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The Laplace-Adomian Decomposition Method (LADM) and Homotopy Perturbation Method (HPM) are both utilized in this
research in order to obtain an approximate analytical solution to the nonlinear Schrödinger equation with harmonic oscillator.
Accordingly, nonlinear Schrödinger equation in both one and two dimensions is provided to illustrate the effects of harmonic
oscillator on the behavior of the wave function.The available literature does not provide an exact solution to the problem presented
in this paper. Nevertheless, approximate analytical solutions are provided in this paper using LADMandHPMmethods, in addition
to comparing and analyzing both solutions.

1. Introduction

The Schrödinger equation is often encountered in many
branches of science and engineering, including quantum
mechanics, nonlinear optics, plasma physics, hydrodynam-
ics, and superconductivity. It is a mathematical partial dif-
ferential equation used to describe the motion and behavior
change of the physical system over time. In classical mechan-
ics, it plays the role of Newton’s law and conservation of
energy. In quantum mechanics, we describe systems using
wave function. The Schrödinger equation has two “forms”;
one is the time-dependent wave equation that describes how
the wave function of a particle will evolve in time. The
other is the time independent wave equation in which the
time dependence has been “removed”; it describes what the
allowed energies are of the particle [1, 2].

In recent years, a considerable amount of research
focused on finding analytical solution to the Schrödinger
equations using various methods, among which are Adomian
DecompositionMethod [3–8], Elzaki decompositionmethod
[9], Variation Iteration method [10], Nikiforod–Uvarov (NV)

method [11], and Homotopy Perturbation Method [3, 4,
12–16]. Additionally, Borhanifar [17] solved the nonlinear
Schrödinger and coupled Schrödinger equations with a dif-
ferential transformation method. Shidfar and Molabahrami
[18, 19] investigated the d-dimensional Schrödinger equation
with a power-law nonlinearity, Zhenga et al. [20] solved
the time-dependent Schrödinger equation using homotopy
analysis method (HAM) and the Adomian decomposition
technique (ADM), and Amador et al. [21] solved nonlinear
Schrödinger equationswith variable coefficients using Riccati
equations and similarity transformations. Finally, Khan and
Wu [22] applied Homotopy perturbation transform method
(HPTM) to solve nonlinear equations; HPTM uses the
Homotopy Perturbation Method together with the Laplace
transformation to solve the nonlinear equations. Also, Hos-
seini et al. [23–27] investigated various forms of the nonlinear
Schrödinger equation (NLSE).

This paper is organized in several sections. The HPM
method is briefly explained in “Homotopy Perturbation
Method”. Then the LADM model is described in the
“Laplace-Adomian Decomposition Method”. Then in the
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“One-Dimensional Nonlinear Schrödinger Equation with
Harmonic Oscillator”, the solution to the One-Dimensional
Nonlinear Schrödinger Equation with Harmonic Oscillator
equation in its nonlinear version is provided with a numerical
example. Similarly, the solution of the Two-Dimensional
Nonlinear Schrödinger Equation with Harmonic Oscillator is
presented in the “Two-Dimensional Nonlinear Schrödinger
Equation with Harmonic Oscillator”. Finally, in the “Con-
clusion”, we summarize our findings and present our final
remarks. Since the exact solution to this problem is not
available, we compare our numerical results with the results
obtained using Mathematica function NDsolve.

2. Laplace-Adomian Decomposition Method

TheAdomian Decomposition Method (ADM) is a method to
solve differential equations by expressing the analytic solution
in terms of a series. The method separates the linear and
nonlinear parts of a differential equation. The nonlinear
part can be expressed in terms of what is called Adomian
Polynomials [28–30]. The initial condition and the terms
that contain the independent variables will be used as the
initial approximation.Thenbymeans of a recurrence relation,
it is possible to find the terms of the series that give the
approximate solution of the differential equation.

The Laplace transform is an integral transform that is
powerful and useful technique to solve differential equations,
which transforms the original differential equation into an
algebraic equation.

Below are the definitions of Laplace transformand inverse
Laplace transform.

Definition 1. Given a function 𝑓(𝑡) defined for all 𝑡 ≥ 0, the
Laplace transform of 𝑓 is the function 𝐹 defined by

𝐹 (𝑠) = L {𝑓 (𝑡)} = ∫∞
0

𝑓 (𝑡) 𝑒−𝑠𝑡𝑑𝑡, (1)

and the inverse Laplace transform is defined as follows.

Definition 2. Given a continuous function 𝑓(𝑡), if 𝐹(𝑠) =
L{𝑓(𝑡)}, then 𝑓(𝑡) is called the inverse Laplace transform of𝐹(𝑠) denoted 𝑓(𝑡) = L−1{𝐹(𝑠)}.

The Laplace-Adomian Decomposition Method (LADM)
was first introduced by Suheil A. Khuri [31] and has been
effectively used to find solutions to general nonlinear equa-
tions. The added value of this method utilizes the two meth-
ods (Laplace Transform and ADM) to obtain the solution for
nonlinear equations. Consider the following equation:

𝐿Ψ − 𝑖𝑅Ψ − 𝑖𝑁Ψ = 0,
Ψ (𝑥, 0) = 𝑓 (𝑥) , (2)

where 𝐿 = 𝜕/𝜕𝑡 and 𝑅 = 𝜕2/𝜕𝑥2, 𝐿 and 𝑅 are Linear
operators, and𝑁 is a nonlinear operator.

