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We study the random Schrödinger operators in a Euclidean space with the disorder generated by two complementary mechanisms:
random substitution in a lower-dimensional layer and randomdisplacements in the bulk, without additional assumptions regarding
the reflection symmetry of the site potentials. The latter are assumed to be bounded and have a power-law decay. Complementing
earlier results obtained in the strong disorder regime, we establish spectral and strong dynamical localization in the impurity zone
near the bottom of spectrum for arbitrarily weak amplitudes of the randomdisplacements, provided the concentration of impurities
is sufficiently small.

1. Introduction

1.1. The Model. By a random displacements Hamiltonian in
R𝑑 one usually calls a random Schrödinger operator of the
form

𝐻(𝜔) = −ℎΔ + 𝑉0 (𝑥) + ∑
𝑎∈Z𝑑

u𝑎 (𝑥 − 𝑋𝑎 (𝜔)) , (1)

where ℎ > 0, Z𝑑 ⊂ R𝑑 is a discrete lattice (usually
periodic), and𝑋𝑎(𝜔) are random positions of the “scatterers”
labeled by the lattice sites 𝑎 and characterized by the local
potentials (“scatterer potentials”)u𝑎. In particular, allu𝑎may
be identical. Here 𝑉0(𝑥) is a nonrandom component of the
potential generated by the media, which one may choose to
be trivial (𝑉0(𝑥) ≡ 0) or not. Generally speaking, suchmodels
aremore difficult to study than the random alloymodels with
Hamiltonians

−ℎΔ + ∑
𝑎∈Z

𝑐𝑎 (𝜔)u𝑎 (𝑥 − 𝑎) , (2)

where the randomness resides in the IID (independent and
identically distributed) amplitudes 𝑐𝑎(𝜔), and the latter are
usually assumed to have a Lipschitz- or Hölder-continuous
probability distributions.

There is a considerable wealth of mathematical research
papers and monographs on alloy models and their finite-
difference analogs, while the number of rigorous results on
the random displacements models (RDM, in short) remains
quite limited.

Both in the class of alloy models and the RDM, one
usually assumes u to be compactly supported; this is of
course a conscious simplification of the physical reality where
the fundamental interactions have infinite range. Indeed, a
rigorous study of long-range models is substantially more
complicated due to the long-range correlations induced by u.

In the present paper, we treat a model which combines
these two features: the randomness is provided only by the
displacements𝑋𝑎(𝜔) and the potentialsudecay polynomially
at infinity. To be more precise, we also introduce an addi-
tional disordermechanism, random substitutions of scatterer
potentials, as described below.

Klopp [1] studied the random displacements model with
the help of powerful techniques of the semiclassical analysis,
hence under the assumption that the kinetic energy ampli-
tude ℎ in −ℎΔ is sufficiently small. Since multiplication of an
operator by a nonzero constant does not change the nature
of its spectral components (absolutely continuous, singular
continuous, and pure point spectra), the assumption ℎ ≪ 1
in𝐻 = −ℎΔ + 𝑉(𝜔) is equivalent to the assumption ℎ−1 ≫ 1
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in the rescaled operator ℎ−1𝐻(𝜔) = −Δ + ℎ−1𝑉(𝜔); the latter
is usually called the strong disorder regime. The semiclassical
approach has a number of important advantages; in particu-
lar, it resulted in [1] in the proof of a Wegner-type estimate
and of the Initial Length Scale (ILS) estimate based on the
Lifshitz tails phenomenon (cf. [2–4]). However, an adapta-
tion of these technically involved methods to the random
displacementsmodels with an infinite-range, slowly decaying
interaction potential u is far from being straightforward, and
it is beyond the scope of the present paper.

Lott and Stolz [5] and Baker et al. [6, 7] studied the spec-
tral minimizers for the displacements model, in the context,
and obtained important analytic (deterministic) results in
this direction. Further progress was obtained by Klopp et
al. [8] who described the energy minimizing configurations
in the displacements model, assuming that the site potential
is reflection-symmetric in each coordinate variable 𝑥𝑖 = 0,1 ≤ 𝑖 ≤ 𝑑 (see the precise assumptions (A1) and (A2) in [8]),
and proved Anderson localization in their model for energies
near the bottom of the spectrum.

We consider the model where the local potentials are of
two different types. Physically, it corresponds to a disordered
media sample with different types of atoms (or ions, when
some electrons aremobile; for simplicity we will always speak
of “atoms” bearing the respective local potentials). Generally
speaking, one can consider the models with an arbitrary
number 𝐾 > 1 of atoms, but the most important feature of
ourmodel is that in some sublatticeZ𝑑0 󳨅→ Z𝑑 = Z𝑑0 ×Z𝑑1

some randomly selected atoms are of one particular type
with potentials taking values below those of all other types
(negative, in our model).

A realistic example is given by a thin film (some recent
CPU chips are built on 14 nm films, with just a few atoms
across it) where one thin filament is “doped” by randomly
placed atoms producing a low energy band: below the main
energy band of the bulk material. Similarly, in 3 dimensions,
one can think of a surface of a crystal with randomly places
impurities; such a layer, producing a low energy band, can be
sandwiched between two much thicker samples of the bulk
material. A thorough examination of our arguments in the
subsequent sections evidences that the main results can be
easily extended to amodel where the impurities are randomly
placed inside a finite-width layer and not just a monolayer
formed by a sublattice Z𝑑0 of nonzero codimension. Our
technique allows one to prove exponential spectral and strong
dynamical localization in the impurity zone produced solely
by randomness in local displacements within a subsample
of the bulk material (located at a finite distance from the
impurity layer).

From the point of view of experimental physics and
new technologies, an approach relying only on random
displacements provides a solid base for the emergence of
Anderson localization, where more traditional random alloy
models rely crucially on the fluctuations of the strength of the
local potentials𝜔𝑎u(𝑥−𝑎), with𝜔𝑎 having a continuous (even
absolutely continuous) probability distribution. It is quite
clear from the basic facts of the electrostatic interactions that
the amplitude of the potential is proportional to the electric

charge of a given ion, and the latter is an integer multiple
of the electron charge 𝑒, so it cannot have a continuous
distribution. Of course, the popular alloy models implicitly
refer to a complex structure of the ionic potentials, yet the
question of whether or not the latter could result in a nice
probability distribution of local potential amplitudes is far
from obvious, and this is where the random displacements
mechanism proves much more pertinent and universal.

To formalize the above considerations, we introduce
the extended samples 𝜔 = (𝜔, 𝜗) on a probability space(Ω,B,P), where 𝜔 = (𝜔𝑎)𝑎∈Z and 𝜗 = (𝜗𝑎)𝑎∈Z𝑑0 are
mutually independent random fields on the entire lattice Z
and on the sublattice Z𝑑0 , respectively, and each of them
is IID (has independent and identically distributed random
values). To make explicit some geometrical constraints we
introduce for the sake of clarity, we assume that the intersite
distances in Z𝑑 are greater than or equal to 1 (e.g., Z𝑑 =
Z𝑑), but in the case of more general lattices it suffices to
adapt intermediate geometrical parameters. Apart from the
difference in the index sets of 𝜔𝑎 and 𝜗𝑎 (Z versus Z𝑑0),
the respective commonmarginal probability distributions are
quite different:

(U1) 𝜗𝑎, 𝑎 ∈ Z𝑑0 , are Bernoulli random variables with
P{𝜗𝑎 = 1} = 𝑝 = 1 − P{𝜗𝑎 = 0} ∈ (0, 1).

