): 𝑏𝑠(V𝛼V𝛽 −𝛿𝛼𝛽|k|2/2)|k|2, 𝑏1∑𝛾𝑈𝛼𝛽𝛾V𝛾, and 𝑐|k|2𝑆𝛼𝛽. The 𝑏𝑠 term can
be absorbed into the 𝑏(V𝛼V𝛽 − 𝛿𝛼𝛽|k|2/2) term by replacing
𝑏 with (𝑏 + 𝑏𝑠|k|2). Then, with increasing velocity, the 𝑏𝑠
term changes the value of only 𝑏. In our theoretical analysis,
considering that the influence of 𝑈𝛼𝛽𝛾 is small, we set 𝑏1 =0 and examined the effect of 𝑐|k|2𝑆𝛼𝛽 on the stationary
solution in Sections 6.2 and 6.3. When up to 𝑂(k3) terms
were considered, there was no upper limit of velocity for
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Figure 9: Phase diagram of spot motion in the 𝑐-𝑏1 plane. Data are
obtained by the simulation of the full tensor model. 𝑏𝑠 = 0.1. The
marks S and C in the figure represent regions of straight motion
and circular motion, respectively. The solid, dashed, and dotted
curves correspond to the cases of (𝛾, 𝜅) = (0.25, 0.3), (0.5, 0.5), and(1.0, 0.8), respectively.

the circular motion of the spot, as shown in Figure 6(a).
However, on including the 𝑂(k4) terms, even in the absence
of chemotaxis (𝑘𝑐 = 0), 𝑐 ̸= 0. The term 𝑐|k|2𝑆𝛼𝛽 influenced
the upper limit of velocity of the circular motion, as shown
in Figure 6(c). One of the physical origins of the upper
limit of velocity is the refractory period behind the rear
interface. When 𝑘𝑐 = 0, the RD system described by (5)
and (6) is considered to have an activator and an inhibitor,
as reported by Krischer and Mikhailov [32]. When 𝜏 is large,
the motionless pulse (localized domain) in one dimension is
stable. With decreasing 𝜏, the motionless pulse is destabilized
into a traveling pulse in one dimension. For a traveling pulse
in one dimension, there is a refractory period behind the rear
interface. A repulsive interaction occurs betweenpulses in the
wave train; the repulsion results from the refractory period
imposed on the leading interface of a traveling pulse by the
tail of the preceding pulse [38]. In two dimensions, when a
spot moves along a circle, there is an upper limit of velocity
due to the refractory period behind the rear interface; the
refractory period causes a braking effect on the velocity of the
spot traveling along a circle.

In the absence of chemotaxis, that is, 𝑘𝑐 = 0, we estimate
the upper limit of velocity. Let us consider the traveling pulse
with velocity 𝑐 in one dimension of the system described by
(5) and (6) in the limit 𝜖 → 0. The spatial dependence of the
inhibitor before the leading interface and that behind the rear
interface are given by Vlead(𝑧) = 𝐶lead exp(𝜆−𝑧) (𝑧 > 0) and
Vrear(𝑧) = 𝐶rear exp(𝜆+𝑧) (𝑧 < 0), respectively, where 𝑧 =
𝑥 − 𝑐𝑡, 𝜆± = [−𝑐 ± √𝑐2 + 4𝛽]/2, and 𝐶lead(rear) is a coefficient.
Using these expressions, we estimate the relaxation length
(refractory period) of the inhibitor behind the rear interface
by the linear approximation of 1/𝜆+ ∼ 𝑐/𝛽 for large 𝑐. For the
spot moving along a circle with a given radius 𝑟0, the upper
limit of velocity 𝑐max will approximately satisfy the relation2𝜋𝑟0 ≫ 1/𝜆+ ∼ 𝑐max/𝛽: 𝑐max ≪ 2𝜋𝑟0𝛽. This suggests that,
for large 𝑐, the refractory period is proportional to 𝑐. As the

velocity of the spot increases, the inhibitor at the leading
interfaces becomes large due to the overlap, and, therefore,
the velocity becomes small (because of the first term in (16)).
These effects on velocity are manifested when the spot moves
rapidly along a circle with a small radius.

