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The paper deals with a rigorous description of the kinetic evolution of a hard sphere system in the low-density (Boltzmann–
Grad) scaling limit within the framework of marginal observables governed by the dual BBGKY (Bogolyubov–Born–
Green–Kirkwood–Yvon) hierarchy. For initial states specified by means of a one-particle distribution function, the link between
the Boltzmann–Grad asymptotic behavior of a nonperturbative solution of the Cauchy problem of the dual BBGKY hierarchy for
marginal observables and a solution of the Boltzmann kinetic equation for hard sphere fluids is established. One of the advantages
of such an approach to the derivation of the Boltzmann equation is an opportunity to describe the process of the propagation of
initial correlations in scaling limits.

1. Introduction

The main consistent approaches to the derivation of kinetic
equations from underlying large particle dynamics were
formulated by Bogolyubov [1] and Grad [2, 3]. For a hard
sphere system Grad’s method was developed by Cercignani
[4] and Lanford [5, 6]. The rigorous results on the derivation
of the Boltzmann equation with hard sphere collisions by
methods of perturbation theory of the BBGKY hierarchy
was proved in [7–10]. The most recent advances on the low-
density (Boltzmann–Grad) scaling asymptotic behavior [11]
of many-particle systems, in particular, systems with short-
range interaction potentials, came in [12–24].

As is well known, many-particle systems are described by
means of two objects: observables and states. A functional
of the mean value of observables defines a duality between
observables and states and as a consequence there exist
two approaches to the description of the evolution within
the framework of the evolution of observables and states,
respectively [25]. Traditionally the evolution ofmany-particle
systems is described within the framework of the evolution of

states governed by the BBGKY hierarchy for marginal distri-
bution functions. An equivalent approach to the description
of the evolution of many-particle systems is given in terms of
marginal observables governed by the dual BBGKYhierarchy
[26].

The objective of the paper is to develop an approach
to the description of the kinetic evolution of a hard sphere
system within the framework of the evolution of observables.
For this purpose in Section 2 we consider the microscopic
description of the evolution of a hard sphere system within
the framework of marginal observables governed by the
dual BBGKY hierarchy. Then in Section 3 the origin of
the dual kinetic evolution is stated; namely, a low-density
(Boltzmann–Grad) limit of a nonperturbative solution of the
Cauchy problem of the dual BBGKY hierarchy is established.
In Sections 4 and 5 for initial states specified by means of
a one-particle distribution function the link between the
dual Boltzmann hierarchy for the limit marginal observables
and the Boltzmann kinetic equation and the process of the
propagation of initial chaos is established. In Sections 6 and
7 obtained results extended on hard spheres fluids, namely,
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for initial states specified by means of a one-particle distribu-
tion function and initial correlation functions, characterized
condensed states. Finally, in Section 8 we conclude with some
perspectives for future research.

2. The Dual BBGKY Hierarchy with Hard
Sphere Collisions

As is well known, the evolution of many-particle systems
can be described within the framework of a sequence of
marginal (𝑠-particle) distribution functions aswell as in terms
of a sequence of marginal observables. In this section we
construct a nonperturbative solution of the Cauchy problem
of a hierarchy of evolution equations formarginal observables
of a hard sphere system.

We consider identical particles of a unit mass with a
diameter 𝜎 > 0, interacting as hard spheres with elastic colli-
sions. Every particle is characterized by its phase coordinates(𝑞𝑖, 𝑝𝑖) ≡ 𝑥𝑖 ∈ R3 × R3, 𝑖 ≥ 1. For configurations of
such a system the following inequalities are satisfied: |𝑞𝑖 −𝑞𝑗| ≥ 𝜎, 𝑖 ̸= 𝑗 ≥ 1; that is, the set W𝑛 ≡ {(𝑞1, . . . , 𝑞𝑛) ∈
R3𝑛 | |𝑞𝑖 − 𝑞𝑗| < 𝜎 for at least one pair (𝑖, 𝑗) : 𝑖 ̸=𝑗 ∈ (1, . . . , 𝑛)} is the set of forbidden configurations in the
configuration space of 𝑛 > 1 hard spheres. LetC𝛾 be the space
of sequences 𝑏 = (𝑏0, 𝑏1, . . . , 𝑏𝑛, . . .) of bounded continuous
functions on R3𝑛 × (R3𝑛 \ W𝑛) which are symmetric with
respect to permutations of the arguments 𝑥1, . . . , 𝑥𝑛, equal
to zero on the set of forbidden configurations W𝑛 and
equipped with the norm: ‖𝑏‖C𝛾 = max𝑛≥0(𝛾𝑛/𝑛!)‖𝑏‖C𝑛 =
max𝑛≥0(𝛾𝑛/𝑛!)sup𝑥1 ,...,𝑥𝑛 |𝑏𝑛(𝑥1, . . . , 𝑥𝑛)|, where 0 < 𝛾 < 1.

If 𝑡 ≥ 0, the evolution of marginal observables 𝐵(𝑡) =(𝐵0, 𝐵1(𝑡, 𝑥1), . . . , 𝐵𝑠(𝑡, 𝑥1, . . . , 𝑥𝑠), . . .) ∈ C𝛾 of a system of a
nonfixed number of hard spheres is described by the Cauchy
problem of the weak formulation of the following hierarchy
of evolution equations [26]:𝜕𝜕𝑡𝐵𝑠 (𝑡) = ( 𝑠∑𝑗=1L (𝑗) + 𝜖2 𝑠∑𝑗1<𝑗2=1Lint (𝑗1, 𝑗2))𝐵𝑠 (𝑡)

+ 𝜖2 𝑠∑
𝑗1 ̸=𝑗2=1

Lint (𝑗1, 𝑗2)
⋅ 𝐵𝑠−1 (𝑡, 𝑥1, . . . , 𝑥𝑗1−1, 𝑥𝑗1+1, . . . , 𝑥𝑠) ,

(1)

𝐵𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠)󵄨󵄨󵄨󵄨𝑡=0 = 𝐵𝜖,0𝑠 (𝑥1, . . . , 𝑥𝑠) , 𝑠 ≥ 1, (2)

where the coefficient 𝜖 > 0 is a scaling parameter (the
ratio of the diameter 𝜎 > 0 to the mean free path of hard
spheres) and on the set C𝑠,0 ⊂ C𝑠 of the continuously
differentiable functions with compact supports the operators
L(𝑗) andLint(𝑗1, 𝑗2) in a dimensionless form are defined by
the formulas

L (𝑗) 𝑏𝑛 ≐ ⟨𝑝𝑗, 𝜕𝜕𝑞𝑗⟩𝑏𝑛,
Lint (𝑗1, 𝑗2) 𝑏𝑛 ≐ ∫

S2+

𝑑𝜂 ⟨𝜂, (𝑝𝑗1 − 𝑝𝑗2)⟩
⋅ (𝑏𝑛 (𝑥1, . . . , 𝑞𝑗1 , 𝑝∗𝑗1 , . . . , 𝑞𝑗2 , 𝑝∗𝑗2 , . . . , 𝑥𝑛)− 𝑏𝑛 (𝑥1, . . . , 𝑥𝑛)) 𝛿 (𝑞𝑗1 − 𝑞𝑗2 + 𝜖𝜂) ,

(3)

respectively. In (3) the symbol ⟨⋅, ⋅⟩ denotes a scalar product, 𝛿
is theDiracmeasure,S2+ ≐ {𝜂 ∈ R3 | |𝜂| = 1, ⟨𝜂, (𝑝𝑗1−𝑝𝑗2)⟩ >0}, and the momenta 𝑝∗𝑗1 , 𝑝∗𝑗2 are defined by the equalities

𝑝∗𝑗1 ≐ 𝑝𝑗1 − 𝜂 ⟨𝜂, (𝑝𝑗1 − 𝑝𝑗2)⟩ ,𝑝∗𝑗2 ≐ 𝑝𝑗2 + 𝜂 ⟨𝜂, (𝑝𝑗1 − 𝑝𝑗2)⟩ . (4)

We refer to recurrence evolution equations (1) as the dual
BBGKY hierarchy for hard spheres in a dimensionless form.
If 𝑡 ≤ 0, a generator of the dual BBGKY hierarchy for hard
spheres is defined by the expression of corresponding form
[10].