(U2) 𝜔𝑎 ∈ R𝑑, 𝑎 ∈ Z, have a bounded, compactly sup-
ported probability density 𝜌0(𝑥), 𝑥 ∈ R𝑑. Specifically,
we assume for the sake of clarity of presentation that
there exist 0 < 𝑟1 < 𝑟2 < 1/2 such that

(U2.1) supp 𝜌0 ⊂ 𝐵𝑟2(0),
(U2.2) 𝜌0(𝑥) ≥ 𝑐1𝐵𝑟1 (0)(𝑥), 𝑐 > 0.

Given the random displacements 𝜔𝑎, we denote by 𝑋𝑎 fl𝑎 + 𝜔𝑎 the random positions of the (centers of) the atoms
forming the media.

Next, we consider two types of the local potentials, u0
and u1. Simply put, the potential 𝑉 induced by any sample
without “impurities” (potentials u1) is nonnegative, while an
impurity at 𝑎 ∈ Z𝑑0 (implemented by a site potentialu0(⋅−𝑎))
produces a negative potential well in some ball 𝐵𝑟0(𝑎), and
we assume that this negative well cannot be destroyed by
any configuration of atom types and displacements occurring
outside some neighborhood of the site 𝑎.

Specifically, we assume thatu0 andu1 fulfill the following
conditions:

(U3) For 𝑟 ≥ 1/2 and some 𝐴 > 2𝑑,
(U3.1) |u1(𝑟)| ≤ 𝐶1𝑟−𝐴, 𝐶1 ∈ (0, +∞);
(U3.2) u0(𝑟) = 𝑟−𝐴.

From u1(𝑟) with 𝑟 ≥ 1/2 we only need an upper
bound (U3.1) on its decay rate, while more detailed analytical
information is required for u0(𝑟) and its gradient, which
explains an explicit choice made in (U3.2).

The main distinction between u0 and u1 is explained by
the following hypothesis (recall𝑋𝑎 = 𝑎 + 𝜔𝑎):
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(U4) There exist some 𝐸(−) < 0 and 𝑟0 > 0 such that for and
all 𝑥 ∈ 𝐵𝑟0(0) one has
u1 (𝑥) + ∑

𝑎 ̸=0

sup
|𝜔𝑎|≤𝑟2

max
𝑘=0,1

u𝑘 (𝑥 − 𝑋𝑎) ≤ 𝐸(−), (3)

while u0(𝑥) ≥ 0 for all 𝑥 ∈ R𝑑.

In addition, we assume that the kinetic energy amplitudeℎ (cf. (1)) is sufficiently small, depending upon u0, so that
the negative wells (starting from a single one) produce
deterministically a nontrivial negative spectrum of𝐻.

Since (U3.1) gives a deterministic bound on the decay |u|
(in fact, it could be assumed in addition to the condition
of nonpositivity everywhere), and u0(𝑟) = 𝑟−𝐴 outside
a ball of radius 1/2, it suffices to take u1(𝑟) negative and
sufficiently large in 𝐵𝑟0(0) to create a deep negative well.
Further, the variational estimates show that such a well
around an impurity produces negative spectrum, at least for
the amplitude ℎ of the Laplacian small enough.

The main point of the present work is the analysis of the
spectral band produced by the u0-wells.

Introduce the alloy potential inR𝑑 of the form

𝑉 (𝑥;𝜔) = 𝑉(𝐵) (𝑥; 𝜔) + 𝑉(𝑆) (𝑥; 𝜔) (4)

(here (𝐵) stand for “Bulk” and (𝑆) for “Surface”), with
𝑉(𝐵) (𝑥; 𝜔) = ∑

𝑎∈Z𝑑

u0 (𝑥 − 𝑋𝑎) ,
𝑉(𝑆) (𝑥; 𝜔, 𝜗) = ∑

𝑎∈Z𝑑0 :𝜗𝑎=0

u0 (𝑥 − 𝑋𝑎)
+ ∑
𝑎∈Z𝑑0 :𝜗𝑎=1

u1 (𝑥 − 𝑋𝑎)
(5)

(recall𝑋𝑎 = 𝑎 + 𝜔𝑎).
Once the selection of the potential types 𝜗𝑎 ∈ {0, 1} is

made, the only randomness in the potential sample 𝑉(𝑥;𝜔)
is the one coming from the displacements𝑋𝑎(𝜔).

The assumptions on smallness of the support of the
probability measure 𝜌0 (of the displacements 𝜔𝑎) had been
made before in several works on the random displacements
models (RDM)where it was actually crucial that the supports
of the local potentials, even after admissible displacements
of their centers within neighborhoods of the lattice sites 𝑎,
do not overlap, for otherwise the subtle functional-analytic
results used in earlier proofs would break down. It will be
clear from our presentation that we can afford supp 𝜌0 ⊂𝐵𝑟(0) with any fixed 𝑟 < +∞, at the price of a more
elaborate analysis and some additional assumptions on the
site potentials (either a “hard core” condition or smallness
of the positive potential u0, in order not to destroy the
impurity wells).This follows from our strategy of proof of the
crucial eigenvalue concentration (or Wegner-type) estimate
which relies only on the randomness of 𝜔𝑎 with 𝑎 filling an
affine sublattice parallel to Z𝑑0 at some finite distance 𝑟2
from the latter. The reader will see that the displacements
of all remaining random positions 𝑋𝑎 = 𝑎 + 𝜔𝑎 can be

(and often will be) rendered nonrandom by conditioning.
However, this alsomakesmore cumbersome some important
geometrical arguments, and for this reason we postpone
possible generalizations to a forthcoming work.

Kirsch et al. [9] adapted the variable-energy (or energy-
interval) MSA approach developed by Fröhlich et al. [10]
(cf. also [11]), reformulated by von Dreifus and Klein [12], to
the alloy models with a polynomial decay of the interaction
potential u(𝑟) = 𝑟−𝐴, under the assumption 𝐴 > 4𝑑.
However, their techniques apply directly to the models
featuring the so-calledmonotonicity condition: a variation of
any random parameters (scatterer amplitudes, in their case)
has to produce a variation of the potential with fixed sign
(either positive or negative), while the displacements of the
scatterers result in sign-indefinite variations of the induced
potential.

An important issue one has to face in the class of the
randomdisplacementsmodels is the proof of the ILS estimate
for an arbitrarily small disorder amplitude, without the strong
disorder condition. The main point of the present paper is
that this issue can be addressed in a relatively simple way for
the surface models where a layer of the sample producing a
spectral band, separated by a gap from the bulk spectrum, is
subject both to the randomdisplacements disorder and to the
substitution disorder (due to a random selection of the lattice
positions for the impurities).