In the presence of chemotaxis, that is, 𝑘𝑐 > 0, we discuss
another physical origin of the braking effect. The chemotaxis
is caused by the gradient of the chemotactic substance at
the interface. In our RD system, the chemotactic substance
is autosecretion; it is produced inside the spot and diffuses
outward.The chemotactic substance is distributed around the
center of the spot andmonotonically decreases away from the
center. For the traveling pulse, the chemotactic substance at
the rear interface is larger than that at the leading interface.
The gradient of the chemotactic substance at the leading
(rear) interface is negative (positive).The absolute value of the
gradient of the chemotactic substance at the leading interface
is larger than that at the rear interface. In addition, (𝑑𝜒/𝑑V)
at the leading and rear interfaces are positive. Overall, the
chemotactic velocity is negative (because of the second term
in (16)). Thus, the chemotaxis in our system essentially
reduces velocity.

8. Conclusions

In this study, we considered the motion of a spot solution in
two dimensions under the influence of chemotaxis. Starting
from a three-component RD system, we proposed a two-
component (an activator and a chemotactic substance) RD
system with a global coupling term. We remark that, in our
model system, the spot secretes the chemotactic substance
from the inside and the motion of the spot is influenced by
the chemotaxis. Thus, the model is an autonomous system.
The chemotaxis term is of the Keller-Segel type, and the
chemotactic velocity is opposite to the traveling direction.
The reason for the opposite direction is that the system
involves autosecretion, and the gradient of the chemotactic
substance at the leading interface is negative. Although there
have been several studies on the motion of spots under the
influence of chemotaxis, the chemoattractant was supplied
from the outside [20–23]. The spot in these models is
driven toward the source (higher concentration) point of the
chemoattractant.These models are nonautonomous systems,
and, therefore, different from our model.

For the RD system, by employing the method proposed
in [16], we derived the equation of motion of the spot and
the time evolution equations of the tensors. Terms up to
the fourth order of v were considered, and we found that
the terms |k|2𝑆𝛼𝛽 and ∑𝛾𝑈𝛼𝛽𝛾V𝛾 played an important role
in the motion of the spot. Our numerical results suggested
the existence of an upper limit of velocity for the circular
motion of the spot due to the braking effect. There are
two physical origins for the braking effect: the refractory
period behind the rear interface and the chemotactic velocity
opposite to the moving direction. The former is unique
to the circular motion and is not applicable for a spot in
straight motion. On the other hand, the latter is general
in our autonomous chemotactic system and is applicable
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Figure 10: Dependence of velocity and radius on 𝑐 and 𝑏1 in the stationary circular motion. Data are obtained by the simulation of the full
tensor model. 𝑏𝑠 = 0.1, 𝛾 = 0.5, and 𝜅 = 0.2. (a) Dependence of V on 𝑐. (b) Dependence of 𝑅𝑐 on 𝑐, where, in (a) and (b), the solid, dashed, and
dotted curves correspond to 𝑏1 = 0, 0.5, and −0.5, respectively. (c) Dependence of V on 𝑏1. (d) Dependence of 𝑅𝑐 on 𝑏1, where, in (c) and (d),
the solid, dashed, and dotted curves correspond to 𝑐 = 0, −0.25, and −0.5, respectively.
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Figure 11: Dependence of the critical velocity V𝑐,± and 𝑐∗ on 𝜅. Data are obtained by the simulation of the full tensor model. 𝑏𝑠 = 0.1. (a)
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correspond to the cases of 𝑏1 = 0, 0.25, and 0.5, respectively.
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for all moving directions. Owing to the former reason, an
upper limit of velocity for the spot moving in a circle exists
even in the absence of chemotaxis. Based on the results
of our chemotaxis system, we conclude three points. (i) A
spot moving on a straight line is destabilized to circular
motion with increasing velocity. (ii) The velocity of a spot
moving along a circle is restricted to a certain range, which
is narrower than that in the absence of the chemotaxis. (iii)
There is a critical intensity of chemotaxis 𝑘∗𝑐 , and the spot does
not undergo circular motion for 𝑘𝑐 > 𝑘∗𝑐 .