Laplace-Adomian Decomposition Method consists of
applying Laplace transform to both sides of (2) and yields

L {𝐿Ψ} −L {𝑖𝑅Ψ} −L {𝑖𝑁Ψ} = 0. (3)

From Laplace transform of first derivative and substitut-
ing the initial condition, we get

L {Ψ (𝑥, 𝑡)} = 𝑓 (𝑥)𝑠 + 𝑖𝑠L {𝑅Ψ + 𝑁Ψ} . (4)

Next step is replacing the wave function by an infinite
series of terms to be determined later as per the Adomian
Decomposition Method (ADM):

Ψ (𝑥, 𝑡) = ∞∑
𝑛=0

Ψ𝑛 (𝑥, 𝑡) , (5)

and the nonlinear terms are replaced by the series:

𝑁Ψ = ∞∑
𝑛=0

𝐴𝑛 (Ψ0, Ψ1, . . . , Ψ𝑛) , (6)

where 𝐴𝑛(Ψ0, Ψ1, . . .)’s are the Adomian Polynomials,
defined by

𝐴𝑛 = 1𝑛! [ 𝑑𝑛𝑑𝜆𝑛𝑁(∞∑
𝑛=0

𝜆𝑖Ψ𝑖)]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆=0 , 𝑛 = 0, 1, 2 . . . (7)

Substituting (5) and (6) into (4) and taking inverse
Laplace transform, we get
∞∑
𝑛=0

Ψ𝑛 (𝑥, 𝑡)
= 𝑓 (𝑥)
+L
−1 { 𝑖𝑠 (L{𝑅∞∑

𝑛=0

Ψ𝑛 (𝑥, 𝑡) + ∞∑
𝑛=0

𝐴𝑛})} .
(8)

From (8), one can obtainΨ0 (𝑥, 𝑡) = Ψ (𝑥, 0) = 𝑓 (𝑥) ,
Ψ1 (𝑥, 𝑡) = 𝑖L−1 {1𝑠L {𝑅Ψ0 (𝑥, 𝑡) + 𝐴0}} ,
Ψ2 (𝑥, 𝑡) = 𝑖L−1 {1𝑠L {𝑅Ψ1 (𝑥, 𝑡) + 𝐴1}} ,

...
Ψ𝑛 (𝑥, 𝑡) = 𝑖L−1 {1𝑠L {𝑅Ψ𝑛−1 (𝑥, 𝑡) + 𝐴𝑛−1}} .

(9)

3. Homotopy Perturbation Method

TheHomotopy Perturbation Method (HPM) is a special case
of the homotopy analysis method (HAM) [32]. HPM was
presented by He [33] in 1999, and is considered as a strong
and efficient technique in finding an exact or an approximate
analytical solutions to nonlinear equations.

To demonstrate the idea of Homotopy Perturbation
Method, we consider the general form nonlinear differential
equation with initial conditions of the form [3]:𝐿 (Ψ) + 𝑁 (Ψ) − 𝑓 (𝑟) = 0, 𝑟 ∈ Ω, (10)

𝐵(Ψ, 𝜕Ψ𝜕𝑛 ) = 0, 𝑟 ∈ Γ, (11)
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where 𝐿 and 𝑁 are linear and nonlinear operators
respectively, 𝑓(𝑟) is an analytic function, Γ is the boundary
of the domainΩ, and 𝜕Ψ/𝜕𝑛 denotes the differentiation of Ψ
with respect to 𝑛.

To apply the Homotopy concept to (10), we construct a
suitable Homotopy,

V (𝑟, 𝑝) : Ω × [0, 1] 󳨀→ R, (12)

that satisfies

𝐻(V, 𝑝) = (1 − 𝑝) [𝐿 (V) − 𝐿 (Ψ0)]
+ 𝑝 [𝐿 (V) + 𝑁 (V) − 𝑓 (𝑟)] = 0, 𝑟 ∈ Ω, (13)

where𝑝 ∈ [0, 1] is a parameter which increases from 0 to 1,R
represents all real numbers, and Ψ0 is an initial approximate
solution of (10), which satisfies the boundary conditions (11).
Clearly, from (13) we have

𝐻(V, 0) = 𝐿 (V) − 𝐿 (Ψ0) = 0, (14)

𝐻(V, 1) = 𝐿 (V) + 𝑁 (V) − 𝑓 (𝑟) = 0. (15)

Now, when the value of 𝑝 changes from 0 to 1, V(𝑟, 𝑝)
changes from Ψ0 to Ψ(𝑟). According to the concept of
topology, this is called deformation and 𝐿(V) − 𝑁(Ψ0) and𝐿(V) − 𝑓(𝑟) are called homotopy. If we consider 𝑝 as a small
parameter, then applying the original perturbation technique
method, we can assume that the solution of (13) can be
defined as a power series in 𝑝:

V = V0 + V1𝑝 + V2𝑝2 + ⋅ ⋅ ⋅ (16)

Then the solution Ψ to (10) is obtained as 𝑝 approaches 1:
Ψ = lim
𝑝󳨀→1

V = V0 + V1 + V2 + ⋅ ⋅ ⋅ (17)

The series in (17) is convergent for most cases, the rate of
convergence however is dependent on the nonlinear operator𝑁(V) [33].

In the following two sections we apply the above two
methods to solve the One- and Two-Dimensional Nonlinear
Schrödinger Equation with Harmonic Oscillator.

