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The advantageous Green’s function method that originally has been developed for nonhomogeneous linear equations has been
recently extended to nonlinear equations by Frasca. This article is devoted to rigorous and numerical analysis of some second-
order differential equations new nonlinearities by means of Frasca’s method. More specifically, we consider one-dimensional wave
equation with quadratic and hyperbolic nonlinearities. The case of exponential nonlinearity has been reported earlier. Using the
method of generalized separation of variables, it is shown that a hierarchy of nonlinear wave equations can be reduced to second-
order nonlinear ordinary differential equations, to which Frasca’s method is applicable. Numerical error analysis in both cases of
nonlinearity is carried out for various source functions supporting the advantage of the method.

1. Introduction

Themost simplistic models for real-life objects and phenom-
ena are formulated in terms of linear constraints. For a better
understanding of various phenomena having a nonlinear
character, strongly nonlinear constraints must be involved.
Nevertheless, numerical and especially rigorous analysis
of nonlinear constraints can be significantly sophisticated
and can require burdensome computational costs. In such
cases, the so-called semianalytical methods such as Adomian
decomposition method [1], Hirota direct method [2], and(𝐺󸀠/𝐺) expansion method [3] usually become very conve-
nient. The reason is that they allow deriving an approximate
analytical solution to the nonlinear constraints and, on
its basis, to perform a sensitivity analysis of the solution
dependence on, e.g., boundary/initial data and external
influence.

For linear constraints, the sensitivity analysis is usually
carried out by Green’s function method [4]. The solution
of nonhomogeneous differential equations is represented in
the form of convolution of Green’s function and the right-
hand side of the equation. At this, Green’s representation

formula is derived on the basis of the superposition prin-
ciple. Therefore it holds true exceptionally for linear con-
straints. Nevertheless, there exist several studies attempting
to generalize Green’s function concept and Green’s repre-
sentation formula to nonlinear systems. An exact exten-
sion has been reported in [5–7] (see also other works
by Cacuci). Assuming that the first Gatoux derivative of
the state equation exists, the concept of the forward and
backward propagators is introduced and the general solution
is represented as the inner product of the propagators
with the right-hand side (nonlinear Green’s representation
formula). In other words, the propagators play the same role
for nonlinear systems as Green’s function does for linear
systems.

Another extension has been reported a decade ago
by Frasca in [8, 9]. It has been shown that the general
solution of the nonlinear “oscillating” equations of the
form

𝑑2𝑤𝑑𝑡2 + 𝑁 (𝑤, 𝑡) = 𝑓 (𝑡) , 𝑡 > 0, (1)
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for a generic nonlinear function 𝑁, a given right-hand
side 𝑓, and appropriate Cauchy conditions can be rep-
resented in terms of the short time expansion as fol-
lows:

𝑤 (𝑡) = 𝑎0 ∫𝑡
0
𝐺 (𝑡 − 𝜏) 𝑓 (𝜏) d𝜏

+ 𝑎1 ∫𝑡
0
(𝑡 − 𝜏) 𝐺 (𝑡 − 𝜏) 𝑓 (𝜏) d𝜏

+ 𝑎2 ∫𝑡
0
(𝑡 − 𝜏)2 𝐺 (𝑡 − 𝜏) 𝑓 (𝜏) d𝜏

+ 𝑎3 ∫𝑡
0
(𝑡 − 𝜏)3 𝐺 (𝑡 − 𝜏) 𝑓 (𝜏) d𝜏 + ⋅ ⋅ ⋅

= ∞∑
𝑘=0

𝑎𝑘 ∫𝑡
0
(𝑡 − 𝜏)𝑘 𝐺 (𝑡 − 𝜏) 𝑓 (𝜏) d𝜏,

(2)

where 𝑎𝑘, 𝑘 = 0, 1, 2, . . ., are the unknown expansion
coefficients determined in terms of the quantities 𝑤(𝑘)(0).
Usually, in numerical computations, a truncated part of
expansion (2) is considered once the required precision is
achieved. In [10] it has been shown that if the consideration
is restricted to the interval 𝑡 ∈ [0, 1], the first-order
term

𝑤 (𝑡) ≈ 𝑎0 ∫𝑡
0
𝐺 (𝑡 − 𝜏) 𝑓 (𝜏) d𝜏 (3)

provides an efficient approxima-
tion.

Above, 𝐺 is the formal extension of Green’s function,
i.e., the general solution of the corresponding nonlinear
differential equation

𝑑2𝐺𝑑𝑡2 + 𝑁 (𝐺, 𝑡) = 𝑠𝛿 (𝑡) , 𝑡 > 0, (4)

under appropriate Cauchy conditions; 𝛿 is the Dirac function
𝛿 (𝑡) = {{{

0, 𝑡 ̸= 0,
∞, 𝑡 = 0, (5)

and 𝑠 is a scale factor forminimizing the approximation error.
It is noteworthy that in Frasca’s original paper 𝑎0 = 1. It was
introduced in [10] to reduce the approximation error further.
Moreover, for the comparison of the short time expansion
with the functional iteration method, see [9].