To construct a solution of recurrence evolution equations
(1) on the spaceC𝑛 ≡ C(R3𝑛 × (R3𝑛 \W𝑛)) we introduce the
group of operators 𝑆𝑛(𝑡) that describes dynamics of 𝑛 hard
spheres. It is defined by means of the phase trajectories of
a hard sphere system almost everywhere on the phase space
R3𝑛 × (R3𝑛 \W𝑛), namely, beyond of the set M0𝑛 of the zero
Lebesgue measure, as follows:

(𝑆𝑛 (𝑡) 𝑏𝑛) (𝑥1, . . . , 𝑥𝑛) ≡ 𝑆𝑛 (𝑡, 1, . . . , 𝑛) 𝑏𝑛 (𝑥1, . . . , 𝑥𝑛)
≐ {{{
𝑏𝑛 (𝑋1 (𝑡, 𝑥1, . . . , 𝑥𝑛) , . . . , 𝑋𝑛 (𝑡, 𝑥1, . . . , 𝑥𝑛)) , if (𝑥1, . . . , 𝑥𝑛) ∈ (R3𝑛 × (R3𝑛 \W𝑛)) ,0, if (𝑞1, . . . , 𝑞𝑛) ∈ W𝑛,

(5)

where 𝑋𝑖(𝑡) ≡ 𝑋𝑖(𝑡, 𝑥1, . . . , 𝑥𝑛) is a phase trajectory of 𝑖th
particle constructed in [7, 10], and the set M0𝑛 consists of
the phase space points which are specified by initial data,
generating multiple collisions of hard spheres in the evolu-
tionary process, that is, collisions of more than two particles,

more than one two-particle collision at the same instant, and
infinite number of collisions on a finite time interval.

On the space C𝑛 one-parameter mapping (5) is an
isometric ∗-weak continuous group of operators; that is, it is
a 𝐶∗0 -group [27].
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The infinitesimal generator L𝑛 of a group of operators
(5) is defined in the sense of a ∗-weak convergence of the
space C𝑛 and it has the structure L𝑛 = ∑𝑛𝑗=1L(𝑗) +∑𝑛𝑗1<𝑗2=1Lint(𝑗1, 𝑗2), and the operators L(𝑗) and Lint(𝑗1, 𝑗2)
are defined by formulas (3).

A nonperturbative solution of the Cauchy problems (1)
and (2) is determined by the following expansions:

𝐵𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠) = 𝑠∑
𝑛=0

1𝑛! 𝑠∑
𝑗1 ̸=⋅⋅⋅ ̸=𝑗𝑛=1

A1+𝑛 (𝑡, {𝑌 \ 𝑍} , 𝑍)
⋅ 𝐵𝜖,0𝑠−𝑛 (𝑥1, . . . , 𝑥𝑗1−1, 𝑥𝑗1+1, . . . , 𝑥𝑗𝑛−1, 𝑥𝑗𝑛+1, . . . , 𝑥𝑠) ,𝑠 ≥ 1.

(6)

The generating operators of expansions (6) is the (1 + 𝑛)th-
order cumulant of groups of operators (5) defined by the
following expansion:

A1+𝑛 (𝑡, {𝑌 \ 𝑍} , 𝑍)≐ ∑
𝑃:({𝑌\𝑍},𝑍)=⋃𝑖 𝑋𝑖

(−1)|𝑃|−1 (|𝑃| − 1)!
⋅ ∏
𝑋𝑖⊂𝑃

𝑆|𝜃(𝑋𝑖)| (𝑡, 𝜃 (𝑋𝑖)) , 𝑛 ≥ 0,
(7)

where 𝑌 ≡ (1, . . . , 𝑠), 𝑍 ≡ (𝑗1, . . . , 𝑗𝑛) ⊂ 𝑌, the set, consisting
of one element of the set of indices 𝑌 \ 𝑍 = (1, . . . , 𝑗1 −1, 𝑗1 + 1, . . . , 𝑗𝑛 − 1, 𝑗𝑛 + 1, . . . , 𝑠), we denoted by {𝑌 \ 𝑍},
the declusterization mapping 𝜃 is defined by the formula𝜃({𝑌 \𝑍}, 𝑍) = 𝑌, and the symbol∑𝑃means the sum over all
possible partitions 𝑃 of the set (1, . . . , 𝑛) into |𝑃| nonempty
mutually disjoint subsets 𝑋𝑖 ⊂ (1, . . . , 𝑛).

The simplest examples of expansions (6) for marginal
observables have the following form:𝐵1 (𝑡, 𝑥1) = A1 (𝑡, 1) 𝐵𝜖,01 (𝑥1) ,𝐵2 (𝑡, 𝑥1, 𝑥2) = A1 (𝑡, {1, 2}) 𝐵𝜖,02 (𝑥1, 𝑥2)+A2 (𝑡, 1, 2) (𝐵𝜖,01 (𝑥1) + 𝐵𝜖,01 (𝑥2)) .

(8)

On the spaceC𝛾 for the Cauchy problems (1) and (2) the
following statement is true [28].

Theorem1. For finite sequences of infinitely differentiable func-
tions with compact supports 𝐵(0) = (𝐵0, 𝐵𝜖,01 , . . . , 𝐵𝜖,0𝑠 , . . .) ∈
C0𝛾 ⊂ C𝛾 a sequence of functions determined by expansions (6)
is a classical solution and for arbitrary initial data 𝐵(0) ∈ C𝛾
it is a generalized solution.

Under the condition that 𝛾 < 𝑒−1, for a sequence of
marginal observables (6), the estimate holds

‖𝐵 (𝑡)‖C𝛾 ≤ 𝑒2 (1 − 𝛾𝑒)−1 ‖𝐵 (0)‖C𝛾 . (9)

We remark that a one-component sequence of marginal
observables corresponds to observables of certain structure;

namely, the marginal observable 𝐵(1)(0) = (0, 𝑏𝜖1(𝑥1), 0, . . .)
corresponds to the additive-type observable, and a one-
component sequence of marginal observables 𝐵(𝑘)(0) =(0, . . . , 0, 𝑏𝜖𝑘(𝑥1, . . . , 𝑥𝑘), 0, . . .) corresponds to the 𝑘-ary-type
observable [26]. If in capacity of initial data (2) we consider
the additive-type marginal observables, then the structure of
solution expansion (6) is simplified and attains the form

𝐵(1)𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠) = A𝑠 (𝑡, 1, . . . , 𝑠) 𝑠∑
𝑗=1

𝑏𝜖1 (𝑥𝑗) ,
𝑠 ≥ 1, (10)

where the generating operator of this expansion is the 𝑠th-
order cumulant of groups of operators (7).