4. One-Dimensional Nonlinear Schrödinger
Equation with Harmonic Oscillator

The nonlinear Schrödinger equation with harmonic oscilla-
tor described by Ψ with identical initial condition can be
expressed as [20]

𝜕Ψ𝜕𝑡 − 𝑖2𝑚 𝜕2Ψ𝜕𝑥2 + 𝑖2𝑘𝑥2Ψ + 𝑖 |Ψ|2Ψ = 0, (18)

Ψ (𝑥, 0) = 𝑒𝑖𝑥, (19)

whereΨ is thewave function,𝑚 is themass of the particle,𝑖 is the imaginary unit to describe motion, and 𝑘 spring
constant.

4.1. LADM. In this section we solve the One-Dimensional
Nonlinear Schrödinger Equation with Harmonic Oscillator
(18) using LADMmethod by first applying Laplace transform
to both sides of the equation (18) as follows:

L{𝜕Ψ𝜕𝑡 } − 𝑖L{ 12𝑚 𝜕2Ψ𝜕𝑥2 } + 𝑖L{12𝑘𝑥2Ψ}
+ 𝑖L {|Ψ|2Ψ} = 0.

(20)

From the properties of Laplace transform of the first
derivative and substituting the initial conditions (19), (20)
becomes

L {Ψ (𝑥, 𝑡)} = 𝑒𝑖𝑥𝑠 + 1𝑠L{ 𝑖2𝑚 𝜕2Ψ𝜕𝑥2 } − 1𝑠 𝑖𝑘2 L {𝑥2Ψ}
− 1𝑠L {𝑖 |Ψ|2Ψ} .

(21)

Now substituting (5) and (6) into (21), we get

L{∞∑
𝑛=0

Ψ𝑛 (𝑥, 𝑡)}
= 𝑒𝑖𝑥𝑠 + 1𝑠L{ 𝑖2𝑚 𝜕2𝜕𝑥2 (

∞∑
𝑛=0

Ψ𝑛 (𝑥, 𝑡))}
− 𝑖𝑘2𝑠L{𝑥2 ∞∑

𝑛=0

Ψ𝑛 (𝑥, 𝑡)} − 𝑖𝑠L{∞∑
𝑛=0

𝐴𝑛} .
(22)

By applying inverse Laplace transform to (22) and taking
into consideration

L
−1 {L {Ψ0 (𝑥, 𝑡)}} = L

−1 {𝑒𝑖𝑥𝑠 } , (23)

we have

Ψ𝑛 (𝑥, 𝑡) = L
−1 { 𝑖2𝑚𝑠L{𝜕2Ψ𝑛−1 (𝑥, 𝑡)𝜕𝑥2 }}

−L
−1 { 𝑖𝑘2𝑠L {𝑥2Ψ𝑛−1 (𝑥, 𝑡)}}

−L
−1 { 𝑖𝑠L {𝐴𝑛−1}} ,

(24)

where 𝐴𝑛 are the so called Adomian Polynomials of(Ψ0, Ψ1, Ψ2, . . . , Ψ𝑛) to replace 𝑁Ψ = |Ψ|2Ψ = Ψ2Ψ and Ψ
is the conjugate of Ψ.

The Adomian Polynomials can be calculated using (7):

𝐴0 = Ψ20Ψ0,
𝐴1 = 2Ψ0Ψ1Ψ0 + Ψ20Ψ1,
𝐴2 = 2Ψ0Ψ2Ψ0 + Ψ21Ψ0 + 2Ψ0Ψ1Ψ1 + Ψ20Ψ2.

(25)
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Now, using (24), we get

Ψ0 (𝑥, 𝑡) = 𝑒𝑖𝑥,
Ψ1 (𝑥, 𝑡) = − 𝑖𝑡𝑒𝑖𝑥2𝑚 − 𝑖𝑘𝑥2𝑡𝑒𝑖𝑥2 − 𝑖𝑡𝑒𝑖𝑥,
Ψ2 (𝑥, 𝑡) = 𝑡22! (−𝑒

𝑖𝑥

4𝑚2 + 𝑘𝑒𝑖𝑥2𝑚 + 𝑖𝑘𝑥𝑒𝑖𝑥𝑚 − 𝑒𝑖𝑥𝑚 − 𝑘𝑥2𝑒𝑖𝑥2𝑚
− 𝑘2𝑥4𝑒𝑖𝑥4 − 𝑘𝑥2𝑒𝑖𝑥 − 𝑒𝑖𝑥) ,

Ψ3 (𝑥, 𝑡) = 𝑡33! (3𝑖𝑒
𝑖𝑥

4𝑚2 + 3𝑖𝑘𝑥2𝑒𝑖𝑥8𝑚2 + 𝑖𝑒𝑖𝑥8𝑚3 + 3𝑘𝑥𝑒𝑖𝑥2𝑚2
− 7𝑖𝑘𝑒𝑖𝑥4𝑚2 − 3𝑖𝑘𝑒𝑖𝑥2𝑚 + 3𝑖𝑘𝑥2𝑒𝑖𝑥2𝑚 + 3𝑖𝑒𝑖𝑥2𝑚 + 𝑖𝑘3𝑥6𝑒𝑖𝑥8
+ 𝑖3𝑘2𝑥4𝑒𝑖𝑥4 + 𝑖𝑒𝑖𝑥 + 3𝑘𝑥𝑒𝑖𝑥𝑚 + 3𝑖𝑘2𝑥4𝑒𝑖𝑥8𝑚
− 7𝑖𝑘2𝑥2𝑒𝑖𝑥4𝑚 + 3𝑘2𝑥3𝑒𝑖𝑥2𝑚 + 3𝑖𝑘𝑥2𝑒𝑖𝑥2 ) .