The latter kind of disorder is “discrete” and not generated
by variation of continuous parameters. Such a situation
usually renders the localization analysis very difficult; the
first result in this area was obtained in a remarkable work by
Bourgain and Kenig [13] in 2001, for the random alloys with
Bernoulli distribution of random scatterers amplitudes. Ger-
minet and Klein [14] have later extended the Bourgain–Kenig
approach to arbitrary nontrivial distributions, but the tech-
nique here remains very complex and the localization bounds
(for the eigenfunction correlators) remain quite modest. In
our paper, we use a “discrete” substitution disorder solely
for the proof of the Initial Length Scale estimate, which is
already quite difficult to obtain otherwise. To the author’s
best knowledge, there is no prior result for the weak-disorder
localization at low energy in the random displacements
model with slowly decaying interaction.

Moreover, we show that the moderate rate of decay of the
Green functions obtained at the first stage of the multiscale
analysis can be significantly enhanced by a “soft” argument,
so that despite a relatively slow, power-law decay of inter-
action (hence, a relatively strong long-distance correlation
in the random environment) the decay of eigenfunction
correlators is at least fractional-exponential.

The materials with an impurity band supported by
specific atoms injected into a sample play important role
in experimental physics and technology. In our paper, we
thus show that even a relatively weak disorder induced by
structural factors (substitution and local displacements of
the atoms/ions) can produce strong dynamical localization
in presence of a realistic, slow decay of the media-electron
interaction at large distances.
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1.2. Local Hamiltonians and Useful Notation. Given a cube𝐵3ℓ(𝑢), with ℓ ≥ 1, we call 𝐵ℓ(𝑢) the core and the annulus𝐵𝐿𝑘(𝑢)\𝐵ℓ𝑘(𝑢) the shell of𝐵3ℓ(𝑢). Further, given a cube𝐵𝑌𝐿(𝑢)
with 𝐿 = 3ℓ, 𝑌 ≥ 2, we can cover the shell of 𝐵𝑌𝐿(𝑢) by (3𝑌)𝑑
cores of radius ℓ𝑘. The respective cores 𝐵ℓ𝑘(𝑥) will be called
admissible.

We define the “boundary” of a cube 𝐵𝐿𝑘(𝑢) as follows:𝜕𝐵𝐿𝑘(𝑢) fl 𝐵𝐿𝑘(𝑢) \ 𝐵𝐿𝑘−2(𝑢).
The spectrum of an operator 𝐻 will be denoted by Σ(𝐻)

and its resolvent set by 󰜚(𝐻).
1.3. Main Results

Theorem 1. Assume that the conditions (U1)–(U4) are ful-
filled. Then there exist 𝑝 > 0 and an interval 𝐼 ⊂ R such that
the following holds for the random displacements model where𝑝 ≡ P{ 𝜗𝑎 = 1 } ∈ (0, 𝑝).

(A) With probability one,𝐻(𝜔) has pure point spectrum in
the interval 𝐼, and all the eigenfunctions𝜓 of𝐻(𝜔)with
eigenvalues 𝐸 ∈ 𝐼 decay exponentially at infinity: for
some𝑚 > 0 one has
󵄨󵄨󵄨󵄨𝜓𝑥 (𝑦; 𝜔; 𝜗)󵄨󵄨󵄨󵄨 ≤ 𝐶𝜓 (𝜔, 𝜗) 𝑒−𝑚|𝑦−𝑥| ∀𝑦 ∈ Z. (6)

(B) Let 𝜒𝑥, 𝑥 ∈ R𝑑, be the indicator function of a unit cube
centered at 𝑥. There exist 𝐶, 󰜚 ∈ (0, +∞) such that for
all 𝑥 ̸= 𝑦 and for any bounded Borel function 𝜙𝐼 with
supp𝜙𝐼 ⊂ 𝐼 and ‖𝜙𝐼‖∞ ≤ 1 one has

E [󵄩󵄩󵄩󵄩󵄩𝜒𝑥𝜙𝐼 (𝐻 (𝜔)) 𝜒𝑦󵄩󵄩󵄩󵄩󵄩] ≤ 𝐶𝑒−|𝑥−𝑦|󰜚 . (7)

The smallness of the concentration of impurities 𝑝 in the
“surface” layer is used only in the proof of the Initial Length
Scale estimate (cf. Lemma 19).

2. Eigenvalue Concentration and
Comparison Estimates

2.1. Stollmann’s Estimate. Recall some well-known notions
and results from the eigenvalue concentration analysis of
random operators introduced and used in earlier works [4,
15–18].

Definition 2. Let a finite nonempty index set 𝐽, a Euclidean
space R𝐽 ≅ R|𝐽| with coordinates indexed by the elements of𝐽, and a probability measure 𝜇 on R be given. Introduce the
productmeasure𝜇⊗𝐽 onR𝐽. A functionΦ : R𝐽 → R is called
diagonally monotone iff

(i) 𝑞 = (𝑞1, . . . , 𝑞𝐽) 󳨃→ Φ(𝑞) is monotone in each variable𝑥𝑗, 1 ≤ 𝑗 ≤ |𝐽|,
(ii) for all 𝑞 ∈ R𝐽 and 𝑡 ≥ 0 one has

Φ (𝑥 + (𝑡, . . . , 𝑡)) − Φ (𝑥) ≥ 𝐶𝑡. (8)

From this point on, speaking of a diagonally monotone
function Φ, we always assume that the respective index 𝐽,

Euclidean space R𝐽, and a constant 𝐶 > 0 are given. To
indicate an explicit value of 𝐶, we sometimes say that Φ is
diagonally 𝐶-monotone.

Lemma 3 (Stollmann’s lemma). Let Φ : R𝐽 → R be a
diagonally 𝐶-monotone function and 𝜇⊗𝐽 a product measure
on R𝐽. Let S𝜇 : [0, +∞) → [0, 1] be the continuity modulus
of 𝜇 (otherwise called the Levy concentration function of 𝜇):

S𝜇 : 𝑠 󳨃󳨀→ sup
𝑎∈R

𝜇 ([𝑎, 𝑎 + 𝑠]) . (9)

Then the following estimate holds true:

sup
𝑎∈R

P {𝑞 ∈ R
𝐽 : Φ (𝑞) ∈ [𝑎, 𝑎 + 𝑠]} ≤ 𝐶−1 |𝐽|S𝜇 (𝑠) . (10)

Definition 4. Let a Hilbert space H, a Euclidean space R𝐽,𝐽 ≥ 1, and a probability measure 𝜇 onR be given. A family of
self-adjoint operators𝐻(𝑞) inH, 𝑞 ∈ R𝐽, is called diagonally
monotone iff

𝐻(𝑞 + 𝑟) ≥ 𝐵 (𝑞) ∀𝑞 ∈ R
𝐽 ∀𝑟 ∈ R

𝐽
+, (11)

in the sense of quadratic forms, and for any vector 𝑓 ∈ H

with ‖𝑓‖ = 1 the functionΦ𝑓 : R𝐽 → R defined by

Φ𝑓 (𝑞) = (𝐻 (𝑞) 𝑓, 𝑓) (12)

is diagonally monotone.