Here we study new forms of 𝑁, for which nonlinear
Green’s function is determined from (4) exactly. More specif-
ically, we consider the cases of quadratic and hyperbolic
nonlinearities (see Section 3). Moreover, we show that there
exists a hierarchy of nonlinear wave equations that can be
reduced to a second-order nonlinear differential equations,
the solution of which can be represented by nonlinear Green’s
formula (2). For the sake of simplicity, in this paper we
restrict ourselves only by the first-order approximation (3).
A numerical error analysis (see Section 4) is carried out in

comparison with the well-known method of lines (MoL). It
is established that even the first-order approximation gives a
solution compatible with a numerical one. The approxima-
tion error can be reduced further by considering higher-order
terms in the short time expansion above.

Such techniques are quite useful for a deeper practical
analysis, since they allow avoidance of any linearization of
the state equation, which often leads to a loss of some key
information about the nature of the nonlinear processes [11,
12]. Note that this approach is applicable as long as nonlinear
Green’s equation (4) is resolvable under the corresponding
Cauchy conditions. Note also that the idea of [13, 14] can
be applied on the results of this paper, in order to con-
sider control problems for new nonlinear dynamic systems
described by the “oscillating” equations (1) and related partial
differential equations.

2. Exactly Integrable Cases

Two particular nonlinearities are considered in [8] allowing
construction of the exact solution of (4). Particularly, the
cubic nonlinearity

𝑁(𝑤, 𝑡) = 𝑤3 (6)

provides

𝐺 (𝑡) = 21/4𝜃 (𝑡) ⋅ sn [ 𝑡21/4 , 𝑖] , (7)

where 𝜃 is the Heaviside function

𝜃 (𝑡) =
{{{{{{{{{

1, 𝑡 > 0,
12 , 𝑡 = 0,
0, 𝑡 < 0,

(8)

and sn is the Jacobi snoidal function. Here it is taken into
account that in the sense of distributions

𝜃󸀠 (𝑡) = 𝛿 (𝑡) . (9)

Furthermore, the trigonometric nonlinearity

𝑁(𝑤, 𝑡) = sin𝑤 (10)

admits exact integration of (4) as follows:

𝐺 (𝑡) = 2𝜃 (𝑡) ⋅ am [ 𝑡√2 ,√2] . (11)

Here am is the Jacobi amplitude function.
Some new nonlinearities are studied in [10]. In particular,

the reciprocal and exponential nonlinearities are shown to
be exactly integrable cases. For instance, in the case of the
exponential nonlinearity (Liouville equation)

𝑁(𝑤, 𝑡) = exp𝑤, (12)

nonlinear Green’s function is found as follows:

𝐺 (𝑡) = 𝜃 (𝑡) ⋅ ln [1 − tanh2 ( 𝑡√2)] . (13)



Advances in Mathematical Physics 3

3. Generalized Variable Separation and Wave
Equations with Nonlinear Potentials

Consider the one-dimensional wave equation

𝜕2𝑤𝜕𝑡2 = 𝜕𝜕𝑥 [exp (𝜆𝑥) 𝜕𝑤𝜕𝑥 ] + 𝑁̃ (𝑤, 𝑥, 𝑡) ,
−∞ < 𝑥 < ∞, 𝑡 > 0,

(14)

describing the nonlinear wave propagation in inhomoge-
neous media with the quadratic nonlinearity

𝑁̃ (𝑤, 𝑥, 𝑡) = 𝑤2. (15)

The transformation [15, 16]

𝜒2 = exp (−2𝑥) − 𝑡2, (16)

reduces the wave equation (14) to

𝑑2𝑤𝑑𝜒2 + 𝑤2 (𝜒) = 0, (17)

where

𝑤 (𝜒) = 𝑤 (𝑥, 𝑡) . (18)

In this case, Green’s function is determined as follows:

𝐺 (𝜒) = −1𝑐 𝜃 (𝜒) ⋅ ℘ (𝑐𝜒 + 𝑐1; 0, 𝑐2) , 𝑐 = (−6)−1/3 , (19)

subject to appropriate Cauchy conditions. Here ℘ is the
Weierstrass elliptic function

℘ (𝜒; 𝜔1, 𝜔2)
= 1𝜒2
+ ∑
𝑛2+𝑚2 ̸=0

[ 1
(𝜒 + 𝜔1𝑚 + 𝜔2𝑛)2 −

1
(𝜔1𝑚 + 𝜔2𝑛)2] ,

(20)

and 𝑐1 and 𝑐2, as in all cases below, are integration constants
that must be determined from the corresponding Cauchy
conditions.