(26)

Therefore, the solution Ψ(𝑥, 𝑡) is given by

Ψ (𝑥, 𝑡) = Ψ0 + Ψ1 + Ψ2 + ⋅ ⋅ ⋅ Ψ𝑛 = 𝑒𝑖𝑥 [1 + (− 𝑖𝑡2𝑚
− 𝑖𝑘𝑥2𝑡2 − 𝑖𝑡) + 12! (−𝑖𝑡2𝑚 − 𝑖𝑘𝑥2𝑡2 − 𝑖𝑡)2

+ 𝑡22! ( 𝑘2𝑚 + 𝑖𝑘𝑥𝑚 ) + 13! (−𝑖𝑡2𝑚 − 𝑖𝑘𝑥2𝑡2 − 𝑖𝑡)3

+ 𝑡33! ( 3𝑘𝑥2𝑚2 − 7𝑖𝑘4𝑚2 − 3𝑖𝑘2𝑚 + 3𝑘𝑥𝑚 − 7𝑖𝑘2𝑥24𝑚
+ 3𝑘2𝑥32𝑚 ) + ⋅ ⋅ ⋅]

(27)

4.2. HPM. In this section we apply the Homotopy Pertur-
bation Method to obtain a solution to (18). Consider the
following homotopy:

𝐻(V, 𝑝) = (1 − 𝑝) (𝜕V𝜕𝑡 − 𝜕Ψ0𝜕𝑡 )
+ 𝑝(𝜕V𝜕𝑡 − 𝑖𝜕2V2𝑚𝜕𝑥2 + 𝑖2𝑘𝑥2V + 𝑖V2V) = 0, (28)

where Ψ0 = Ψ(𝑥, 0), 𝜕Ψ0/𝜕𝑡 = 𝜕Ψ(𝑥, 0)/𝜕𝑡, and V(𝑥, 𝑡) is the
complex conjugate of V(𝑥, 𝑡). Suppose that the series solution
V of (28) and its conjugate V have the following forms:

V (𝑥, 𝑡) = V0 (𝑥, 𝑡) + V1 (𝑥, 𝑡) 𝑝 + V2 (𝑥, 𝑡) 𝑝2 + ⋅ ⋅ ⋅ , (29)

and

V (𝑥, 𝑡) = V0 (𝑥, 𝑡) + V1 (𝑥, 𝑡) 𝑝 + V2 (𝑥, 𝑡) 𝑝2 + ⋅ ⋅ ⋅ , (30)

and hence, the solution to (18) is

Ψ (𝑥, 𝑡) = V0 (𝑥, 𝑡) + V1 (𝑥, 𝑡) + V2 (𝑥, 𝑡) + ⋅ ⋅ ⋅ . (31)

Substituting (29) and (30) into (28) and equating the
coefficients of 𝑝 powers, we have

𝑝0:𝜕V0𝜕𝑡 − 𝜕Ψ0𝜕𝑡 = 0,
Ψ0 (𝑥, 0) = 𝑒𝑖𝑥,
𝑝1:𝜕V1𝜕𝑡 = 𝑖𝜕2V02𝑚𝜕𝑥2 − 𝑖2𝑘𝑥2V0 − 𝑖 󵄨󵄨󵄨󵄨V0󵄨󵄨󵄨󵄨2 V0,
V1 (𝑥, 0) = 0,
𝑝2:𝜕V2𝜕𝑡 = 𝑖𝜕2V12𝑚𝜕𝑥2 − 𝑖2𝑘𝑥2V1 − 𝑖 [V20V1 + 2V0V0V1] ,
V2 (𝑥, 0) = 0,

...
𝑝𝑗:𝜕V𝑗𝜕𝑡 = 𝑖𝜕2V𝑗−12𝑚𝜕𝑥2 − 𝑖2𝑘𝑥2V𝑗−1

− 𝑖(𝑖−1∑
𝑖=0

𝑗−𝑖−1∑
𝑘=0

󵄨󵄨󵄨󵄨V𝑖󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨V𝑘󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨V𝑗−𝑘−𝑖−1) ,
V𝑗 (𝑥, 0) = 0.

(32)

We finally obtain the general solution of (18) given the
recurrence relation for 𝑗 = 1, 2, 3, . . .

V𝑗 = ∫𝑡
0
(𝑖𝜕2V𝑗−12𝑚𝜕𝑥2 − 𝑖2𝑘𝑥2V𝑗−1

− 𝑖(𝑖−1∑
𝑖=0

𝑗−𝑖−1∑
𝑘=0

󵄨󵄨󵄨󵄨V𝑖󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨V𝑘󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨V𝑗−𝑘−𝑖−1))𝑑𝜏.
(33)

The first few terms of the solution are calculated as
follows:

V0 (𝑥, 𝑡) = 𝑒𝑖𝑥,
V1 (𝑥, 𝑡) = − 𝑖𝑡𝑒𝑖𝑥2𝑚 − 𝑖𝑘𝑥2𝑡𝑒𝑖𝑥2 − 𝑖𝑡𝑒𝑖𝑥,
V2 (𝑥, 𝑡) = 𝑡22! (−𝑒

𝑖𝑥

4𝑚2 + 𝑘𝑒𝑖𝑥2𝑚 + 𝑖𝑘𝑥𝑒𝑖𝑥𝑚 − 𝑒𝑖𝑥𝑚 − 𝑘𝑥2𝑒𝑖𝑥2𝑚
− 𝑘2𝑥4𝑒𝑖𝑥4 − 𝑘𝑥2𝑒𝑖𝑥 − 𝑒𝑖𝑥) ,



Advances in Mathematical Physics 5



x

t

2.0

1.5

1.0

0.5

0.0

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

Figure 1: Real solution of the one-dimensional wave function obtained by LADM and HPM.