By a simple application of the min-max principle for the
self-adjoint operators, we have the following useful result.

Lemma 5 (Cf. [16]). In the general setting of Definition 4, the
following holds true:

(A) If𝐻(𝑞) is a diagonally monotone operator family inH
with compact resolvent, then all eigenvalues 𝐸𝐻(𝑞)𝑖 of𝐻(𝑞) are also diagonally monotone.

(B) If 𝐻(𝑞) is diagonally monotone and 𝐾 is another self-
adjoint operator inH independent of 𝑞, then𝐻(𝑞)+𝐾
is also diagonally monotone.

Corollary 6 (Cf. [17, 18]). Consider a parametric family of
Schrödinger operators 𝐻Λ(𝑞) = −ΔΛ + 𝑉(𝑥, 𝑞) in a cubeΛ ⊂ R𝑑, 𝑑 ≥ 1, with a lower-bounded potential 𝑉 : Λ ×
R𝐽 → [𝐸∗, +∞) depending upon a vector-valued parameter𝑞 ∈ R𝐽, 1 ≤ |𝐽| < +∞. Let a probability measure 𝜇 on
R with continuity modulus s𝜇 be given, and introduce the
product measure 𝜇⊗𝐽 on R𝐽 and the corresponding probability
measure induced on the operator families 𝑉(⋅, 𝑞) and 𝐻(𝑞). If
the operator family𝑉(⋅, 𝑞) is diagonally monotone, then for any
interval [𝑎, 𝑏] ⊂ R and any 𝐸 ∈ [𝑎, 𝑏] one has

P {dist (Σ (𝐻 (𝑞)) , 𝐸) ≤ 𝜖} ≤ 𝐶 (𝐸∗, 𝑏) |𝐽| |Λ| s𝜇 (𝜖) . (13)

2.2. Stable Eigenvalue Concentration Estimate

Definition 7. Let an integer 𝑘 ≥ 0 and a cube 𝐵 = 𝐵𝐿𝑘(𝑢) be
given. A sample 𝜔 is called
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(i) (𝐸, 𝜖)-NR (nonresonant) in 𝐵 iff

dist (Σ (𝐻𝐵 (𝜔)) , 𝐸) ≥ 𝜖; (14)

(ii) (𝐸, 𝜖)-CNR (completely nonresonant) in 𝐵 iff for all𝑗 < 𝐿𝑘+1/𝐿𝑘
dist (Σ (𝐻𝐵𝑗𝐿𝑘 (𝑢)

(𝜔)) , 𝐸) ≥ 𝜖. (15)

Until Section 3 (where we formulate an Initial Length
Scale estimate, Lemma 19), the positions of the sublattice sites𝑎 with 𝜗𝑎 = 1 (impurities) will be considered fixed, so we
do not rely on the substitution disorder due to the sample{𝜗𝑎, 𝑎 ∈ Z𝑑0} and work with the displacements sample{𝜔𝑎, 𝑎 ∈ Z}, without repeating it every time again, and often
drop the 𝜗-dependence from notation.

Lemma 8. Fix any 𝑘 ≥ 0 and a cube 𝐵 = 𝐵𝐿𝑘(𝑢) ⊂ R𝑑. Fix
𝜏 > 1. Then for any 𝜖 ≥ 𝐿−(𝐴−𝑑)𝜏

𝑘
one has

P {𝜔 is not (𝐸, 𝜖) -CNR in 𝐵} ≤ 𝐶𝑔−1𝐿𝑑+1𝑘 𝜖. (16)

Definition 9. Let a cube 𝐵 = 𝐵𝐿𝑘(𝑢) and a real number 𝜏 > 1
be given. Denote 𝐵 = 𝐵𝐿𝜏(𝑢). The sample 𝜔𝐵 is called

(i) (𝐸, 𝜖)-SNR (strongly NR) in 𝐵 iff for any complemen-
tary subsample 𝜔⊥

𝐵
the full sample 𝜔 = (𝜔𝐵, 𝜔⊥𝐵 ) is(𝐸, 𝜖)-NR in 𝐵,

(ii) (𝐸, 𝜖)-SCNR (strongly CNR) in 𝐵 iff for any comple-
mentary subsample 𝜔⊥

𝐵
the full sample 𝜔 = (𝜔𝐵, 𝜔⊥𝐵 )

is (𝐸, 𝜖)-CNR in 𝐵.
A suitable value of 𝜏 > 1 will be fixed later, in Section 4,

and the notations 𝐵 ≡ 𝐵𝐿𝑘(𝑢), 𝐵 ≡ 𝐵𝐿𝜏(𝑢), 𝜔𝐵, 𝜔⊥𝐵 will appear
in a number of formulae and statements below. Usually the
values of 𝑘, 𝐿𝑘 ∈ N, 𝑢 ∈ Z, and 𝜏 > 1 will be clear from the
context.

In earlier works by Kirsch et al. [19] and by Boutet de
Monvel and Stollmann [20], some functional-analytical facts
pertaining to random alloy models in general and to surface
models in particular have been established.Mutatismutandis,
some relevant definitions, arguments, and results from [19,
20] will be used below in the context of the surface model
with random displacements disorder.

In Proposition 10, one refers to a certain subset 𝑊 ⊂
R𝑑, which is formed in our case by the “wells” around the
impurities, so 𝑉(𝑥; 𝜔, 𝜗) < 𝐸(−) for 𝑥 ∈ 𝑊 (cf. (3)), and 𝑃 is
the exterior of the balls 𝐵1/2(𝑎) around the impurities 𝑎 (i.e.,
with 𝜗𝑎 = 1). Given a cube 𝐵 ⊂ R𝑑, denote by 𝐵0 the section𝐵 ∩ R𝑑0 by the impurity layer, and consider the finite set of
scatterer indices

A𝐵 = {𝑎󸀠 = 𝑎 + e𝑑0+1, with 𝑎 ∈ 𝐵0} . (17)

With this choice of A𝐵, for each 𝑎 ∈ 𝐵0 there exists a site𝑎󸀠 outside the subset𝑊 but at a uniformly bounded distance

from 𝑎 ∈ 𝐵0. Then we can write 𝐻𝐵 = 𝐻̃𝐵 + 𝑉̃, where 𝐻̃𝐵 =−Δ + 𝑈̃ with

𝑈̃ (𝑥) = ∑
𝑎∉A𝐵

u𝜗𝑎 (𝑥 − 𝑋𝑎) ,
𝑉̃ (𝑥) = ∑

𝑎∈A𝐵

u𝜗𝑎 (𝑥 − 𝑋𝑎) . (18)

Proposition 10 (cf. [20, Lemma 2.1]). Let 𝐵 ⊂ R𝑑 be an
open cube, 𝐻 be a Schrödinger operator in 𝐵 with Dirichlet
boundary conditions on the border of 𝐵, and 𝑃 ⊂ 𝑊 be such
that dist(𝑃,𝑊𝑐) fl 𝜅 > 0. Then there exists𝐶 = 𝐶(𝜅) such that
the following holds.