In practical experiments, the candidates of autonomous
systems including chemotaxis are E. coli and macrophage
[39, 40]. However, there is an essential difference between
these biological systems and our model system; E. coli is
a rod-shaped cell with a flagellum and macrophage has an
amoeba-like shape with pseudopods, and the shape of the
motionless state of these cells is not described by a circle. E.
coli swims by rotating the flagellum, and macrophage crawls
by changing its size and shape. In contrast, in our model
system, the spot was a solution of an RD system and the
shape of the motionless state was assumed to be a circle.
The motionless spot was primarily destabilized through drift
bifurcation, and it changed into a moving spot with straight
motion. The straight moving spot was secondly destabilized
through rotation bifurcation, and it changed into a moving
spot with circular motion. Due to these differences, the
bifurcation points of the straight and circular motions and
the critical velocity for the circular motion in these biological
systems must be different from those of our model system.
However, the collective motions of bacteria and amoebas are
modeled by RD systems, and many spatiotemporal patterns
are shown [41, 42]: the diffusion-limited aggregation, Eden-
like, uniform disk, branched, target, spiral patterns, and so
on. This suggests that the behavior of individual cell in
these biological systems can be described by RD systems.
From these considerations, the above biological systems
are promising candidates of autonomous systems including
chemotaxis, and experimental observations of moving cell
with circular motion are expected.

Appendix

A. Velocity of the Interface in One Dimension

Here, we derive the velocity of the interface in one dimension,
given by (16), by following [43]. We denote ℎ as the value of V
at the interface 𝑥 = 𝑥0 at time 𝑡 = 𝑡0. Applying the stretching
transformations 𝜂 = (𝑡 − 𝑡0)/𝜖 and 𝜉 = (𝑥 − 𝑥0)/𝜖 to (5), we
obtain

𝜏𝑢𝜂 = 𝑢𝜉𝜉 − (𝑑𝜒𝑑V)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑖 (

𝑑V𝑑𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑖 𝑢𝜉 − 𝑢

+𝐻 (𝑢 − 𝑝) − ℎ,
(A.1)

where (𝐴)|𝑖 denotes the function 𝐴 evaluated at 𝑥 = 𝑥0, and
the position of the interface in the stretching coordinate is𝜉 = 0. In order to consider the traveling front solution of (A.1),

we introduce the moving coordinate 𝑧 = 𝜉 − 𝑐𝜂. Then, (A.1)
becomes

𝜏𝑢𝜂 = 𝑢𝑧𝑧 + (𝜏𝑐 − (𝑑𝜒𝑑V)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑖 (

𝑑V𝑑𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑖)𝑢𝑧 − 𝑢

+ 𝐻 (𝑢 − 𝑝) − ℎ
≡ 𝑢𝑧𝑧 + 𝑐󸀠𝑢𝑧 − 𝑢 + 𝐻 (𝑢 − 𝑝) − ℎ,

(A.2)

where 𝑐 is the velocity of the front and 𝑐󸀠 = (𝜏𝑐 −(𝑑𝜒/𝑑V)|𝑖(𝑑V/𝑑𝑥)|𝑖). The boundary conditions at 𝑧 = ±∞ are

𝑢 (−∞, 𝜂) = 1 − ℎ,
𝑢 (+∞, 𝜂) = −ℎ, (A.3)

and the boundary conditions at 𝑧 = 0 are
𝑢 (0+, 𝜂) = 𝑢 (0−, 𝜂) = 𝑝,
𝑢𝑧 (0+, 𝜂) = 𝑢𝑧 (0−, 𝜂) . (A.4)