V3 (𝑥, 𝑡) = 𝑡33! (3𝑖𝑒
𝑖𝑥

4𝑚2 + 3𝑖𝑘𝑥2𝑒𝑖𝑥8𝑚2 + 𝑖𝑒𝑖𝑥8𝑚3 + 3𝑘𝑥𝑒𝑖𝑥2𝑚2
− 7𝑖𝑘𝑒𝑖𝑥4𝑚2 − 3𝑖𝑘𝑒𝑖𝑥2𝑚 + 3𝑖𝑘𝑥2𝑒𝑖𝑥2𝑚 + 3𝑖𝑒𝑖𝑥2𝑚 + 𝑖𝑘3𝑥6𝑒𝑖𝑥8
+ 𝑖3𝑘2𝑥4𝑒𝑖𝑥4 + 𝑖𝑒𝑖𝑥 + 3𝑘𝑥𝑒𝑖𝑥𝑚 + 3𝑖𝑘2𝑥4𝑒𝑖𝑥8𝑚
− 7𝑖𝑘2𝑥2𝑒𝑖𝑥4𝑚 + 3𝑘2𝑥3𝑒𝑖𝑥2𝑚 + 3𝑖𝑘𝑥2𝑒𝑖𝑥2 ) ,

(34)

and hence, the solution to (18) is

Ψ (𝑥, 𝑡) = V0 (𝑥, 𝑡) + V1 (𝑥, 𝑡) + V2 (𝑥, 𝑡) + V3 (𝑥, 𝑡)
+ ⋅ ⋅ ⋅ = 𝑒𝑖𝑥 [1 + (− 𝑖𝑡2𝑚 − 𝑖𝑘𝑥2𝑡2 − 𝑖𝑡) + 12! (−𝑖𝑡2𝑚
− 𝑖𝑘𝑥2𝑡2 − 𝑖𝑡)2 + 𝑡22! ( 𝑘2𝑚 + 𝑖𝑘𝑥𝑚 ) + 13! (−𝑖𝑡2𝑚
− 𝑖𝑘𝑥2𝑡2 − 𝑖𝑡)3 + 𝑡33! ( 3𝑘𝑥2𝑚2 − 7𝑖𝑘4𝑚2 − 3𝑖𝑘2𝑚 + 3𝑘𝑥𝑚
− 7𝑖𝑘2𝑥24𝑚 + 3𝑘2𝑥32𝑚 ) + ⋅ ⋅ ⋅] .

(35)

The graphs of the one-dimensional wave function are
shown in Figures 1, 2, 3, and 4. Figure 1 is the graph of the
third order approximation for the solution of the real part of
the wave function obtained by LADM and HPM. Figure 2 is
the graph of the wave function obtained using Mathematica
function NDsolve. Figures 3 and 4 show the imaginary part
of the solution. We use 𝑘 = 𝑚 = 1 in the calculations.

5. Two-Dimensional Nonlinear Schrödinger
Equation with Harmonic Oscillator

In this section we look at a particle movement in two dimen-
sions, the nonlinear Schrödinger equation with harmonic
oscillator when a particle moves in two dimensions with the
initial condition can be written as [20]

𝜕Ψ𝜕𝑡 − 𝑖2𝑚 (𝜕2Ψ𝜕𝑥2 + 𝜕2Ψ𝜕𝑦2 ) + 𝑖𝑘2 (𝑥2 + 𝑦2)Ψ
+ 𝑖 |Ψ|2 Ψ = 0,

(36)

Ψ(𝑥, 𝑦, 0) = 𝑒𝑖(𝑥+𝑦). (37)

5.1. LADM. Similar to the one-dimensional, after applying
Laplace transform to (36), substituting the initial condition,
and making L{Ψ(𝑥, 𝑦, 𝑡)} the subject, we have

L {Ψ (𝑥, 𝑦, 𝑡)} = 𝑒𝑖(𝑥+𝑦)𝑠
+ 1𝑠L{ 𝑖2𝑚 (𝜕2Ψ𝜕𝑥2 + 𝜕2Ψ𝜕𝑦2 )}
− 1𝑠L{𝑖𝑘2 (𝑥2 + 𝑦2)Ψ}
− 1𝑠L {𝑖 |Ψ|2Ψ} .