Let𝑉0 and𝑉 be uniformly locally summable in power 𝑝 (in𝐿𝑝) with 𝑝 = 2 if 𝑑 ≤ 3 and 𝑝 > 𝑑/2 if 𝑑 > 3. Denote 𝐻0 =−Δ + 𝑉0, 𝐺0(𝜆) = (𝐻0 − 𝜆)−1, and𝐻 = −Δ + 𝑉, 𝐺(𝜆) = (𝐻 −𝜆)−1. Assume that Φ is an eigenfunction of𝐻 with eigenvalue𝜇 ∈ 󰜚(𝐻0). Then

󵄩󵄩󵄩󵄩𝜒𝑊Φ󵄩󵄩󵄩󵄩 ≥ ‖Φ‖1 + 𝐶 (󵄩󵄩󵄩󵄩𝐺0 (𝜆)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐺0 (𝜆) ∇󵄩󵄩󵄩󵄩) . (19)

Further, combining Proposition 11 and the
Combes–Thomas estimate [21] for the under-the-barrier
decay of the Green functions, one comes to the following.

Proposition 11 (cf. [19, Prop. 2.1], [20, Prop. 2.2]). Under the
assumptions and with notations of Proposition 10, there exist𝐸1 > 𝐸0 and 𝐶 > 0 such that for every cube 𝐵 = 𝐵𝐿(𝑥), every𝜔 ∈ Ω, and every eigenfunction Φ of 𝐻𝐵(𝜔) with eigenvalue𝐸 ∈ [𝐸0, 𝐸1] we get 󵄩󵄩󵄩󵄩𝜒𝑊Φ󵄩󵄩󵄩󵄩 ≥ 𝐶 ‖Φ‖ . (20)

Proposition 12 (cf. [20, Prop. 2.3]).
P {Σ (𝐻𝐵) ∩ 𝐽𝜖 ̸= ⌀} ≤ 𝐶 |𝐵|2 󵄨󵄨󵄨󵄨𝐽𝜖󵄨󵄨󵄨󵄨 . (21)

Proof. Let 𝐸𝑛 = 𝐸𝑛(𝐻𝐵) be the eigenvalues of𝐻𝐵 numerated
in the increasing order, counting multiplicity. We are mainly
concerned with 𝐸𝑛 ∈ 𝐼 (in the impurity band), which has two
important consequences.

(i) Firstly, due to boundedness of the random potential,
the operator 𝐻𝐵(𝜔) is a finite norm perturbation of the
Laplacian −Δ𝐵, and for the eigenvalues of the latter one
has the well-known Weyl asymptotic formula [22]; see, for
example, the discussion in [4, Section 4.1.8] in the context
of the Wegner estimates. Specifically, it follows from [4,
Theorem 4.1.25 and Corollary 4.1.26] that the number of
eigenvalues of 𝐻𝐵 in 𝐼 admits uniform, nonrandom upper
bounds by 𝑂(|𝐵|).

(ii) Secondly, inequality (20) shows that for such 𝐸𝑛
most of the “mass” of the respective eigenfunction Φ𝑛 is
in the subset 𝑊. Therefore, 𝐸𝑛 is monotone increasing in
each parameter 𝑞𝑎, since increasing 𝑞𝑎 decreases the distance
between the 𝑎th scatterer and any point 𝑥 ∈ 𝑊 (in the
“surface” layer), hence increasing the potential induced in𝑊. This is the main reason why we consider in this paper a
surface random displacements model as opposed to a “bulk”
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RDM. From this point on, we recover a complete analogy
with the conventional surface alloy disorder studied in [20]
(and not displacements disorder). As a result, only a few
technical adaptations of thewell-understood techniques from
[19, 20] are required; we describe these adaptations below.

Specifically, notice that 𝐸𝑛(𝑞 + 𝑡e) is continuously differ-
entiable, with the derivative which can be calculated with the
help of the first-order perturbation formula:

𝑑𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝑠 𝐸𝑛 (𝐻̃𝐵 + 𝑡𝑉̃) = (𝑉̃Φ𝑠, Φ𝑠) ≥ 𝐶 > 0 (22)

(we used again (20)).We conclude that 𝑉̃ (and therefore 𝐻̃𝐵 +𝑡𝑉̃, too) is diagonally monotone. Now the claim follows from
the Stollmann Lemma 3.

Theorem 13.

P {𝜔𝐵 is not (𝐸, 𝜖) -CNR in 𝐵} ≤ 𝐶𝑔−1𝐿2𝑑+1𝜖. (23)

Proof. The (𝐸, 𝜖)-CNR property is violated in a cube 𝐵 =𝐵𝐿𝑘+1(𝑢) if one of the smaller concentric cubes 𝐵𝐿(𝑢) with𝐿 ∈ ⟦𝐿𝑘, 𝐿𝑘+1⟧ is not (𝐸, 𝜖)-NR, so the claim follows from
Proposition 12 by counting the number of elements 𝐿 ∈⟦𝐿𝑘, 𝐿𝑘+1⟧.
Theorem 14.

P {𝜔𝐵 is not (𝐸, 𝜖) -SCNR in 𝐵} ≤ 𝐶𝑔−1𝐿2𝑑+1𝜖. (24)

Proof. Let 𝜔 = (𝜔
𝐵
󸀠 , 𝜔⊥

𝐵
󸀠). According to Definition 9, if 𝜔𝐵 is

not (𝐸, 𝜖)-SCNR, then for some integer 𝐿 ∈ ⟦𝐿𝑘, 𝐿𝑘+1⟧ 𝜔𝐵 is
not (𝐸, 𝜖)-SNR in 𝐵󸀠 fl 𝐵𝐿(𝑢). In other words, there exists a
complementary subsample 𝜔⊥

𝐵
such that the full sample 𝜔 =(𝜔𝐵, 𝜔⊥𝐵 ) is (𝐸, 𝜖)-resonant in 𝐵󸀠. Fix any 𝐿 ∈ ⟦𝐿𝑘, 𝐿𝑘+1⟧ and

the corresponding cube 𝐵󸀠.
Next, consider any configuration 𝜔⊥

𝐵
and take its zero-

extension (0𝐵, 𝜔⊥𝐵 ) to the entire space; in other words, we con-
sider 𝜔⊥

𝐵
as a sample on its own but do not put any scatterers

inside 𝐵. We obtain by a simple calculation the following:

󵄩󵄩󵄩󵄩󵄩1𝐵󸀠𝑔𝑉 (0, 𝜔⊥𝐵󸀠)󵄩󵄩󵄩󵄩󵄩 ≤ Const𝑔𝐿−(𝐴−𝑑)𝜏. (25)

Further, take any subsample 𝜔𝐵, and identify it with its
own zero-extension (𝜔𝐵, 0𝐵𝑐) to the entire space, and let𝜆𝑖(𝜔𝐵)be the eigenvalues of𝐻𝐵(𝜔𝐵). (One could take any com-
plementary subsample 𝜔⊥

𝐵
; we take the zero-extension.) Then

the eigenvalues 𝐸𝑖(𝜔) of𝐻𝐵(𝜔), with any 𝜔 = 𝜔𝐵 ⊔ 𝜔⊥Λ , obey
󵄨󵄨󵄨󵄨𝐸𝑖 (𝜔) − 𝜆𝑖 (𝜔𝐵)󵄨󵄨󵄨󵄨 ≤ 𝑔𝐶𝐿−(𝐴−𝑑)𝜏 ≤ 𝜖. (26)

Thus

P {𝜔𝐵: ∃𝜔⊥𝐵 󵄨󵄨󵄨󵄨𝐸𝑖 (𝜔) − 𝐸󵄨󵄨󵄨󵄨 ≤ 𝜖}
≤ P {𝜔𝐵: 󵄨󵄨󵄨󵄨𝜆𝑖 (𝜔𝐵) − 𝐸󵄨󵄨󵄨󵄨 ≤ 2𝜖} .