The same transformation reduces (14) with

𝑁̃ (𝑤, 𝑥, 𝑡) = 1̃𝑤 (21)

to

𝑑2𝑤𝑑𝜒2 + 1𝑤 (𝜒) = 0. (22)

In this case, Green’s function reads as

𝐺 (𝜒) = 𝑐1𝜃 (𝜒) ⋅ exp [−𝜑2 (𝜒; 𝑐1, 𝑐2)] , (23)

where

𝜑 (𝜒; 𝑐1, 𝑐2) = erf−1 [−√ 2𝜋 󵄨󵄨󵄨󵄨𝑐1󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜒 + 𝑐2󵄨󵄨󵄨󵄨] , (24)

erf−1 is the inverse of the Gauss error function

erf (𝜒) = 2√𝜋 ∫
𝜒

0
exp [−𝜉2] d𝜉. (25)

Consider also the case when

𝑁̃ (𝑤, 𝑥, 𝑡) = tanh𝑤, (26)

leading in (14) to

𝑑2𝑤𝑑𝜒2 + tanh𝑤 (𝜒) = 0. (27)

This case is interesting from the perspective that correspond-
ing Green’s function is found implicitly as the solution of

[∫𝐺(𝜒)
0

1
√𝑐1 − 2 ln (cosh 𝑧)d𝑧]

2 = (𝜒 + 𝑐2)2 . (28)

If the solution of the ordinary differential equations above
is approximated by (3), then the general solution of the wave
equation (14) can be approximated by

𝑤 (𝑥, 𝑡) ≈ 𝑠2 ∫∞
−∞

∫𝑡
0
𝐺 (𝑥 − 𝜉, 𝑡 − 𝜏) 𝑓 (𝜉, 𝜏) d𝜉 d𝜏, (29)

where

𝐺 (𝑥, 𝑡) = 𝐺 (𝜒 (𝑥, 𝑡)) , (30)

and 𝑓 represents either boundary/initial data or the right-
hand side.

Nonlinear wave equations like (14) arise, e.g., in biology
[17], in many areas of physics, mechanics, and engineering,
describing, as a rule, nonlinear vibrations in solids or fluids
[18]. In particular, they describe vibrations of a pendulum,
vibrations of nonlinear elastic rods, nonlinear electromag-
netic oscillations, nonlinear gravitational waves, etc.

4. Numerical versus Green’s solutions

In this section we study the error of approximation by (3)
numerically for some of the nonlinearities considered in the
previous section. Various source functions are considered.
The approximation error is evaluated by the logarithmic
function

Er (𝑡) = log10
󵄨󵄨󵄨󵄨𝑤Green’s (𝑡) − 𝑤MoL (𝑡)󵄨󵄨󵄨󵄨 , (31)

measuring the absolute error between nonlinear Green’s
solution𝑤Green’s and the numerical solution𝑤MoL, derived by
means of the method of lines, in degrees of 10. For𝑤Green’s we
use the first-order approximation (3).

4.1. Quadratic Potential. Let the nonlinear potential be given
by (15). First, consider the case when 𝑓(𝑡) = 𝛿(𝑡). Figure 1,
where the discrete plot of 𝑤Green’s and 𝑤MoL and the loga-
rithmic error function Er are plotted, shows an impressively
small approximation error. Moreover, consideration of sev-
eral other source functions such as switching, trigonometric,



4 Advances in Mathematical Physics

Green’s
MoL

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

(a)

0.0 0.2 0.4 0.6 0.8 1.0

−6.62

−6.61

−6.60

−6.59

−6.58

−6.57

−6.56

−6.55

(b)