In the case of 𝑘-ary-type marginal observables solution
expansion (6) has the form

𝐵(𝑘)𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠) = 1(𝑠 − 𝑘)! 𝑠∑
𝑗1 ̸=⋅⋅⋅ ̸=𝑗𝑠−𝑘=1

A1+𝑠−𝑘 (𝑡,
{(1, . . . , 𝑠) \ (𝑗1, . . . , 𝑗𝑠−𝑘)} , 𝑗1, . . . , 𝑗𝑠−𝑘) 𝑏𝜖𝑘 (𝑥1, . . . ,𝑥𝑗1−1, 𝑥𝑗1+1, . . . , 𝑥𝑗𝑠−𝑘−1, 𝑥𝑗𝑠−𝑘+1, . . . , 𝑥𝑠) , 𝑠 ≥ 𝑘,

(11)

where the generating operator of this expansion is the (1 +𝑠 − 𝑘)th-order cumulant of groups of operators (7), and, if1 ≤ 𝑠 < 𝑘, we have 𝐵(𝑘)𝑠 (𝑡) = 0.
We remark also that expansion (6) can be also represented

in the form of the perturbation (iteration) series [26] as a
result of applying of analogs of the Duhamel equation to
cumulants (7) of groups of operators (5).

Let 𝐿1𝑛 ≡ 𝐿1(R3𝑛 × (R3𝑛 \W𝑛)) be the space of integrable
functions that are symmetric with respect to permutations
of the arguments 𝑥1, . . . , 𝑥𝑛, equal to zero on the set of
forbidden configurations W𝑛 and equipped with the norm:‖𝑓𝑛‖𝐿1(R3𝑛×R3𝑛) = ∫𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑛|𝑓𝑛(𝑥1, . . . , 𝑥𝑛)|. A subspace of
continuously differentiable functions with compact supports
we denote by 𝐿1𝑛,0 ⊂ 𝐿1𝑛.

The mean value of the marginal observable 𝐵(𝑡) ∈ C𝛾 at𝑡 ∈ R is determined by the functional

(𝐵 (𝑡) , 𝐹 (0)) = ∞∑
𝑠=0

1𝑠! ∫(R3×R3)𝑠 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑠⋅ 𝐵𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠) 𝐹𝜖,0𝑠 (𝑥1, . . . , 𝑥𝑠) , (12)

where initial state of finitely many hard spheres is described
bymeans of a sequence of themarginal distribution functions𝐹(0) = (1, 𝐹𝜖,01 , . . . , 𝐹𝜖,0𝑛 , . . .) ∈ 𝐿1 = ⨁∞𝑛=0𝐿1𝑛. Owing to
estimate (9), functional (12) exists under the condition that𝛾 < 𝑒−1.

We remark that for mean value functional (12) the
following equality holds:(𝐵 (𝑡) , 𝐹 (0)) = (𝐵 (0) , 𝐹 (𝑡)) , (13)
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where the sequence 𝐹(𝑡) = (1, 𝐹1(𝑡), . . . , 𝐹𝑛(𝑡), . . .) ∈𝐿1 = ⨁∞𝑛=0𝐿1𝑛 is a solution of the BBGKY hierar-
chy for hard spheres. Generally such a solution is con-
structed by methods of perturbation theory [5–12, 29–
32] (a nonperturbative solution was constructed in [33]).
In case of infinitely many hard spheres [29, 30] a local
in time solution of the Cauchy problem of the BBGKY
hierarchy [7–12] is determined by perturbation series for
arbitrary initial data from the space 𝐿∞𝜉 of sequences
of bounded functions equipped with the norm:‖𝑓‖𝐿∞

𝜉
=

sup𝑛≥0𝜉−𝑛sup𝑥1 ,...,𝑥𝑛 |𝑓𝑛(𝑥1, . . . , 𝑥𝑛)| exp(𝛽∑𝑛𝑖=1(𝑝2𝑖 /2)). In this
case a local in time existence of the mean value functionals(𝐵(0), 𝐹(𝑡)) and (𝐵(𝑡), 𝐹(0))was proved in papers [7], [10] and
[34], [35], respectively.

3. The Kinetic Evolution of Hard
Sphere Observables

We consider the problem of the rigorous description of
the kinetic evolution of hard spheres within the frame-
work of marginal observables by giving of a low-density
(Boltzmann–Grad) asymptotic behavior of the Cauchy prob-
lem of the dual BBGKY hierarchy (1), (2).

Theorem 2. If for initial data 𝐵𝜖,0𝑛 ∈ C𝑛, 𝑛 ≥ 1, there exists
the limit 𝑏0𝑛 ∈ C𝑛𝑤∗ − lim

𝜖→0
(𝜖−2𝑛𝐵𝜖,0𝑛 − 𝑏0𝑛) = 0, (14)

and then for arbitrary finite time interval there exists the
Boltzmann–Grad limit of marginal observables (6) in the sense
of a ∗-weak convergence of the spaceC𝑠𝑤∗ − lim

𝜖→0
(𝜖−2𝑠𝐵𝑠 (𝑡) − 𝑏𝑠 (𝑡)) = 0, (15)

which is determined by the expansions

𝑏𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠) = 𝑠−1∑
𝑛=0

∫𝑡
0
𝑑𝑡1 ⋅ ⋅ ⋅ ∫𝑡𝑛−1

0
𝑑𝑡𝑛

⋅ ∏
𝑗∈(1,...,𝑠)

𝑆1 (𝑡 − 𝑡1, 𝑗) 𝑠∑
𝑖1 ̸=𝑗1=1

L
0
int (𝑖1, 𝑗1)

× ∏
𝑗∈(1,...,𝑠)\(𝑗1)

𝑆1 (𝑡1 − 𝑡2, 𝑗)
⋅ ⋅ ⋅ ∏
𝑗∈(1,...,𝑠)\(𝑗1 ,...,𝑗𝑛−1)

𝑆1 (𝑡𝑛−1 − 𝑡𝑛, 𝑗)
⋅ 𝑠∑
𝑖𝑛 ̸=𝑗𝑛=1,

𝑖𝑛 ,𝑗𝑛 ̸=(𝑗1 ,...,𝑗𝑛−1)

L
0
int (𝑖𝑛, 𝑗𝑛)

× ∏
𝑗∈(1,...,𝑠)\(𝑗1 ,...,𝑗𝑛)

𝑆1 (𝑡𝑛, 𝑗)
⋅ 𝑏0𝑠−𝑛 ((𝑥1, . . . , 𝑥𝑠) \ (𝑥𝑗1 , . . . , 𝑥𝑗𝑛)) , 𝑠 ≥ 1,

(16)

where the operatorL0int(𝑗1, 𝑗2) is the collision operator of point
particles, namely,

L
0
int (𝑗1, 𝑗2) 𝑏𝑛 ≐ ∫

S2+

𝑑𝜂 ⟨𝜂, (𝑝𝑗1 − 𝑝𝑗2)⟩
⋅ (𝑏𝑛 (𝑥1, . . . , 𝑞𝑗1 , 𝑝∗𝑗1 , . . . , 𝑞𝑗2 , 𝑝∗𝑗2 , . . . , 𝑥𝑛)− 𝑏𝑛 (𝑥1, . . . , 𝑥𝑛)) 𝛿 (𝑞𝑗1 − 𝑞𝑗2) .