The stationary solution of (A.2) is

𝑢 (𝑧) = {{{
𝐶−𝑒𝜆+𝑧 + (1 − ℎ) (𝑧 < 0) ,
𝐶+𝑒𝜆−𝑧 − ℎ (𝑧 ≥ 0) , (A.5)

where 𝐶± is a coefficient and 𝜆± = (1/2)[−𝑐󸀠 ± √𝑐󸀠2 + 4].
Under the boundary conditions (A.4), we get 𝐶+ = 𝜆+/(𝜆+ −𝜆−) = 𝑝 + ℎ and 𝐶− = 𝜆−/(𝜆+ − 𝜆−) = 𝑝 + ℎ − 1. Using these
relations, we obtain

𝑐󸀠 = 𝜏𝑐 − (𝑑𝜒𝑑V)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑖 (

𝑑V𝑑𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑖

= 2 (1/2 − 𝑝 − ℎ)
[(𝑝 + ℎ) (1 − 𝑝 − ℎ)]1/2 .

(A.6)

In the main text, 𝜏𝑐 in (A.6) is denoted as 𝜏𝐶(ℎ), which is
explicitly expressed as (16).

B. Explict Expressions of ℎ(0)0 and ℎ̃(0)0 in the
Limit 𝜖→ 0

We show that in the limit 𝜖 → 0, ℎ(0)0 and ℎ̃(0)0 calculated using
(13) agree with the ones calculated using (34) and (35) with
the substitutions𝐻q = 𝐻(0)

q and R = R(0), where R(0) = 𝑅0e𝑟,
respectively.ℎ(0)0 and ℎ̃(0)0 obtained directly from (13) are

ℎ(0)0 = V (𝑅0) = 1𝛽 − 𝑅0√𝛽𝐾1 (√𝛽𝑅0) 𝐼0 (√𝛽𝑅0) , (B.1)
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ℎ̃(0)0 = 𝑑V (𝑅0)𝑑𝑟 = −𝑅0𝐼1 (√𝛽𝑅0)𝐾1 (√𝛽𝑅0) , (B.2)

respectively.
We first derive ℎ(0)0 from the definition (34). Substituting𝐻q = 𝐻(0)

q and R = R(0) into (34), we obtain

ℎ(0)0 = ∫
q
𝐺𝑞𝐻(0)

q 𝑒iq⋅R(0)

= 𝑅0 ∫∞
0
𝑑𝑞( 1𝑞2 + 𝛽) 𝐽0 (𝑞𝑅0) 𝐽1 (𝑞𝑅0) .

(B.3)

We apply the formulas of the integrals ([44])

∫∞
0
𝑑𝑥 𝑥𝜇+1
(𝑥2 + 𝑡2) (𝑥2 + 𝑦2)]/2 𝐽] (𝑎√𝑥2 + 𝑦2) 𝐽𝜇 (𝑏𝑥)

= 𝑡
𝜇𝐽] (𝑎√𝑦2 − 𝑡2)
(𝑦2 − 𝑡2)]/2 𝐾𝜇 (𝑏𝑡)

(𝑏 ≥ 𝑎 > 0, 󵄨󵄨󵄨󵄨Re (𝜇)󵄨󵄨󵄨󵄨 < Re (]) + 2) ,

(B.4)

∫∞
0
𝑑𝑥𝐽0 (𝑎𝑥) 𝐽1 (𝑏𝑥) =

{{{{{{{{{{{{{

1𝑏 (𝑏 > 𝑎 > 0) ,
12𝑏 (𝑏 = 𝑎 > 0) ,
0 (𝑎 > 𝑏 > 0)

(B.5)

to (B.3); we can confirm that (B.3) agrees with (B.1).
Next, we derive ℎ̃(0)0 from the definition (35). Substituting𝐻q = 𝐻(0)

q and R = R(0) into (35), we obtain

ℎ̃(0)0 = i∫
q
(n ⋅ q) 𝐺𝑞𝐻(0)

q 𝑒iq⋅R(0)

= −𝑅0 ∫∞
0
𝑑𝑞( 𝑞𝑞2 + 𝛽) 𝐽21 (𝑞𝑅0) .