(38)

Replacing the wave functionΨ(𝑥, 𝑦) and |Ψ|2Ψ in (38) by
the infinite series below,respectively,

Ψ(𝑥, 𝑦, 𝑡) = ∞∑
𝑛=0

Ψ𝑛 (𝑥, 𝑦, 𝑡) , (39)
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Figure 2: Real solution of the one-dimensional wave function obtained by NDsolve.
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Figure 3: Imaginary solution of the one-dimensional wave function obtained by LADM and HPM.

and

|Ψ|2Ψ = ∞∑
𝑛=0

𝐴𝑛 (Ψ0, Ψ1, . . . , Ψ𝑛) , (40)

we get

L{∞∑
𝑛=0

Ψ𝑛 (𝑥, 𝑦, 𝑡)} = 𝑒𝑖(𝑥+𝑦)𝑠 + 1𝑠
⋅L{ 𝑖2𝑚 ( 𝜕2𝜕𝑥2 (

∞∑
𝑛=0

Ψ𝑛 (𝑥, 𝑦, 𝑡))
+ 𝜕2𝜕𝑦2 (

∞∑
𝑛=0

Ψ𝑛 (𝑥, 𝑦, 𝑡)))} − 1𝑠L{𝑖𝑘2 (𝑥2 + 𝑦2)
⋅ ∞∑
𝑛=0

Ψ𝑛 (𝑥, 𝑦, 𝑡)} − 1𝑠L{𝑖 (∞∑
𝑛=0

𝐴𝑛)} .

(41)

Applying inverse Laplace transform, we have

Ψ0 = L
−1 {𝑒𝑖(𝑥+𝑦)𝑠 } , (42)

Ψ1
= L
−1 { 𝑖2𝑚𝑠L{𝜕2Ψ0 (𝑥, 𝑦, 𝑡)𝜕𝑥2 + 𝜕2Ψ0 (𝑥, 𝑦, 𝑡)𝜕𝑦2 }}

−L
−1 { 𝑖𝑘2𝑠L {(𝑥2 + 𝑦2)Ψ0 (𝑥, 𝑦, 𝑡)}}

−L
−1 { 𝑖𝑠L {𝐴0}} ,

(43)
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Figure 4: Imaginary solution of the one-dimensional wave function obtained by NDsolve.

Ψ2
= L
−1 { 𝑖2𝑚𝑠L{𝜕2Ψ1 (𝑥, 𝑦, 𝑡)𝜕𝑥2 + 𝜕2Ψ1 (𝑥, 𝑦, 𝑡)𝜕𝑦2 }}

−L
−1 { 𝑖𝑘2𝑠L {(𝑥2 + 𝑦2)Ψ1 (𝑥, 𝑦, 𝑡)}}

−L
−1 { 𝑖𝑠L {𝐴1}} ,

(44)

and thus

Ψ𝑛 = L
−1 { 𝑖2𝑚𝑠

⋅L{𝜕2Ψ𝑛−1 (𝑥, 𝑦, 𝑡)𝜕𝑥2 + 𝜕2Ψ𝑛−1 (𝑥, 𝑦, 𝑡)𝜕𝑦2 }}
−L
−1 { 𝑖𝑘2𝑠L {(𝑥2 + 𝑦2)Ψ𝑛−1 (𝑥, 𝑦, 𝑡)}}

−L
−1 { 𝑖𝑠L {𝐴𝑛−1}} .

(45)

Solving the above system of equations, we get

Ψ0 (𝑥, 𝑦, 𝑡) = 𝑒𝑖(𝑥+𝑦),
Ψ1 (𝑥, 𝑦, 𝑡) = −𝑖𝑡𝑚 (𝑒𝑖(𝑥+𝑦)) − 𝑖𝑘𝑡𝑒𝑖(𝑥+𝑦)2 (𝑥2 + 𝑦2)

− 𝑖𝑡𝑒𝑖(𝑥+𝑦),
Ψ2 (𝑥, 𝑦, 𝑡) = −𝑡2𝑒𝑖(𝑥+𝑦)(2!)𝑚2 − 𝑘𝑡2𝑒𝑖(𝑥+𝑦)(2!)𝑚 (𝑥2 + 𝑦2)

− 2𝑡2𝑒𝑖(𝑥+𝑦)(2!)𝑚 + 𝑘𝑡2𝑒𝑖(𝑥+𝑦)(2!) 𝑚 + 𝑖𝑘𝑡2𝑒𝑖(𝑥+𝑦) (𝑥 + 𝑦)(2!)𝑚
− 𝑘2𝑒𝑖(𝑥+𝑦) (𝑥2 + 𝑦2)2 𝑡24 (2!) − 𝑡2𝑒𝑖(𝑥+𝑦)(2!)
− 𝑘𝑒𝑖(𝑥+𝑦)𝑡2 (𝑥2 + 𝑦2)(2!) ,

Ψ3 (𝑥, 𝑦, 𝑡) = 𝑡33! (𝑖𝑒𝑖(𝑥+𝑦)𝑚3 + 3𝑘 (𝑥 + 𝑦) 𝑒𝑖(𝑥+𝑦)𝑚2
− 5𝑖𝑘𝑒𝑖(𝑥+𝑦)𝑚2 + 3𝑘 (𝑥 + 𝑦) 𝑒𝑖(𝑥+𝑦)𝑚
+ 3𝑘2 (𝑥2 + 𝑦2) (𝑥 + 𝑦) 𝑒𝑖(𝑥+𝑦)2𝑚
+ 3𝑖𝑘 (𝑥2 + 𝑦2) 𝑒𝑖(𝑥+𝑦)2𝑚2 − 5𝑖𝑘2 (𝑥2 + 𝑦2) 𝑒𝑖(𝑥+𝑦)2𝑚
+ 3𝑖𝑘2 (𝑥2 + 𝑦2)2 𝑒𝑖(𝑥+𝑦)4𝑚 + 2𝑖𝑒𝑖(𝑥+𝑦)𝑚2 − 3𝑖𝑘𝑒𝑖(𝑥+𝑦)𝑚
+ 3𝑖𝑘 (𝑥2 + 𝑦2) 𝑒𝑖(𝑥+𝑦)𝑚 + 3𝑖𝑒𝑖(𝑥+𝑦)𝑚
+ 𝑖𝑘3 (𝑥2 + 𝑦2)3 𝑒𝑖(𝑥+𝑦)8 + 3𝑖𝑘 (𝑥2 + 𝑦2) 𝑒𝑖(𝑥+𝑦)2
+ 3𝑖𝑘2 (𝑥2 + 𝑦2)2 𝑒𝑖(𝑥+𝑦)4 + 𝑖𝑒𝑖(𝑥+𝑦)) .