(17)

Before proving this statement we give some comments.
We consider the Boltzmann–Grad limit of a special case

of marginal observables, namely, the additive-type marginal
observables. If for the initial additive-type marginal observ-
able 𝑏𝜖1 the following condition is satisfied:

𝑤∗ − lim
𝜖→0
(𝜖−2𝑏𝜖1 − 𝑏01 ) = 0, (18)

then, according to statement (15), for additive-type marginal
observables (10) we derive

𝑤∗ − lim
𝜖→0
(𝜖−2𝑠𝐵(1)𝑠 (𝑡) − 𝑏(1)𝑠 (𝑡)) = 0, (19)

where the limit marginal observable 𝑏(1)𝑠 (𝑡) is determined as
a special case of expansion (16):

𝑏(1)𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠) = ∫𝑡
0
𝑑𝑡1 ⋅ ⋅ ⋅ ∫𝑡𝑠−2

0
𝑑𝑡𝑠−1

⋅ ∏
𝑗∈(1,...,𝑠)

𝑆1 (𝑡 − 𝑡1, 𝑗) 𝑠∑
𝑖1 ̸=𝑗1=1

L
0
int (𝑖1, 𝑗1)

× ∏
𝑗∈(1,...,𝑠)\(𝑗1)

𝑆1 (𝑡1 − 𝑡2, 𝑗)
⋅ ⋅ ⋅ ∏
𝑗∈(1,...,𝑠)\(𝑗1 ,...,𝑗𝑠−2)

𝑆1 (𝑡𝑠−2 − 𝑡𝑠−1, 𝑗)
× 𝑠∑
𝑖𝑠−1 ̸=𝑗𝑠−1=1,
𝑖𝑠−1 ,𝑗𝑠−1 ̸=(𝑗1 ,...,𝑗𝑠−2)

L
0
int (𝑖𝑠−1, 𝑗𝑠−1)

⋅ ∏
𝑗∈(1,...,𝑠)\(𝑗1 ,...,𝑗𝑠−1)

𝑆1 (𝑡𝑠−1, 𝑗)
⋅ 𝑏01 ((𝑥1, . . . , 𝑥𝑠) \ (𝑥𝑗1 , . . . , 𝑥𝑗𝑠−1)) , 𝑠 ≥ 1.

(20)

We make several examples of expansions (20) of the limit
additive-type marginal observable:

𝑏(1)1 (𝑡, 𝑥1) = 𝑆1 (𝑡, 1) 𝑏01 (𝑥1) ,
𝑏(1)2 (𝑡, 𝑥1, 𝑥2) = ∫𝑡

0
𝑑𝑡1 2∏
𝑖=1

𝑆1 (𝑡 − 𝑡1, 𝑖)L0int (1, 2)
⋅ 2∑
𝑗=1

𝑆1 (𝑡1, 𝑗) 𝑏01 (𝑥𝑗) .
(21)
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If for the initial 𝑘-ary-type marginal observable 𝑏𝜖𝑘 the
following condition is satisfied:

𝑤∗ − lim
𝜖→0
(𝜖−2𝑏𝜖𝑘 − 𝑏0𝑘) = 0, (22)

then, according to statement (15), for 𝑘-ary-type marginal
observables (11) we derive

𝑤∗ − lim
𝜖→0
(𝜖−2𝑠𝐵(𝑘)𝑠 (𝑡) − 𝑏(𝑘)𝑠 (𝑡)) = 0, (23)

where the limit marginal observable 𝑏(𝑘)𝑠 (𝑡) is determined as
a special case of expansion (16):

𝑏(𝑘)𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠) = ∫𝑡
0
𝑑𝑡1 ⋅ ⋅ ⋅ ∫𝑡𝑠−𝑘−1

0
𝑑𝑡𝑠−𝑘

⋅ ∏
𝑗∈(1,...,𝑠)

𝑆1 (𝑡 − 𝑡1, 𝑗) 𝑠∑
𝑖1 ̸=𝑗1=1

L
0
int (𝑖1, 𝑗1)

× ∏
𝑗∈(1,...,𝑠)\(𝑗1)

𝑆1 (𝑡1 − 𝑡2, 𝑗)
⋅ ⋅ ⋅ ∏
𝑗∈(1,...,𝑠)\(𝑗1 ,...,𝑗𝑠−𝑘−1)

𝑆1 (𝑡𝑠−𝑘−1 − 𝑡𝑠−𝑘, 𝑗)
× 𝑠∑

𝑖𝑠−𝑘 ̸=𝑗𝑠−𝑘=1,
𝑖𝑠−𝑘,𝑗𝑠−𝑘 ̸=(𝑗1 ,...,𝑗𝑠−𝑘−1)

L
0
int (𝑖𝑠−𝑘, 𝑗𝑠−𝑘)

⋅ ∏
𝑗∈(1,...,𝑠)\(𝑗1 ,...,𝑗𝑠−𝑘)

𝑆1 (𝑡𝑠−𝑘, 𝑗)
⋅ 𝑏0𝑘 ((𝑥1, . . . , 𝑥𝑠) \ (𝑥𝑗1 , . . . , 𝑥𝑗𝑠−𝑘)) , 1 ≤ 𝑠 ≤ 𝑘.

(24)

If 𝑏0 ∈ C𝛾, then the sequence 𝑏(𝑡) = (𝑏0, 𝑏1(𝑡), . . . ,𝑏𝑠(𝑡), . . .) of limit marginal observables (16) is a generalized
global solution of the Cauchy problem of the dual Boltzmann
hierarchy with hard sphere collisions

𝜕𝜕𝑡𝑏𝑠 (𝑡)
= 𝑠∑
𝑗=1

L (𝑗) 𝑏𝑠 (𝑡)
+ 𝑠∑
𝑗1 ̸=𝑗2=1

L
0
int (𝑗1, 𝑗2) 𝑏𝑠−1 (𝑡, (𝑥1, . . . , 𝑥𝑠) \ (𝑥𝑗1)) ,

(25)

𝑏𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠)󵄨󵄨󵄨󵄨𝑡=0 = 𝑏0𝑠 (𝑥1, . . . , 𝑥𝑠) , 𝑠 ≥ 1, (26)

where the operatorL0int is defined by (17). This fact is proved
similar to the case of an iteration series of the dual BBGKY
hierarchy [26].

It should be noted that equations set (25) has the structure
of recurrence evolution equations. Indeed, we make a few

examples of the dual Boltzmann hierarchy with hard sphere
collisions (25):𝜕𝜕𝑡𝑏1 (𝑡, 𝑥1) = ⟨𝑝1, 𝜕𝜕𝑞1⟩𝑏1 (𝑡, 𝑥1) ,𝜕𝜕𝑡𝑏2 (𝑡, 𝑥1, 𝑥2) = 2∑𝑗=1⟨𝑝𝑗, 𝜕𝜕𝑞𝑗⟩𝑏2 (𝑡, 𝑥1, 𝑥2)

+ ∫
S2+

𝑑𝜂 ⟨𝜂, (𝑝1 − 𝑝2)⟩ 𝛿 (𝑞1 − 𝑞2)
⋅ (𝑏1 (𝑞1, 𝑝∗1 ) − 𝑏1 (𝑥1) + 𝑏1 (𝑞2, 𝑝∗2 ) − 𝑏1 (𝑥2)) .

(27)

Thus, in the Boltzmann–Grad scaling limit the kinetic
evolution of hard spheres is described in terms of limit
marginal observables (16) governed by the dual Boltzmann
hierarchy with hard sphere collisions (25). Similar approach
to the description of the mean field asymptotic behavior of
quantummany-particle systems was developed in paper [36].