(B.6)

Applying formula (B.4) to (B.6), we can confirm that (B.6)
agrees with (B.2).

C. Derivation of (68)

Here, we give the detailed derivation of (68). We first
derive 𝛿h(0)1,1. Up to the first order of the deviations, 𝛿h(0)1,1 is
decomposed as

𝛿h(0)1,1 = iΩ ∫q ∫𝑑𝜔 (k ⋅ q) 𝐺2𝑞𝐻q𝑒iq⋅RR
− iΩ ∫q ∫𝑑𝜔 (k ⋅ q) 𝐺2𝑞𝐻(0)

q 𝑒iq⋅R0R0

∼ iΩ ∫q ∫𝑑𝜙𝑟 (k ⋅ q) 𝐺2𝑞𝐻(1)
q 𝑒iq⋅R0𝑅20e𝑟

− 1Ω ∫q ∫𝑑𝜙𝑟 (k ⋅ q) (q ⋅ 𝛿R (𝜙𝑟))
×𝐺2𝑞𝐻(0)

q 𝑒iq⋅R0𝑅20e𝑟
+2iΩ ∫q ∫𝑑𝜙𝑟 (k ⋅ q) 𝐺2𝑞𝐻(0)

q 𝑒iq⋅R0𝛿𝑅 (𝜙𝑟) 𝑅0e𝑟
≡ Φ1 +Φ2 +Φ3,

(C.1)

where 𝛿𝑅 and𝐻q are given in (25) and (31), respectively.
Substituting 𝐻(1)

q into Φ1, the 𝛼 (𝛼 = 1, 2) componentΦ1(𝛼) is obtained as

Φ1(𝛼) = 𝑅02 ∫𝑑𝑞𝑞2𝐺2𝑞𝐽1𝐽2∑
𝛽

𝑆𝛼𝛽V𝛽 ≡ −𝑎∗1∑
𝛽

𝑆𝛼𝛽V𝛽. (C.2)

Substituting 𝛿R(𝜙𝑟) and𝐻(0)
q intoΦ2,Φ2(𝛼) is obtained as

Φ2(𝛼)

= [𝑅04 ∫𝑑𝑞𝑞2𝐺2𝑞𝐽1𝐽2 − 𝑅04 ∫𝑑𝑞𝑞2𝐺2𝑞𝐽0𝐽1]∑
𝛽

𝑆𝛼𝛽V𝛽. (C.3)

Substituting 𝛿𝑅(𝜙𝑟) and𝐻(0)
q intoΦ3, Φ3(𝛼) is obtained as

Φ3(𝛼) = −∫𝑑𝑞𝑞𝐺2𝑞𝐽21∑
𝛽

𝑆𝛼𝛽V𝛽. (C.4)

Using the formula for the Bessel function (𝐽𝑛−1(𝑧) −𝐽𝑛+1(𝑧))/2 = 𝐽𝑛+1(𝑧) − 𝑛𝐽𝑛(𝑧)/𝑧, (Φ2(𝛼) + Φ3(𝛼)) becomes

(Φ2(𝛼) + Φ3(𝛼))
= [𝑅02 ∫𝑑𝑞𝑞2𝐺2𝑞𝐽1𝐽2 − 32 ∫𝑑𝑞𝑞𝐺2𝑞𝐽21]∑

𝛽

𝑆𝛼𝛽V𝛽
≡ −𝑎∗2∑

𝛽

𝑆𝛼𝛽V𝛽.
(C.5)

𝑎∗1 and 𝑎∗2 are the same as those of the result in [16].
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Next, we derive 𝛿h̃(0)1,1. Up to the first order of the
deviations, 𝛿h̃(0)1,1 is decomposed as