(46)
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Therefore, the approximate solution can be written asΨ = Ψ0 + Ψ1 + Ψ2 + Ψ3 + ⋅ ⋅ ⋅
Ψ = 𝑒𝑖(𝑥+𝑦) [1 + (−𝑖𝑡𝑚 − 𝑖𝑘𝑡2 (𝑥2 + 𝑦2) − 𝑖𝑡)

+ 12! (−𝑖𝑡𝑚 − 𝑖𝑘𝑡2 (𝑥2 + 𝑦2) − 𝑖𝑡)2

+ 𝑡22! (𝑖𝑘 (𝑥 + 𝑦)𝑚 + 𝑘𝑚) + 13! (−𝑖𝑡𝑚
− 𝑖𝑘𝑡2 (𝑥2 + 𝑦2) − it)3 + 𝑡33! (3𝑘 (𝑥 + 𝑦)𝑚2 − 5𝑖𝑘𝑚2
+ 3𝑘 (𝑥 + 𝑦)𝑚 + 3𝑘2 (𝑥2 + 𝑦2) (𝑥 + 𝑦)2𝑚
− 5𝑖𝑘2 (𝑥2 + 𝑦2)2𝑚 − 3𝑖𝑘𝑚 ) + ⋅ ⋅ ⋅] .

(47)

5.2. HPM. In this section we apply the HPM to solve the
two-dimensional equation; first we construct the following
suitable homotopy:

𝐻(V, 𝑝) = (1 − 𝑝) [𝜕V𝜕𝑡 − 𝜕V0𝜕𝑡 ] + 𝑝[𝜕V𝜕𝑡
− 𝑖2𝑚 ( 𝜕2V𝜕𝑥2 + 𝜕2V𝜕𝑦2) + 𝑖𝑘2 (𝑥2 + 𝑦2) V + 𝑖 |V|2 V]
= 0.

(48)

Using the same steps as in the one-dimensional case, we get
the following system of equations:

𝑝0:𝜕V𝜕𝑡 − 𝜕V0𝜕𝑡 = 0,
V0 (𝑥, 𝑦, 0) = 𝑒𝑖(𝑥+𝑦),
𝑝1:𝜕V1𝜕𝑡 = 𝑖2𝑚 (𝜕2V0𝜕𝑥2 + 𝜕2V0𝜕𝑦2 ) − 𝑖𝑘2 (𝑥2 + 𝑦2) V0

− 𝑖 󵄨󵄨󵄨󵄨V0󵄨󵄨󵄨󵄨2 V0,
V1 (𝑥, 𝑦, 0) = 0,

...
𝑝𝑗:𝜕V𝑗𝜕𝑡 = 𝑖2𝑚 [𝜕2V𝑗−1𝜕𝑥2 + 𝜕2V𝑗−1𝜕𝑦2 ]

− 𝑖𝑘2 (𝑥2 + 𝑦2) V𝑗−1 − 𝑖𝑖−1∑
𝑖=0

𝑗−𝑖−1∑
𝑘=0

󵄨󵄨󵄨󵄨V𝑖󵄨󵄨󵄨󵄨 V𝑘 󵄨󵄨󵄨󵄨󵄨V𝑗−𝑘−𝑖−1󵄨󵄨󵄨󵄨󵄨 ,
V𝑗 (𝑥, 𝑦, 0) = 0,

𝑗 > 0.

(49)

The general 𝑗𝑡ℎ term can be obtained as follows:

V𝑗 = ∫𝑡
0
( 𝑖2𝑚 [𝜕2V𝑗−1𝜕𝑥2 + 𝜕2V𝑗−1𝜕𝑦2 ] − 𝑖𝑘2 (𝑥2 + 𝑦2) V𝑗−1

− 𝑖𝑖−1∑
𝑖=0

𝑗−𝑖−1∑
𝑘=0

󵄨󵄨󵄨󵄨V𝑖󵄨󵄨󵄨󵄨 V𝑘 󵄨󵄨󵄨󵄨󵄨V𝑗−𝑘−𝑖−1󵄨󵄨󵄨󵄨󵄨) 𝑑𝜏.
(50)

Therefore, we can now evaluate the solution to the above
system of differential equations:

V0 (𝑥, 𝑦, 𝑡) = 𝑒𝑖(𝑥+𝑦),
V1 (𝑥, 𝑦, 𝑡) = −𝑖𝑡𝑚 (𝑒𝑖(𝑥+𝑦)) − 𝑖𝑘𝑡𝑒𝑖(𝑥+𝑦)2 (𝑥2 + 𝑦2)

− 𝑖𝑡𝑒𝑖(𝑥+𝑦),
V2 (𝑥, 𝑦, 𝑡) = −𝑡2𝑒𝑖(𝑥+𝑦)(2!)𝑚2 − 𝑘𝑡2𝑒𝑖(𝑥+𝑦)(2!)𝑚 (𝑥2 + 𝑦2)