Figure 1: Discrete plot of 𝑤Green’s and 𝑤MoL (a) and Er (b) against 𝑡 ∈ [0, 1] for 𝑓(𝑡) = 𝛿(𝑡): quadratic potential.
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Figure 2: Discrete plot of 𝑤Green’s and 𝑤MoL (a) and Er (b) against 𝑡 ∈ [0, 1] for 𝑓(𝑡) = 𝜃(𝑡): quadratic potential.
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Figure 3: Discrete plot of 𝑤Green’s and 𝑤MoL (a) and Er (b) against 𝑡 ∈ [0, 1] for 𝑓(𝑡) = sin(𝑡): quadratic potential.
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Figure 4: Discrete plot of 𝑤Green’s and 𝑤MoL (a) and Er (b) against 𝑡 ∈ [0, 1] for 𝑓(𝑡) = exp(𝑡): quadratic potential.
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Figure 5: Discrete plot of 𝑤Green’s and 𝑤MoL (a) and Er (b) against 𝑡 ∈ [0, 1] for 𝑓(𝑡) = 1 + 𝑡 + 𝑡2 + 𝑡3: quadratic potential.
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Figure 6: Discrete plot of 𝑤Green’s and 𝑤MoL (a) and Er (b) against 𝑡 ∈ [0, 1] for 𝑓(𝑡) = ln(1 + 𝑡): quadratic potential.
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Figure 7: Discrete plot of 𝑤Green’s and 𝑤MoL (a) and Er (b) against 𝑡 ∈ [0, 1] for 𝑓(𝑡) = 𝛿(𝑡): hyperbolic potential.
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Figure 8: Discrete plot of 𝑤Green’s and 𝑤MoL (a) and Er (b) against 𝑡 ∈ [0, 1] for 𝑓(𝑡) = 𝜃(𝑡): hyperbolic potential.
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Figure 9: Discrete plot of 𝑤Green’s and 𝑤MoL (a) and Er (b) against 𝑡 ∈ [0, 1] for 𝑓(𝑡) = sin(𝑡): hyperbolic potential.
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Figure 10: Discrete plot of 𝑤Green’s and 𝑤MoL (a) and Er (b) against 𝑡 ∈ [0, 1] for 𝑓(𝑡) = exp(𝑡): hyperbolic potential.
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Figure 11: Discrete plot of 𝑤Green’s and 𝑤MoL (a) and Er (b) against 𝑡 ∈ [0, 1] for 𝑓(𝑡) = 1 + 𝑡 + 𝑡2 + 𝑡3: hyperbolic potential.
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Figure 12: Discrete plot of 𝑤Green’s and 𝑤MoL (a) and Er (b) against 𝑡 ∈ [0, 1] for 𝑓(𝑡) = ln(1 + 𝑡): hyperbolic potential.
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Table 1:Minimal andmaximal logarithmic errors of approximation
for various source functions: quadratic potential.

𝑓(𝑡) min Er max Er 𝑎0 𝑠
𝛿(𝑡) −6.63 −6.55 2 1𝜃(𝑡) −8 −3.5 2.1475 0.93107
sin(𝑡) −9.5 −4.25 2.7807 0.72126
exp(𝑡) −6 −2.5 197.1 0.011 + 𝑡 + 𝑡2 + 𝑡3 −6.1 −2.5 27.5783 0.07149
ln(1 + 𝑡) −9.1 −4 2.5925 0.7743
Table 2:Minimal andmaximal logarithmic errors of approximation
for various source functions: hyperbolic potential.

𝑓(𝑡) min Er max Er 𝑎0 𝑠
𝛿(𝑡) −6.8 −6.55 2 1𝜃(𝑡) −9.1 −4.25 2.1483 0.93107
sin(𝑡) −9.8 −5.7 2.77245 0.72126
exp(𝑡) −7.3 −3.5 200.3 0.011 + 𝑡 + 𝑡2 + 𝑡3 −7.2 −3.4 28.0215 0.07149
ln(1 + 𝑡) −9.7 −5.25 2.5824 0.7743

exponential, polynomial, and logarithmic influences shows a
high efficiency as well (see Figures 2–6).

The minimal and maximal logarithmic errors for the
considered source functions are reported in Table 1.The scale
factors 𝑎0 and 𝑠 are chosen to minimize the Er function.

4.2. Hyperbolic Potential. Now consider the case when the
potential is given by (26). The error analysis for the same
source functions as above is reported in Figures 7–12 and
Table 2. It is observed that when we use the same values
of the scaling factor 𝑠 for both nonlinearities, then the
corresponding values of 𝑎0 are also close to each other.

5. Conclusion

The validity of Frasca’s short time expansion (nonlin-
ear Green’s representation formula) developed recently for
second-order ordinary differential equations of a specific
form is established numerically for new classes of nonlinear
equations. It is shown that by means of the method of
generalized separation of variables, a hierarchy of nonlinear
wave equations can be reduced to second-order nonlinear
ordinary differential equations, the solution of which can be
represented in terms of the nonlinear Green’s function.

The numerical solution derived by means of the method
of lines is compared with the approximate solution repre-
sented in terms of nonlinear Green’s function in the case
of quadratic and hyperbolic nonlinearities. Consideration of
different types of source influences ensures the robustness
of the technique. It is observed that the logarithmic error of
the two solutions strongly depends on the right-hand side
of the equation, corresponding to the source influencing the
real-life object or phenomena. The approximation error is
minimized with respect to two scaling factors occurring in
the right-hand side of the nonlinear equation for Green’s

function and in the first-order term in Frasca’s short time
expansion. The approach can be used to derive explicit-
approximate solutions to various other nonlinear partial
differential equations.
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