𝛿h̃(0)1,1 = −1Ω ∫
q
∫𝑑𝜔 (n ⋅ q) (k ⋅ q) 𝐺2𝑞𝐻q𝑒iq⋅RR

+ 1Ω ∫q ∫𝑑𝜔 (n ⋅ q) (k ⋅ q) 𝐺2𝑞𝐻(0)
q 𝑒iq⋅R0R0

∼ −2Ω ∫
q
∫𝑑𝜙𝑟 (n ⋅ q) (k ⋅ q) 𝐺2𝑞𝐻(0)

q 𝑒iq⋅R0𝑅0𝛿𝑅 (𝜙𝑟) e𝑟
− 1Ω ∫q ∫𝑑𝜙𝑟 (n ⋅ q) (k ⋅ q) 𝐺2𝑞𝐻(1)

q 𝑒iq⋅R0𝑅20e𝑟
− 1Ω ∫q ∫𝑑𝜙𝑟 (n ⋅ q) (k ⋅ q) (iq ⋅ 𝛿R (𝜙𝑟))
×𝐺2𝑞𝐻(0)

q 𝑒iq⋅R0𝑅20e𝑟
+ 1Ω ∫q ∫𝑑𝜙𝑟 (k ⋅ q) 𝑞𝛿𝑅󸀠 (𝜙𝑟) sin (𝜙𝑞 − 𝜙𝑟)
× 𝐺2𝑞𝐻(0)

q 𝑒iq⋅R0𝑅0e𝑟
≡ Ψ1 +Ψ2 +Ψ3 +Ψ4.

(C.6)

Substituting 𝐻(0)
q and 𝛿𝑅(𝜙𝑟) into Ψ1, the 𝛼 (𝛼 = 1, 2)

component Ψ1(𝛼) is obtained as

Ψ1(𝛼) = ∫𝑑𝑞𝑞𝐺2𝑞 (𝐽2 − 𝐽0) 𝐽1∑
𝛽

𝑆𝛼𝛽V𝛽. (C.7)

Substituting𝐻(1)
q intoΨ2, Ψ2(𝛼) is obtained as

Ψ2(𝛼) = −𝑅04 ∫𝑑𝑞𝑞2𝐺2𝑞 (𝐽2 − 𝐽0) 𝐽2∑
𝛽

𝑆𝛼𝛽V𝛽. (C.8)

Substituting𝐻(0)
q and 𝛿R intoΨ3, Ψ3(𝛼) is obtained as

Ψ3(𝛼) = 𝑅08 ∫𝑑𝑞𝑞3𝐺2𝑞 (3𝐽1 − 𝐽2) 𝐽1∑
𝛽

𝑆𝛼𝛽V𝛽. (C.9)

Substituting𝐻(0)
q and 𝛿𝑅󸀠(𝜙𝑟) intoΨ4, Ψ4(𝛼) is obtained as

Ψ4(𝛼) = 34 ∫𝑑𝑞𝑞2𝐺2𝑞𝐽0𝐽1∑
𝛽

𝑆𝛼𝛽V𝛽. (C.10)

In the main text, (Ψ3(𝛼) + Ψ4(𝛼)) is expressed as

(Ψ3(𝛼) + Ψ4(𝛼))
= ∫𝑑𝑞𝑞2𝐺2𝑞 [𝑅08 𝑞 (3𝐽1 − 𝐽2) 𝐽1 + 34𝐽0𝐽1]∑

𝛽

𝑆𝛼𝛽V𝛽
≡ −𝑎∗1∑

𝛽

𝑆𝛼𝛽V𝛽,
(C.11)

and (Ψ1(𝛼) + Ψ2(𝛼)) is expressed as

(Ψ1(𝛼) + Ψ2(𝛼))
= 2∫𝑑𝑞𝑞𝐺2𝑞 [14𝑅0𝑞𝐽2 − 𝐽1] 𝜕𝐽1𝜕 (𝑞𝑅0)∑𝛽 𝑆𝛼𝛽V𝛽
≡ −𝑎∗2∑

𝛽

𝑆𝛼𝛽V𝛽,
(C.12)

where we used 𝐽󸀠𝑛(𝑧) = (𝐽𝑛−1 − 𝐽𝑛+1)/2 as the formula for the
Bessel function.