− 2𝑡2𝑒𝑖(𝑥+𝑦)(2!) 𝑚 + 𝑘𝑡2𝑒𝑖(𝑥+𝑦)(2!)𝑚 + 𝑖𝑘𝑡2𝑒𝑖(𝑥+𝑦) (𝑥 + 𝑦)(2!) 𝑚
− 𝑘2𝑒𝑖(𝑥+𝑦) (𝑥2 + 𝑦2)2 𝑡24 (2!) − 𝑡2𝑒𝑖(𝑥+𝑦)(2!)
− 𝑘𝑒𝑖(𝑥+𝑦)𝑡2 (𝑥2 + 𝑦2)(2!) ,

V3 (𝑥, 𝑦, 𝑡) = 𝑡33! (𝑖𝑒𝑖(𝑥+𝑦)𝑚3 + 3𝑘 (𝑥 + 𝑦) 𝑒𝑖(𝑥+𝑦)𝑚2
− 5𝑖𝑘𝑒𝑖(𝑥+𝑦)𝑚2 + 3𝑘 (𝑥 + 𝑦) 𝑒𝑖(𝑥+𝑦)𝑚
+ 3𝑘2 (𝑥2 + 𝑦2) (𝑥 + 𝑦) 𝑒𝑖(𝑥+𝑦)2𝑚
+ 3𝑖𝑘 (𝑥2 + 𝑦2) 𝑒𝑖(𝑥+𝑦)2𝑚2 − 5𝑖𝑘2 (𝑥2 + 𝑦2) 𝑒𝑖(𝑥+𝑦)2𝑚
+ 3𝑖𝑘2 (𝑥2 + 𝑦2)2 𝑒𝑖(𝑥+𝑦)4𝑚 + 2𝑖𝑒𝑖(𝑥+𝑦)𝑚2 − 3𝑖𝑘𝑒𝑖(𝑥+𝑦)𝑚
+ 3𝑖𝑘 (𝑥2 + 𝑦2) 𝑒𝑖(𝑥+𝑦)𝑚 + 3𝑖𝑒𝑖(𝑥+𝑦)𝑚
+ 𝑖𝑘3 (𝑥2 + 𝑦2)3 𝑒𝑖(𝑥+𝑦)8 + 3𝑖𝑘 (𝑥2 + 𝑦2) 𝑒𝑖(𝑥+𝑦)2
+ 3𝑖𝑘2 (𝑥2 + 𝑦2)2 𝑒𝑖(𝑥+𝑦)4 + 𝑖𝑒𝑖(𝑥+𝑦)) .

(51)

Hence, the approximate solution to (36), (37) is

Ψ = 𝑒𝑖(𝑥+𝑦) [1 + (−𝑖𝑡𝑚 − 𝑖𝑘𝑡2 (𝑥2 + 𝑦2) − 𝑖𝑡)
+ 12! (−𝑖𝑡𝑚 − 𝑖𝑘𝑡2 (𝑥2 + 𝑦2) − it)2
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Figure 5: Real solution of the two-dimensional wave function obtained by LADM and HPM.
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Figure 6: Real solution of the two-dimensional wave function obtained by NDsolve.

+ 𝑡22! (𝑖𝑘 (𝑥 + 𝑦)𝑚 + 𝑘𝑚) + 13! (−𝑖𝑡𝑚
− 𝑖𝑘𝑡2 (𝑥2 + 𝑦2) − it)3 + 𝑡33! (3𝑘 (𝑥 + 𝑦)𝑚2 − 5𝑖𝑘𝑚2
+ 3𝑘 (𝑥 + 𝑦)𝑚 + 3𝑘2 (𝑥2 + 𝑦2) (𝑥 + 𝑦)2𝑚
− 5𝑖𝑘2 (𝑥2 + 𝑦2)2𝑚 − 3𝑖𝑘𝑚 ) + ⋅ ⋅ ⋅] .

(52)

The graphs of the solution of the two-dimensional wave
function are shown in Figures 5, 6, 7, and 8. Figure 5 is the
graph of the third-order approximation for the solution of
the real part of the wave function obtained by LADM and
HPM. Figure 6 is the graph of the wave function obtained
using Mathematica function NDsolve. Figures 7 and 8 show
the imaginary part of the solution. We use 𝑘 = 𝑚 = 1 and𝑡 = 0.1 in the calculations.

6. Conclusion

In this paper, homotopy perturbation and Laplace-Adomian
decomposition methods have proven successful when used to
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Figure 7: Imaginary solution of the two-dimensional wave function obtained by LADM and HPM.
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Figure 8: Imaginary solution of the two-dimensional wave function obtained by NDsolve.

find the approximate solution to the nonlinear Schrödinger
equation with harmonic oscillator in one and in two dimen-
sions. Our theoretical analyses have shown that both meth-
ods have given equivalent analytical approximate solutions
successfully and efficiently. Comparison between HPM and
LADM shows that although the results of these two methods
when applied to solve the Schrödinger equation are in good
agreement, HPM can overcome the difficulties arising in
calculation of Adomian’s polynomials. The solutions have
been obtained and plotted for the real and imaginary wave
function with the effect of adding the harmonic oscillator
to the nonlinear Schrödinger equation in one and in two
dimensions. HPM and LADMmethods numerical results are
in agreement with the solution obtained using Mathematica
function NDsolve.
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