We outline the sketch of the proof of the limit theorem.
For the group of operators (5) the analog of the Duhamel
equation is valid [27](𝑆𝑠 (𝑡, 1, . . . , 𝑠) − 𝑆𝑠−1 (𝑡, (1, . . . , 𝑠) \ 𝑗1) 𝑆1 (𝑡, 𝑗1)) 𝑏𝑠

= 𝜖2 ∫𝑡
0
𝑑𝜏𝑆𝑠 (𝑡 − 𝜏, 1, . . . , 𝑠) 𝑠∑

𝑖1=1,
𝑖1 ̸=𝑗1

Lint (𝑖1, 𝑗1)
⋅ 𝑆𝑠−1 (𝜏, (1, . . . , 𝑠) \ 𝑗1) 𝑆1 (𝜏, 𝑗1) 𝑏𝑠,

(28)

where the operatorLint(𝑖, 𝑗) is defined by formula (3). Then
for the (1 + 𝑛)th-order cumulant of groups of operators (5)
the analog of the Duhamel equation holds

A1+𝑛 (𝑡, {(1, . . . , 𝑠) \ (𝑗1, . . . , 𝑗𝑛)} , 𝑗1, . . . , 𝑗𝑛)⋅ 𝑏𝑠−𝑛 ((𝑥1, . . . , 𝑥𝑠) \ (𝑥𝑗1 , . . . , 𝑥𝑗𝑛))
= 𝜖2𝑛𝑛! ∫𝑡

0
𝑑𝑡1 ⋅ ⋅ ⋅ ∫𝑡𝑛−1

0
𝑑𝑡𝑛𝑆𝑠 (𝑡 − 𝑡1)

⋅ 𝑠∑
𝑖1=1,
𝑖1 ̸=𝑗1

Lint (𝑖1, 𝑗1) 𝑆𝑠−1 (𝑡1 − 𝑡2) ⋅ ⋅ ⋅ 𝑆𝑠−𝑛+1 (𝑡𝑛−1 − 𝑡𝑛)
⋅ 𝑠∑
𝑖𝑛=1,
𝑖𝑛 ̸=(𝑗1 ,...,𝑗𝑛)

Lint (𝑖𝑛, 𝑗𝑛) 𝑆𝑠−𝑛 (𝑡𝑛)
⋅ 𝑏𝑠−𝑛 ((𝑥1, . . . , 𝑥𝑠) \ (𝑥𝑗1 , . . . , 𝑥𝑗𝑛)) ,

(29)

where notations accepted above are used, 𝑆𝑠−𝑛(𝑡𝑛) ≡𝑆𝑠−𝑛(𝑡𝑛, (1, . . . , 𝑠)\(𝑗1, . . . , 𝑗𝑛)), andwe take into consideration
the identity𝑆𝑛 (𝑡, 𝑗1, . . . , 𝑗𝑛) 𝐵𝜖,0𝑠−𝑛 ((𝑥1, . . . , 𝑥𝑠) \ (𝑥𝑗1 , . . . , 𝑥𝑗𝑛))= 𝐵𝜖,0𝑠−𝑛 ((𝑥1, . . . , 𝑥𝑠) \ (𝑥𝑗1 , . . . , 𝑥𝑗𝑛)) . (30)



6 Advances in Mathematical Physics

For arbitrary finite time interval ∗-weak continuous
group of operators (5) has the following Boltzmann–Grad
scaling limit in the sense of a∗-weak convergence of the space
C𝑠

𝑤∗ − lim
𝜖→0
(𝑆𝑠 (𝑡) 𝑏𝑠 − 𝑠∏

𝑗=1

𝑆1 (𝑡, 𝑗) 𝑏𝑠) = 0. (31)

Taking into account assumption (14) and an analog of
the Duhamel equation (29), then in view of formula (31), for
cumulants of asymptotically perturbed groups of operators
we have

𝑤∗ − lim
𝜖→0
(𝜖−2𝑛A1+𝑛 (𝑡, {(1, . . . , 𝑠) \ (𝑗1, . . . , 𝑗𝑛)} , 𝑗1,

. . . , 𝑗𝑛) − 𝑛! ∫𝑡
0
𝑑𝑡1 ⋅ ⋅ ⋅ ∫𝑡𝑛−1

0
𝑑𝑡𝑛 ∏
𝑗∈(1,...,𝑠)

𝑆1 (𝑡 − 𝑡1, 𝑗)
⋅ 𝑠∑
𝑖1 ̸=𝑗1=1

L
0
int (𝑖1, 𝑗1) ∏

𝑗∈(1,...,𝑠)\(𝑗1)

𝑆1 (𝑡1 − 𝑡2, 𝑗)
⋅ ⋅ ⋅ ∏
𝑗∈(1,...,𝑠)\(𝑗1 ,...,𝑗𝑛−1)

𝑆1 (𝑡𝑛−1 − 𝑡𝑛, 𝑗)
⋅ 𝑠∑
𝑖𝑛 ̸=𝑗𝑛=1,

𝑖𝑛 ,𝑗𝑛 ̸=(𝑗1 ,...,𝑗𝑛−1)

L
0
int (𝑖𝑛, 𝑗𝑛)

× ∏
𝑗∈(1,...,𝑠)\(𝑗1 ,...,𝑗𝑛)

𝑆1 (𝑡𝑛, 𝑗))𝑏𝑠−𝑛 ((𝑥1, . . . ,
𝑥𝑠) \ (𝑥𝑗1 , . . . , 𝑥𝑗𝑛)) = 0.

(32)

As a result of equality (32) we establish the validity of
statement (15) for nonperturbative solution (6) of the Cauchy
problem of the dual BBGKY hierarchies (1) and (2).

4. The Derivation of the Boltzmann
Kinetic Equation

We shall establish the link between the constructed asymp-
totic behavior of marginal observables of a hard sphere
system (Theorem 2) and the description of kinetic evolution
of states by means of a one-particle marginal distribution
function governed by the Boltzmann kinetic equation.

In case of the absence of correlations between particles
at initial time, that is, for initial states satisfying a chaos
condition [10], the sequence of initial marginal distribution
functions for a system of hard spheres has the form

𝐹(𝑐) ≡ (1, 𝐹𝜖,01 (𝑥1) , . . . , 𝑠∏
𝑖=1

𝐹𝜖,01 (𝑥𝑖)XR3𝑠\W𝑠
, . . .) , (33)

where XR3𝑠\W𝑠
is the Heaviside step function of the allowed

configurations.This assumption about initial state is intrinsic

for the kinetic theory, because in this case all possible states
of gases are described by means of a one-particle distribution
function.

Let 𝐹0,𝜖1 ∈ 𝐿∞𝜉 (R3 × R3); that is, the inequality holds:|𝐹0,𝜖1 (𝑥𝑖)| ≤ 𝜉 exp(−𝛽(𝑝2𝑖 /2)), where 𝜉 > 0, 𝛽 ≥ 0 are
parameters.We assume that the Boltzmann–Grad limit of the
initial one-particle (marginal) distribution function 𝐹0,𝜖1 ∈𝐿∞𝜉 (R3 ×R3) exists in the sense of a weak convergence of the
space 𝐿∞𝜉 (R3 ×R3), namely,𝑤 − lim

𝜖→0
(𝜖2𝐹0,𝜖1 − 𝑓01 ) = 0, (34)

and then the Boltzmann–Grad limit of the initial
state (33) satisfies a chaos property too, that is, 𝑓(𝑐) ≡(1, 𝑓01 (𝑥1), . . . ,∏𝑠𝑖=1𝑓01 (𝑥𝑖), . . .).

We note that assumption (34) with respect to the
Boltzmann–Grad limit of initial states holds true for the
equilibrium states [37].