D. Expansions of 𝛿ℎ and 𝛿ℎ̃ in (75) and (76)

The expansions of 𝛿ℎ and 𝛿ℎ̃ in (75) and (76) are

𝛿ℎ0 = −∑
𝑛

𝐷𝑛𝑐𝑛𝑒i𝑛𝜙𝑟 ,
𝛿ℎ1,1 = −V−2 ∑𝑛 𝐴𝑛𝑐𝑛𝑒i(𝑛+1)𝜙𝑟 − V+2 ∑𝑛 𝐵𝑛𝑐𝑛𝑒i(𝑛−1)𝜙𝑟 ,
𝛿ℎ1,2 = −∑

𝑛

𝐸𝑛 ̇𝑐𝑛𝑒i𝑛𝜙𝑟 ,
𝛿ℎ2,2 = −𝐺02 |k|2 + 𝐺14 (V2−𝑒2i𝜙𝑟 + V2+𝑒−2i𝜙𝑟)
+∑

𝑛

𝑐𝑛𝑒i𝑛𝜙𝑟 [V2−𝑒2i𝜙𝑟𝑇𝑛,1 − 2 |k|2 𝑇𝑛,2 + V2+𝑒−2i𝜙𝑟𝑇𝑛,3]
+∑

𝑛

𝑐𝑛𝑒i𝑛𝜙𝑟 [(V2−𝑒2i𝜙𝑟 + V2+𝑒−2i𝜙𝑟)𝑉1 + |k|2 𝑉2] ,
⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ,

(D.1)

𝛿ℎ̃0 = −∑
𝑛

𝐷𝑛𝑐𝑛𝑒i𝑛𝜙𝑟 ,
𝛿ℎ̃1,1 = −V−2 ∑𝑛 (𝐴𝑛 + 𝑛𝐴∗) 𝑐𝑛𝑒i(𝑛+1)𝜙𝑟
− V+2 ∑𝑛 (𝐵𝑛 − 𝑛𝐴∗) 𝑐𝑛𝑒i(𝑛−1)𝜙𝑟 ,
𝛿ℎ̃1,2 = −∑

𝑛

𝐸𝑛 ̇𝑐𝑛𝑒i𝑛𝜙𝑟 ,
𝛿ℎ̃2,2 = ∑

𝑛

𝑆∗𝑐𝑛𝑛 (V2+𝑒−2i𝜙𝑟 − V2−𝑒2i𝜙𝑟) 𝑒i𝑛𝜙𝑟

+ [−𝐺02 |k|2 + 𝐺14 (V2−𝑒2i𝜙𝑟 + V2+𝑒−2i𝜙𝑟)]
+∑

𝑛

𝑐𝑛𝑒i𝑛𝜙𝑟 [V2−𝑒2i𝜙𝑟 𝑇̃𝑛,1 − 2 |k|2 𝑇̃𝑛,2 + v2+𝑒−2i𝜙𝑟 𝑇̃𝑛,3]
+∑

𝑛

𝑐𝑛𝑒i𝑛𝜙𝑟 [(V2−𝑒2i𝜙𝑟 + V2+𝑒−2i𝜙𝑟)𝑉1 + |k|2 𝑉̃2] ,
⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ,

(D.2)

where V± = V1 ± iV2 and all the coefficients in (D.1) and
(D.2) are given in Appendix E. In order to calculate the time
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evolution of 𝑐𝑛, 𝑒−i𝑛𝜙𝑟 is multiplied to both sides of eq. (74),
and integration is performed over𝜙𝑟 in the range 0 ≤ 𝜙𝑟 ≤ 2𝜋.
Using the periodicity of trigonometric functions, we obtain
the time evolution equation of 𝑐𝑛. As the tensors S and U are
linear combinations of 𝑐±𝑛, we can derive their time evolution
equations.