(27)

Now the claim stems fromTheorem 13.

2.3. Eigenvalue Comparison Estimate

Theorem 15. Let two sublattice sites 𝑎, 𝑏 ∈ Z𝑑0 with |𝑎 − 𝑏| >2𝐿𝜏 be given, and denote 𝐵𝑎 = 𝐵𝐿(𝑎), 𝐵𝑏 = 𝐵𝐿(𝑏). Then for any𝜖 > 0
P {dist (Σ (𝐻𝐵𝑎 (𝜔)) , Σ (𝐻𝐵𝑏 (𝜔))) ≤ 𝜖} ≤ 𝐶𝐿𝐴+1+2𝑑𝜖. (28)

The estimate given by Theorem 15 is not as accurate as
its counterpart for a single cube (Theorem 13), and the proof
is much less involved, but it is worth noticing that its role in
the localization analysis is quite different, too. Optimality of
the eigenvalue concentration (EVC) bound fromTheorem 13
is the key to the proof of the exponential decay of the Green
functions at fixed energy under the sharp condition 𝐴 > 𝑑.
Physically speaking, this gives rise to the absence of diffusion
(see the discussion in the seminal paper by Fröhlich and
Spencer [11]). On the mathematical level, Martinelli and
Scoppola [23] showed, with the help of a nice application
of Chebyshev’s inequality in the extended disorder-energy
space, that a fast decay of Green’s functions implies absence of
the absolutely continuous spectrum in the localization zone.
However, the analysis of decay of the eigenfunctions and of
their correlators requires a spectral reduction, or derivation
of energy-interval (a.k.a. variable energy)MSAestimates, and
the latter requires eigenvalue comparison analysis for distant
cubes. For that purpose alone, an eigenvalue comparison
estimate need not actually be very accurate, which is not
surprising, but what comes as a rather unexpected bonus is
that the comparison estimate allows one to significantly boost
the results of the first scaling analysis in a “soft” way, as we
shall see in Section 5.

Theorem 15 will not be used in Sections 3 and 4.

Proof of Theorem 15. Denote 𝐵𝑎 = 𝐵𝐿(𝑎) and 𝐵𝑏 = 𝐵𝐿(𝑏).
Consider an eigenvalue𝐸𝑎𝑖 (𝜔) of𝐻𝐵𝑎(𝜔) and𝐸𝑏𝑗(𝜔) of𝐻𝐵𝑏(𝜔).
Condition on all random amplitudes {𝜔𝑐, 𝑐 ∈ Z𝑑 \ 𝜔𝑎 }
and identify 𝜔𝑎 with a real parameter 𝑠. Then 𝐻𝐵𝑎 as well
as 𝐻𝐵𝑏 and their eigenvalues 𝐸𝑎𝑖 , 𝐸𝑏𝑗 depend upon a single
parameter 𝑠 ≡ 𝜔𝑎. Our goal is to compare their sensitivity to
the variations of 𝑠. To this end, consider the smooth operator
family𝐻𝐵𝑎

(𝑠) = 𝐻̃𝐵𝑎
+ 𝑠𝑈𝑎(𝑠), where

𝐻̃𝐵𝑎 = −ℎ2Δ + ∑
𝑐 ̸=𝑎

𝜔𝑐u (⋅ − 𝑐) + 𝑠𝑈𝑎 (𝑠) ,
𝑈𝑎 (𝑥, 𝑠) = u (𝑥 − 𝑎) 1𝐵𝑎 (𝑥) .

(29)

Similarly define

𝐻𝐵𝑏 (𝑠) = 𝐻̃𝐵𝑏
+ 𝑠𝑈𝑏 (𝑠) ,

𝑈𝑏 (𝑥, 𝑠) = u (𝑥 − 𝑎) 1𝐵𝑏 (𝑥) .
(30)

Then

max
𝑧∈𝐵𝑏

𝑈𝑏 (𝑧) ≤ (M̃𝐿)−𝐴 < 𝐶 (𝑑) 𝐿−𝐴 ≤ min
𝑧∈𝐵𝑎

𝑈𝑎 (𝑧) . (31)
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Therefore,

𝑈𝑎1𝐵𝑎 ≥ (𝐶𝑑𝐿)−𝐴 1𝐵𝑎 ,
𝑈𝑏1𝐵𝑎 ≤ (M̃𝐿)−𝐴 1𝐵𝑏 .

(32)

Furthermore, computing the gradient of the potential 𝑥 󳨃→|𝑥|−𝐴, for M̃ large enough we get that

d
d𝑠 (𝐸󸀠𝑖 (𝑠) − 𝐸󸀠󸀠𝑗 (𝑠)) ≥ (M̃−𝐴−1 − 𝐶−𝐴−1𝑑 ) 𝐿−𝐴−1

≥ M̃−𝐴−1

2 𝐿−𝐴−1 > 0.
(33)

The probability measure of the random variable 𝐸𝑎𝑖 (𝜔𝑎) −𝐸𝑏𝑗(𝜔𝑎) is therefore the image of 𝜇𝑉 (the measure of 𝜔𝑎) by
the strictly monotone mapping 𝑠 󳨃→ (𝐸𝑎𝑖 (𝑠) − 𝐸𝑏𝑗(𝑠)), with the
derivative lower-bounded by 𝐶𝐿−𝐴−1 > 0, so the Lipschitz
continuity of 𝜇𝑉 is preserved up to a factor 𝐶−1𝐿𝐴+1. Now the
claim follows by counting the number of eigenvalues in 𝐼, as
in Proposition 12.

3. Impurity Band: Location and Spectral Gap

An upper bound on the ground state energy 𝐸∗ can be
obtained by the variational principle.

4. Multiscale Analysis

Given 𝛼 > 1 and 1 < 𝐿0 ∈ N, define recursively an integer
sequence 𝐿𝑘

𝐿𝑘 fl ⌊𝐿𝛼𝑘−1⌋ , 𝑘 ≥ 1. (34)

Further, let𝑚0 > 0, and set for 𝑘 ≥ 0
𝑚𝑘 fl 𝑚0

𝑘∏
𝑗=0

(1 − 𝜂𝑗) ,
𝜂𝑘 fl 2𝐿−𝑐𝛼𝑘 , 𝑐 > 0,

(35)

with 𝑐 > 0 to be specified in the proof of Corollary 21. Clearly,
with 𝐿0 large enough we have a convergent product∏𝑗≥0(1−𝜂𝑗) ≥ 1/2, so𝑚𝑘 ≥ 𝑚0/2.