If 𝑏(𝑡) ∈ C𝛾 and |𝑓01 (𝑥𝑖)| ≤ 𝜉 exp(−𝛽(𝑝2𝑖 /2)),
then the Boltzmann–Grad limit of mean value functional
(12) exists under the condition that [7]: 𝑡 < 𝑡0 ≡(const(𝜉, 𝛽)‖𝑓01 ‖𝐿∞𝜉 (R3×R3))−1, and it is determined by the
following series expansion:

(𝑏 (𝑡) , 𝑓(𝑐)) = ∞∑
𝑠=0

1𝑠! ∫(R3×R3)𝑠 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑠
⋅ 𝑏𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠) 𝑠∏

𝑖=1

𝑓01 (𝑥𝑖) . (35)

In consequence of the following equality for the limit
additive-type marginal observables (20) (below it is proved
in more general case)

(𝑏(1) (𝑡) , 𝑓(𝑐)) = ∞∑
𝑠=0

1𝑠! ∫(R3×R3)𝑠 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑠
⋅ 𝑏(1)𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠) 𝑠∏

𝑖=1

𝑓01 (𝑥𝑖) = ∫
R3×R3

𝑑𝑥1𝑏01 (𝑥1)
⋅ 𝑓1 (𝑡, 𝑥1) ,

(36)

where function 𝑏(1)𝑠 (𝑡) is given by expansion (20) and the
distribution function 𝑓1(𝑡, 𝑥1) is given by the series

𝑓1 (𝑡, 𝑥1) = ∞∑
𝑛=0

∫𝑡
0
𝑑𝑡1 ⋅ ⋅ ⋅ ∫𝑡𝑛−1

0
𝑑𝑡𝑛

⋅ ∫
(R3×R3)𝑛

𝑑𝑥2 ⋅ ⋅ ⋅ 𝑑𝑥𝑛+1𝑆∗1 (𝑡 − 𝑡1, 1)
⋅L0,∗int (1, 2) 2∏

𝑗1=1

𝑆∗1 (𝑡1 − 𝑡2, 𝑗1) ⋅ ⋅ ⋅ 𝑛∏
𝑖𝑛=1

𝑆∗1
⋅ (𝑡𝑛−1 − 𝑡𝑛, 𝑖𝑛) 𝑛∑

𝑘𝑛=1

L
0,∗
int (𝑘𝑛, 𝑛 + 1)

⋅ 𝑛+1∏
𝑗𝑛=1

𝑆∗1 (𝑡𝑛, 𝑗𝑛) 𝑛+1∏
𝑖=1

𝑓01 (𝑥𝑖) ,

(37)
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where the following operator was introduced:

∫
R3×R3

𝑑𝑥𝑛+1L0,∗int (𝑖, 𝑛 + 1) 𝑓𝑛+1 (𝑥1, . . . , 𝑥𝑛+1)
≡ ∫

R3×S2+

𝑑𝑝𝑛+1𝑑𝜂 ⟨𝜂, (𝑝𝑖 − 𝑝𝑛+1)⟩
⋅ (𝑓𝑛+1 (𝑥1, . . . , 𝑞𝑖, 𝑝∗𝑖 , . . . , 𝑥𝑠, 𝑞𝑖, 𝑝∗𝑛+1)− 𝑓𝑛+1 (𝑥1, . . . , 𝑥𝑠, 𝑞𝑖, 𝑝𝑛+1)) .

(38)

and the group of operators 𝑆∗1 (𝑡) is a group of adjoint oper-
ators to operators (5) in the sense of mean value functional
(12).

The distribution function𝑓1(𝑡) is a solution of the Cauchy
problem of the Boltzmann kinetic equation𝜕𝜕𝑡𝑓1 (𝑡, 𝑥1) = −⟨𝑝1, 𝜕𝜕𝑞1⟩𝑓1 (𝑡, 𝑥1)+ ∫

R3×S2+

𝑑𝑝2𝑑𝜂 ⟨𝜂, (𝑝1 − 𝑝2)⟩
⋅ (𝑓1 (𝑡, 𝑞1, 𝑝∗1 ) 𝑓1 (𝑡, 𝑞1, 𝑝∗2 )− 𝑓1 (𝑡, 𝑥1) 𝑓1 (𝑡, 𝑞1, 𝑝2)) ,

(39)

𝑓1 (𝑡, 𝑥1)󵄨󵄨󵄨󵄨𝑡=0 = 𝑓01 (𝑥1) . (40)

Thus, we establish that hierarchy (25) for additive-type
marginal observables and initial state (34) describes the
evolution of hard sphere systems just as the Boltzmann
kinetic equation (39).

We differentiate over the time variable expression (37) in
the sense of the pointwise convergence of the space 𝐿∞𝜉 (R3 ×
R3)𝜕𝜕𝑡𝑓1 (𝑡, 𝑥1) =L

∗ (1) 𝑓1 (𝑡, 𝑥1) + ∫
R3×R3

𝑑𝑥2
⋅L0,∗int (1, 2) ∞∑

𝑛=0

∫𝑡
0
𝑑𝑡1 ⋅ ⋅ ⋅ ∫𝑡𝑛−1

0
𝑑𝑡𝑛

⋅ ∫
(R3×R3)𝑛−1

𝑑𝑥3 ⋅ ⋅ ⋅ 𝑑𝑥𝑛+2
⋅ 2∏
𝑖1=1

𝑆∗1 (𝑡 − 𝑡1, 𝑖1) 2∑
𝑘1=1

L
0,∗
int (𝑘1, 3)

× 3∏
𝑗1=1

𝑆∗1 (𝑡1 − 𝑡2, 𝑗1) ⋅ ⋅ ⋅ 𝑛+1∏
𝑖𝑛=1

𝑆∗1
⋅ (𝑡𝑛−1 − 𝑡𝑛, 𝑖𝑛) 𝑛+1∑

𝑘𝑛=1

L
0,∗
int (𝑘𝑛, 𝑛 + 2)

⋅ 𝑛+2∏
𝑗𝑛=1

𝑆∗1 (𝑡𝑛, 𝑗𝑛) 𝑛+2∏
𝑖=1

𝑓01 (𝑥𝑖) ,

(41)

where the operatorL0,∗int (𝑘𝑖, 𝑖 + 2) is defined by formula (38).

Using the product formula for the one-particle marginal
distribution function 𝑓1(𝑡, 𝑥𝑖) defined by series expansion
(37) in case of initial data (34)
𝑘∏
𝑖=1

𝑓1 (𝑡, 𝑥𝑖) = ∞∑
𝑛=0

∫𝑡
0
𝑑𝑡1 ⋅ ⋅ ⋅ ∫𝑡𝑛−1

0
𝑑𝑡𝑛

⋅ ∫
(R3×R3)𝑛

𝑑𝑥𝑘+1 ⋅ ⋅ ⋅ 𝑑𝑥𝑘+𝑛 𝑘∏
𝑖1=1

𝑆∗1 (𝑡 − 𝑡1, 𝑖1)
× 𝑘∑
𝑘1=1

L
0,∗
int (𝑘1, 𝑘 + 1)

⋅ 𝑘+1∏
𝑗1=1

𝑆∗1 (𝑡1 − 𝑡2, 𝑗1) ⋅ ⋅ ⋅ 𝑘+𝑛−1∏
𝑖𝑛=1

𝑆∗1 (𝑡𝑛−1 − 𝑡𝑛, 𝑖𝑛)
× 𝑘+𝑛−1∑
𝑘𝑛=1

L
0,∗
int (𝑘𝑛, 𝑘 + 𝑛) 𝑘+𝑛∏

𝑗𝑛=1

𝑆∗1 (𝑡𝑛, 𝑗𝑛) 𝑘+𝑛∏
𝑖=1

𝑓01 (𝑥𝑖) ,

(42)

where the group property of one-parameter mapping (5)
is applied, we express the second summand in the right-
hand side of equality (41) in terms of ∏2𝑖=1𝑓1(𝑡, 𝑖), and,
consequently, we get (39).