E. Coefficients in (D.1) and (D.2)

We give the coefficients in (D.1) and (D.2) below. By using𝐹(𝑖, 𝑗, 𝑘, 𝑙) and 𝐹𝑑(𝑖, 𝑗, 𝑘, 𝑙), they are expressed as

𝐴𝑛 = 𝑅0 [𝐹 (2, 2, 𝑛, 𝑛 + 1) + 𝐹𝑑 (2, 2, 1, 1)] ,
𝐵𝑛 = 𝑅0 [−𝐹 (2, 2, 𝑛, 𝑛 − 1) + 𝐹𝑑 (2, 2, 1, 1)] ,
𝐷𝑛 = 𝑅0 [𝐹 (1, 1, 1, 1) − 𝐹 (1, 1, 𝑛, 𝑛)] ,
𝐸𝑛 = 𝑅0𝐹 (1, 2, 𝑛, 𝑛) ,
𝐺𝑛 = 𝑅0𝐹 (2, 3, 𝑛, 𝑛 + 1) ,
𝐺𝑠1 = 𝑅0𝐹 (4, 5, 1, 2) ,
𝑇𝑛,1 = 𝑅04 𝐹 (3, 3, 𝑛, 𝑛 + 2) ,
𝑇𝑛,2 = 𝑅04 𝐹 (3, 3, 𝑛, 𝑛) ,
𝑇𝑛,3 = 𝑅04 𝐹 (3, 3, 𝑛, 𝑛 − 2) ,
𝑉1 = 𝑅04 𝐹𝑑 (3, 3, 1, 2) ,
𝑉2 = 𝑅02 𝐹 (3, 3, 1, 1) ,

(E.1)

𝐴𝑛 = 𝑅0 [14 (𝐹 (3, 2, 1, 3) − 3𝐹 (3, 2, 1, 1))
+ 𝐹𝑑 (3, 2, 𝑛, 𝑛 + 1)] ,

𝐴∗ = 12 [𝐹 (2, 2, 0, 1) + 𝐹 (2, 2, 1, 2)] ,
𝐵𝑛 = 𝑅0 [14 (𝐹 (3, 2, 1, 3) − 3𝐹 (3, 2, 1, 1))
− 𝐹𝑑 (3, 2, 𝑛, 𝑛 − 1)] ,

𝐷𝑛 = 𝑅0 [𝐹𝑑 (2, 1, 1, 1) − 𝐹𝑑 (2, 1, 𝑛, 𝑛)] ,
𝐸𝑛 = 𝑅0𝐹𝑑 (2, 2, 𝑛, 𝑛) ,
𝐺0 = 𝑅0𝐹𝑑 (3, 3, 1, 0) ,
𝐺1 = 𝑅0𝐹𝑑 (3, 3, 1, 2) ,
𝐺𝑠1 = 𝑅0𝐹𝑑 (5, 5, 1, 2) ,
𝑆∗ = −18 [𝐹 (3, 3, 1, 1) + 𝐹 (3, 3, 1, 3)] ,

𝑇̃𝑛,1 = 𝑅04 𝐹𝑑 (4, 3, 𝑛, 𝑛 + 2) ,
𝑇̃𝑛,2 = 𝑅04 𝐹𝑑 (4, 3, 𝑛, 𝑛) ,
𝑇̃𝑛,3 = 𝑅04 𝐹𝑑 (4, 3, 𝑛, 𝑛 − 2) ,
𝑉1 = 𝑅016 [𝐹 (4, 3, 0, 1) − 2𝐹 (4, 3, 1, 2) + 𝐹 (4, 3, 1, 4)] ,
𝑉2 = 𝑅02 𝐹𝑑 (4, 3, 1, 1) .

(E.2)
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