Given𝐴 > 2𝑑 and 𝜏 > 1, we define two positive sequences
𝛿𝑘 fl 𝑒−𝑚𝑘𝐿𝑘 ,
𝜖𝑘 fl 𝐿−(𝐴−𝑑)𝜏𝑘 . (36)

Definition 16. Let an integer 𝑘 ≥ 0 and a cube 𝐵 = 𝐵𝐿𝑘(𝑢)
be given. Denote 𝜕𝐵𝐿𝑘(𝑢) fl 𝐵𝐿𝑘(𝑢) \ 𝐵𝐿𝑘−2(𝑢). A sample 𝜔 is
called

(1) (𝐸, 𝛿)-NS (nonsingular) in 𝐵 iff 𝐸 ∉ Σ(𝐻𝐵(𝜔)) and
󵄩󵄩󵄩󵄩󵄩󵄩1𝜕𝐵𝐿𝑘𝐺𝐵𝐿𝑘 (𝐸, 𝜔) 1𝐵𝐿𝑘/3󵄩󵄩󵄩󵄩󵄩󵄩 ≤ (3𝐿𝑘)−𝑑 𝛿. (37)

Definition 17. Let 𝜏 > 1 and a cube𝐵 = 𝐵𝐿𝑘(𝑢), 𝑘 ≥ 0 be given.
Denote 𝐵 = 𝐵(1/2)𝐿𝜏

𝑘
(𝑢) and introduce the decomposition 𝜔 =

(𝜔𝐵, 𝜔⊥𝐵 ). LetP be one of the properties (𝐸, 𝛿)-NS, (𝐸, 𝜖)-NR,
or (𝐸, 𝜖)-CNR relative to 𝐵. We will say that a subsample 𝜔𝐵
has a strong (or stable) propertyP iff for any complementary
subsample 𝜔⊥

𝐵
the full sample 𝜔 = (𝜔𝐵, 𝜔⊥𝐵 ) has property

P in 𝐵. Respectively, the three aforementioned notations are
replaced by (𝐸, 𝛿)-SNS, (𝐸, 𝜖)-SNR, and (𝐸, 𝜖)-SCNR.

Note that an event {𝜔𝐵 has strong propertyP} is measur-
able with respect to the 𝜎-algebra F𝐵 generated by {𝑋𝑎, 𝑎 ∈𝐵}; hence any collection of such events relative to disjoint
cubes 𝐵𝐿(𝑢𝑖), 𝑖 ∈ ⟦1,𝑀⟧ is independent.
Definition 18. (i) A cube 𝐵𝐿𝑘+1(𝑢) is called (𝐸, 𝛿𝑘, 𝜏, 𝐾)-good
iff it contains no collection of𝐾 or more cubes {𝐵𝐿𝑘(𝑥𝑖), 1 ≤𝑖 ≤ 𝑆𝑘+1}with pairwise 𝐿𝜏𝑘-distant centers, neither of which is(𝐸, 𝛿𝑘)-NS.

(ii) The cube 𝐵𝐿𝑘+1(𝑢) is called (𝐸, 𝛿𝑘, 𝜏, 𝐾)-strongly good
((𝐸, 𝛿𝑘, 𝜏, 𝐾)-S-good) iff it contains no collection of 𝐾 cubes{𝐵𝐿𝑘(𝑥𝑖), 1 ≤ 𝑖 ≤ 𝐾}, with pairwise 𝐿𝜏𝑘-distant centers,
neither of which is (𝐸, 𝛿𝑘)-SNS.
Lemma 19 (ILS estimate). Let 𝜏 > 1. There exist 𝐿∗ ∈ N and
an interval 𝐼 = [−3E, −2E] with E > 0, such that for any𝐿0 ≥ 𝐿∗, 𝑚0 > 0, s > 0 and the impurity concentration 𝜌 > 0
small enough, one has, with 𝛿0 = 𝑒𝑚0𝐿0 ,

sup
𝐸∈𝐼

P {𝐵𝑥 is not (𝐸, 𝛿0, 𝜏) -𝑆𝑁𝑆} ≤ 𝐿−s0 . (38)

Proof. Fix 𝐿0 ∈ N; consider a cube 𝐵 = 𝐵𝐿0(𝑢) and the local
Hamiltonian𝐻𝐵(𝜔). Observe that the condition

𝜃𝑎 = 0 ∀𝑎 ∈ 𝐵𝐿0+𝑟0 (39)

(absence of impurity atoms in the augmented cube 𝐵𝐿0+𝑟0(𝑢))
implies that

inf
𝑥∈𝐵

𝑉 (𝑥, 𝜔, 𝜗) ≥ −E; (40)

thus

dist [𝐸, Σ (𝐻𝐵 (𝜔, 𝜗)) , 𝐸] ≥ E ∀𝐸 ∈ [−3E, −2E] . (41)

By the Combes–Thomas estimate [21], we then have for any𝐸 ∈ 𝐼 ≡ [−3E, −2E]
󵄩󵄩󵄩󵄩󵄩󵄩1𝜕𝐵𝐺𝐵 (𝐸) 1𝐵(1/3)𝐿𝑘 (𝑢)󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 𝐶E−1𝑒−𝑐E𝐿𝑘 , (42)

for some 𝐶, 𝑐 ∈ (0, +∞). With an appropriate choice of 𝐿∗,
this implies the (𝐸, 𝛿0)-nonsingularity of 𝐵𝐿0(𝑢), where 𝛿0 =𝑒−𝑚0𝐿0 and, for example,𝑚0 = (1/2)𝑐E > 0.

Further,

P {∃𝑎 ∈ 𝐵𝐿0+𝑟0 (𝑢) : 𝜃𝑎 ̸= 0} ≤ 󵄨󵄨󵄨󵄨󵄨𝐵𝐿0+𝑟0 (𝑢)󵄨󵄨󵄨󵄨󵄨 𝜌, (43)

and the RHS can be made arbitrarily small by taking the
concentration of impurities 𝜌 small enough. In particular, it
can be made smaller than 𝐿−s0 , once 𝐿0 is fixed.
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The next statement is a standard result of the MSA,
essentially going back to [12, Lemma 4.2] and streamlined in
[24, Section 5] and later in [25, Lemma 2].