We remark that in a one-dimensional space the collision
integral of the Boltzmann equation with elastic hard sphere
collisions identically equals zero. In a one-dimensional space
the Boltzmann–Grad limit is not trivial in case of hard sphere
dynamics with inelastic collisions [38]. In paper [38] for
one-dimensional granular gas the process of the creation of
correlations in the Boltzmann–Grad limit was also described.

5. On Propagation of Initial Chaos in
a Low-Density Limit

If the initial states of hard spheres are specified by a sequence
of marginal distribution functions (33), then the property of
the propagation of initial chaos holds in the Boltzmann–Grad
limit. It is a result of the validity of the following equality for
the limit 𝑘-ary marginal observables (24); that is, 𝑏(𝑘)(0) =(0, . . . , 𝑏0𝑘 (𝑥1, . . . , 𝑥𝑘), 0, . . .),
(𝑏(𝑘) (𝑡) , 𝑓(𝑐)) = ∞∑

𝑠=0

1𝑠!
⋅ ∫
(R3×R3)𝑠

𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑠𝑏(𝑘)𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠) 𝑠∏
𝑖=1

𝑓01 (𝑥𝑖)
= 1𝑘! ∫(R3×R3)𝑘 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑘𝑏0𝑘 (𝑥1, . . . , 𝑥𝑘)
⋅ 𝑘∏
𝑖=1

𝑓1 (𝑡, 𝑥𝑖) , 𝑘 ≥ 2,
(43)

where for finite time interval the limit one-particle marginal
distribution function𝑓1(𝑡) is defined by series expansion (37)
and therefore it is governed by the Cauchy problem of the
Boltzmann kinetic equations (39) and (40).
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In fact, taking into account the validity of the following
equality for expansion (16) of the function 𝑏(𝑘)𝑠 (𝑡)
∞∑
𝑠=0

1𝑠! ∫(R3×R3)𝑠 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑠𝑏(𝑘)𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑘) 𝑠∏𝑖=1𝑓01 (𝑥𝑖)
= 1𝑘! ∫(R3×R𝑘)𝑠 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑘𝑏0𝑘 (𝑥1, . . . , 𝑥𝑘)
⋅ ∞∑
𝑛=0

∫𝑡
0
𝑑𝑡1 ⋅ ⋅ ⋅ ∫𝑡𝑛−1

0
𝑑𝑡𝑛 ∫
(R3×R3)𝑛

𝑑𝑥𝑘+1 ⋅ ⋅ ⋅ 𝑑𝑥𝑘+𝑛
⋅ 𝑘∏
𝑖1=1

𝑆∗1 (𝑡 − 𝑡1, 𝑖1) 𝑘∑
𝑘1=1

L
0,∗
int (𝑘1, 𝑘 + 1)

⋅ 𝑘+1∏
𝑗1=1

𝑆∗1 (𝑡1 − 𝑡2, 𝑗1) ⋅ ⋅ ⋅ 𝑘+𝑛−1∏
𝑖𝑛=1

𝑆∗1 (𝑡𝑛−1 − 𝑡𝑛, 𝑖𝑛)
⋅ 𝑘+𝑛−1∑
𝑘𝑛=1

L
0,∗
int (𝑘𝑛, 𝑘 + 𝑛) 𝑘+𝑛∏

𝑗𝑛=1

𝑆∗1 (𝑡𝑛, 𝑗𝑛) 𝑘+𝑛∏
𝑖=1

𝑓01 (𝑥𝑖) ,

(44)

and product formula (42), for the limit one-particle marginal
distribution function defined by series expansion (37), we
finally verify the validity of equality (43).

Thus, in the Boltzmann–Grad scaling limit an equivalent
approach to the description of the kinetic evolution of hard
spheres within the framework of the Cauchy problem of
the Boltzmann kinetic equations (39) and (40) is given
by the Cauchy problem of the dual Boltzmann hierarchy
with hard sphere collisions (25) and (26) for the additive-
type marginal observables. In case of the nonadditive-type
marginal observables a solution of the dual Boltzmann
hierarchy with hard sphere collisions (25) is equivalent to
the property of a propagation of initial chaos in the sense of
equality (43).

6. The Boltzmann Equation for
Hard Spheres Fluids

We consider initial states of a hard sphere system specified
by the one-particle marginal distribution function 𝐹0,𝜖1 ∈𝐿∞𝜉 (R3 × R3) in the presence of correlations, that is, initial
states defined by the following sequence of marginal distri-
bution functions:

𝐹(𝑐𝑐)
= (1, 𝐹0,𝜖1 (𝑥1) , 𝑔𝜖2 2∏

𝑖=1
𝐹0,𝜖1 (𝑥𝑖) , . . . , 𝑔𝜖𝑛 𝑛∏

𝑖=1
𝐹0,𝜖1 (𝑥𝑖) , . . .) , (45)

where the functions 𝑔𝜖𝑛 ≡ 𝑔𝜖𝑛(𝑥1, . . . , 𝑥𝑛) ∈ 𝐶𝑛(R3𝑛 × (R3𝑛 \
W𝑛)), 𝑛 ≥ 2, are specified initial correlations. Since many-
particle systems in condensed states are characterized by

correlations sequence (45) describes the initial state of the
kinetic evolution of hard sphere fluids.

We assume that the Boltzmann–Grad limit of initial one-
particle marginal distribution function 𝐹0,𝜖1 ∈ 𝐿∞𝜉 (R3 × R3)
exists in the sense as above; that is, in the sense of a weak
convergence the equality holds: 𝑤 − lim𝜖→0(𝜖2 𝐹0,𝜖1 − 𝑓01 ) =0, and in case of correlation functions let 𝑤 − lim𝜖→0(𝑔𝜖𝑛 −𝑔𝑛) = 0, 𝑛 ≥ 2; then in the Boltzmann–Grad limit initial state
(45) is defined by the following sequence of the limitmarginal
distribution functions:

𝑓(𝑐𝑐)
= (1, 𝑓01 (𝑥1) , 𝑔2 2∏

𝑖=1

𝑓01 (𝑥𝑖) , . . . , 𝑔𝑛 𝑛∏
𝑖=1

𝑓01 (𝑥𝑖) , . . .) . (46)

We consider relationships of the constructed Boltzmann–
Grad asymptotic behavior of marginal observables with the
nonlinear Boltzmann-type kinetic equation in case of initial
states (46).

For the limit additive-type marginal observables (20) and
initial states (46) the following equality is true:

(𝑏(1) (𝑡) , 𝑓(𝑐𝑐)) = ∞∑
𝑠=0

1𝑠!
⋅ ∫
(R3×R3)𝑠

𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑠𝑏(1)𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠)
⋅ 𝑔𝑠 (𝑥1, . . . , 𝑥𝑠) 𝑠∏

𝑖=1

𝑓01 (𝑥𝑖) = ∫
R3×R3

𝑑𝑥1𝑏01 (𝑥1)
⋅ 𝑓1 (𝑡, 𝑥1) ,

(47)

where the functions 𝑏(1)𝑠 (𝑡) are represented by expansions
(20) and the limit marginal distribution function 𝑓1(𝑡) is
represented by the following series expansion:

𝑓1 (𝑡, 𝑥1) = ∞∑
𝑛=0

∫𝑡
0
𝑑𝑡1 ⋅ ⋅ ⋅ ∫𝑡𝑛−1

0
𝑑𝑡𝑛

⋅ ∫
(R3×R3)𝑛

𝑑𝑥2 ⋅ ⋅ ⋅ 𝑑𝑥𝑛+1𝑆∗1 (𝑡 − 𝑡1, 1)L0,∗int (1, 2)
⋅ 𝑆∗1 (𝑡1 − 𝑡2, 𝑗1) ⋅ ⋅ ⋅ 𝑛∏

𝑖𝑛=1

𝑆∗1 (𝑡𝑛 − 𝑡𝑛, 𝑖𝑛)
⋅ 𝑛∑
𝑘𝑛=1

L
0,∗
int (𝑘𝑛, 𝑛 + 1) 𝑛+1∏

𝑗𝑛=1

𝑆∗1 (𝑡𝑛, 𝑗𝑛) 𝑔1+𝑛
⋅ (𝑥1, . . . , 𝑥𝑛+1) 𝑛+1∏

𝑖=1

𝑓01 (𝑥𝑖) .

(48)

Series (48) is uniformly convergent for finite time interval
under the condition as above (37).
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The function 𝑓1(𝑡) represented by series (48) is a weak
solution of the following Cauchy problem of the Boltzmann
kinetic equation with initial correlations [39, 40]𝜕𝜕𝑡𝑓1 (𝑡, 𝑥1) = −⟨𝑝1, 𝜕𝜕𝑞1⟩𝑓1 (𝑡, 𝑥1)+ ∫

R3×S2+

𝑑𝑝2𝑑𝜂 ⟨𝜂, (𝑝1 − 𝑝2)⟩
⋅ (𝑔2 (𝑞1 − 𝑝∗1 𝑡, 𝑝∗1 , 𝑞2 − 𝑝∗2 𝑡, 𝑝∗2 ) 𝑓1 (𝑡, 𝑞1, 𝑝∗1 )⋅ 𝑓1 (𝑡, 𝑞1, 𝑝∗2 ) − 𝑔2 (𝑞1 − 𝑝1𝑡, 𝑝1, 𝑞2 − 𝑝2𝑡, 𝑝2)⋅ 𝑓1 (𝑡, 𝑥1) 𝑓1 (𝑡, 𝑞1, 𝑝2)) ,

(49)

𝑓1 (𝑡, 𝑥1)󵄨󵄨󵄨󵄨𝑡=0 = 𝑓01 (𝑥1) . (50)

This fact is proved similarly to the case of a perturbative solu-
tion of the BBGKY hierarchy for hard spheres represented by
the iteration series [10, 29].

Thus, in case of initial states specified by one-particle
marginal distribution function (46) we establish that the dual
Boltzmann hierarchy with hard sphere collisions (25) for
additive-typemarginal observables describes the evolution of
a hard sphere system just as the Boltzmann kinetic equation
with initial correlations (49).

7. Propagation of Initial Correlations in
a Low-Density Limit

The property of the propagation of initial correlations in
a low-density limit is a consequence of the validity of the
following equality for a mean value functional of the limit 𝑘-
ary marginal observables:

(𝑏(𝑘) (𝑡) , 𝑓(𝑐𝑐)) = ∞∑
𝑠=0

1𝑠!
⋅ ∫
(R3×R3)𝑠

𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑠𝑏(𝑘)𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠) 𝑔𝑠 (𝑥1, . . . , 𝑥𝑠)
⋅ 𝑠∏
𝑗=1

𝑓01 (𝑥𝑗) = 1𝑘!
⋅ ∫
(R3×R3)𝑘

𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑘𝑏0𝑘 (𝑥1, . . . , 𝑥𝑘) 𝑘∏
𝑖1=1

𝑆∗1 (𝑡, 𝑖1)
⋅ 𝑔𝑘 (𝑥1, . . . , 𝑥𝑘) 𝑘∏

𝑖2=1

(𝑆∗1 )−1 (𝑡, 𝑖2) 𝑘∏
𝑗=1

𝑓1 (𝑡, 𝑥𝑗) ,

(51)

where the one-particle marginal distribution function𝑓1(𝑡, 𝑥𝑗) is solution (48) of the Cauchy problem of the
Boltzmann kinetic equation with initial correlations (49) and
(50), and the inverse group to the group of operators 𝑆∗1 (𝑡)
we denote by (𝑆∗1 )−1(𝑡) = 𝑆∗1 (−𝑡) = 𝑆1(𝑡).

This fact is proved similarly to the proof of a property of
a propagation of initial chaos (43).

We note that, according to equality (51), in the
Boltzmann–Grad limit the marginal correlation functions

defined as cluster expansions of marginal distribution
functions, namely,𝑓𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠) = ∑

𝑃:(𝑥1 ,...,𝑥𝑠)=⋃𝑖 𝑋𝑖

∏
𝑋𝑖⊂𝑃

𝑔|𝑋𝑖| (𝑡, 𝑋𝑖) ,
𝑠 ≥ 1, (52)

have the following explicit form:𝑔1 (𝑡, 𝑥1) = 𝑓1 (𝑡, 𝑥1) ,𝑔𝑠 (𝑡, 𝑥1, . . . , 𝑥𝑠)
= 𝑔̃𝑠 (𝑞1 − 𝑝1𝑡, 𝑝1, . . . , 𝑞𝑠 − 𝑝𝑠𝑡, 𝑝𝑠) 𝑠∏

𝑗=1

𝑓1 (𝑡, 𝑥𝑗) ,
𝑠 ≥ 2,

(53)

where for initial correlation functions (46) it is used the
following notations:𝑔̃𝑠 (𝑥1, . . . , 𝑥𝑠) = ∑

𝑃:(𝑥1 ,...,𝑥𝑠)=⋃𝑖 𝑋𝑖

∏
𝑋𝑖⊂𝑃

𝑔|𝑋𝑖| (𝑋𝑖) , (54)

where the symbol∑𝑃means the sum over possible partitions𝑃 of the set of arguments (𝑥1, . . . , 𝑥𝑠) on |𝑃| nonempty subsets𝑋𝑖, and the one-particle marginal distribution function 𝑓1(𝑡)
is a solution of the Cauchy problem of the Boltzmann kinetic
equation with initial correlations (49) and (50).

Thus, in case of the limit 𝑘-ary marginal observables a
solution of the dual Boltzmann hierarchy with hard sphere
collisions (25) is equivalent to a property of the propagation
of initial correlations for the 𝑘-particle marginal distribution
function in the sense of equality (51) or in other words
the Boltzmann–Grad scaling dynamics does not create new
correlations except initial correlations.

8. Conclusion

In the paper a new approach to the problem of the rig-
orous description of the kinetic evolution of a system of
hard spheres with elastic collisions was developed. For this
purpose we established the low-density (Boltzmann–Grad)
asymptotic behavior of a solution of the Cauchy problem of
the dual BBGKY hierarchy for marginal observables of hard
spheres (1) and (2). The constructed scaling limit is governed
by the set of recurrence evolution equations, namely, by the
dual Boltzmann hierarchy with hard sphere collisions (25).

Furthermore, it was established that for initial states spec-
ified by a one-particle distribution function the evolution of
additive-typemarginal observables is equivalent to a solution
of the Boltzmann kinetic equation (39) and the evolution of
nonadditive-type marginal observables is equivalent to the
property of the propagation of initial chaos for states (43). In
other words the Boltzmann–Grad dynamics does not create
correlations.

One of the advantages of such an approach to the deriva-
tion of the Boltzmann equation is an opportunity to construct
the kinetic equation, involving correlations at initial time,
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in particular, that can characterize the condensed states.
Moreover, it gives opportunity to describe the propagation of
initial correlations in the Boltzmann–Grad scaling limit (53).

Some applications of the developedmethod to the deriva-
tion of kinetic equations in scaling limits of large particle
systems of different kinds, in particular, hard spheres with
inelastic collisions [38], are considered in papers [38, 41, 42].

We note that one more approach to the description of
the kinetic evolution of hard spheres is based on the non-
Markovian generalization of the Enskog kinetic equation
[43].
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