Lemma 20 (conditions for nonsingularity). Consider a cube𝐵 = 𝐵𝐿𝑘+1(𝑢) and suppose that
(i) 𝐵 is (𝐸, 𝜖𝑘+1)-NRwith 𝜖𝑘+1 ≥ 𝛿1−𝑐𝑘 , for some 𝜖𝑘+1, 𝛿𝑘, 𝑐 ∈(0, 1);
(ii) 𝐵 is (𝐸, 𝛿𝑘, 𝜏, 𝐾)-good, with 𝐾 ≥ 0 such that

𝑁 fl ⌊𝐿𝑘+1𝐿𝑘 ⌋ − 10𝐾 ⌊𝐿𝜏𝑘⌋ ≥ 1. (44)

Then 𝐵 is (𝛿𝑁+𝑐𝑘 , 𝐸)-NS.
In our case 𝛿𝑘 = 𝑒−𝑚𝑘𝐿𝑘 and 𝜖𝑘+1 = 𝑒−𝑂(ln𝐿𝑘+1); hence the

condition 𝜖𝑘+1 ≥ 𝛿1−𝑐𝑘 in hypothesis (ii) is fulfilled for any𝑐 ∈ (0, 1) and large 𝐿0.
Corollary 21 (conditions for strong nonsingularity). Let a
cube 𝐵 = 𝐵𝐿𝑘+1(𝑢), 𝑘 ≥ 0, be given and suppose that

(i) 𝐵 is (𝐸, 𝜖𝑘+1)-SNR;
(ii) 𝐵 is (𝐸, 𝛿𝑘, 𝜏, 𝐾)-S-good, with 𝐾 ≥ 0 such that (44)

holds.

Then 𝐵 is (𝐸, 𝛿𝑘+1)-SNS.
Proof. Denote 𝐵 = 𝐵𝜏𝐿𝑘+1(𝑢). One has to show that, with a
fixed sample 𝜔⊥

𝐵
satisfying the hypotheses (i)-(ii), the cube𝐵 is (𝐸, 𝛿𝑘+1)-NS for the sample (𝜔𝐵, 𝜔⊥𝐵 ) regardless of the

complementary sample 𝜔⊥
𝐵
.

First, notice that the condition (i) is already stable with
respect to 𝜔⊥

𝐵
.

Next, by (ii) there exist at most 𝐾 − 1 cubes 𝐵(1/2)𝐿𝜏
𝑘
(𝑥𝑖)

such that any ball𝐵𝐿𝑘(𝑥)with 𝑥 ∉ ⋃𝐾
𝑖=1 𝐵𝐿𝜏𝑘(𝑥𝑖) is (𝐸, 𝛿𝑘)-SNS.

The support of𝜔⊥
𝐵
lies outside all the cubes 𝐵(1/2)𝐿𝜏

𝑘
(𝑥𝑖); hence

the distant sample 𝜔⊥
𝐵
cannot affect the strong nonsingularity

property of the cubes𝐵(1/2)𝐿𝜏
𝑘
(𝑥𝑖). Applying Lemma 20, we see

that the cube 𝐵 is (𝐸, 𝛿𝑘+1)-NS with
− ln 𝛿𝑘+1 = 𝑁𝑘+1𝑚𝑘𝐿𝑘 − 𝐶󸀠 ln 𝐿𝑘+1

+ (ln (3𝐿𝑘+1)𝑑 − ln (3𝐿𝑘+1)𝑑)
≥ 𝐿𝑘𝑌𝑘+1𝑚𝑘 (1 − 10𝐾𝐿𝜏𝑘𝐿𝛼

𝑘

− 𝐶󸀠󸀠 ln 𝐿𝑘+1𝑚𝑘𝐿𝑘+1 )
+ ln (3𝐿𝑘+1)𝑑

≥ 𝐿𝑘+1𝑚𝑘 (1 − 𝜂𝑘) + ln (3𝐿𝑘+1)𝑑 ,

(45)

where 𝜂𝑘 is as in (35), with 𝑐 = 𝛼 − 𝜏 > 0. Thus 𝐵 is (𝐸, 𝛿𝑘+1)-
SNS.

Until the end of this section, we will need to examine only
the nonsingularity properties of the cubes having nonempty

intersection with the sublattice Z𝑑0 (the impurity layer),
since we are concerned only with energies 𝐸 ∈ 𝐼, and any
cube outside this layer has energies above 𝐼. Moreover, since
we are free to choose on any scale the partition of R𝑑 into a
union of cubes of size 𝐿𝑘, we cover firstZ𝑑0 by cubes 𝐵𝐿𝑘(𝑎)
with 𝑎 ∈ Z𝑑0 and then decompose the rest of the space into𝐿𝑘-cubes having empty intersection with Z𝑑0 . We will not
repeat this fact every time again.

Lemma 22. Let two real numbers 𝐴 > 𝑑 and 𝜏 > 1 be given.
Consider a cube 𝐵𝐿𝑘+1(𝑥) and let 𝜖𝑘+1 = 𝐿−(𝐴−𝑑)𝜏𝑘+1

. Then

P {𝜔𝐵: ∃𝜔⊥𝐵𝐵𝐿𝑘+1 (𝑥) is not (𝐸, 𝜖𝑘+1) -SCNR}
≤ 12𝐿−(𝐴−𝑑)𝜏+2𝑑+1𝑘+1 . (46)

Proof. By Definition 17, if 𝐵𝐿𝑘+1(𝑧), with 𝑧 ∈ {𝑥, 𝑦}, is
not (𝐸, 𝜖𝑘+1)-SCNR for some fixed 𝐸, then for some 𝑅 ∈⟦𝐿𝑘, 𝐿𝑘+1⟧ the cube 𝐵𝑅(𝑥) is not (𝐸, 𝜖𝑘+1)-SNR. Even the
largest among them,𝐵𝐿𝑘+1(𝑧), is surrounded by a belt of width𝐿𝜏𝑘+1. By Theorem 14,

P {𝜔𝐵: ∃𝜔⊥𝐵 dist [Σ (𝐻𝐵𝑅(𝑧)
) , 𝐸] ≤ 2𝜖𝑘+1} ≲ 𝐿2𝑑+1𝜖𝑘+1, (47)

so the claim follows by counting the number of values 𝑅 ∈⟦𝐿𝑘, 𝐿𝑘+1⟧.
Lemma 23. Let 𝐴 = 3𝑑 + 4𝛾 with 𝛾 > 0 and 𝜏 > (2𝑑 + 1)/2𝛾
be given. Set

󰜚 = 𝛾𝑑 + 4𝛾 ,
𝜎 = 𝛾𝑑−1,
𝛼 = (1 + 𝜎) 𝜏,
s = (𝐴 − 𝑑) 𝜏 − (2𝑑 + 1) ;

(48)

then

s − 𝛼𝑑 > 𝛾𝜏 > 0. (49)

Furthermore, assume that

P {𝐵𝐿𝑘 (𝑥) is not (𝐸, 𝛿𝑘) -SNS} ≲ 𝐿−s𝑘 (50)

and let 𝐾 = 2𝑀(1 + 𝜎)s/𝛾 ≤ 𝐿𝛼−𝜏𝑘 . Then for 𝐿0 large enough
P {𝐵𝐿𝑘+1 (𝑢) is not (𝐸, 𝛿𝑘+1, 𝐾) -𝑆-good} ≤ 14𝐿−𝑀s

𝑘+1 . (51)

Proof. Equation (49) follows by a simple calculation:

s − 𝛼𝑑 = (𝐴 − 𝑑) 𝜏 − (2𝑑 + 1) − (1 + 𝜎) 𝜏𝑑
= 𝜏 [(𝑑 + 3𝛾) − (1 + 𝜎) 𝑑] − (2𝑑 + 1)
= 𝜏 [3𝛾 − 𝜎𝑑] − (2𝑑 + 1)
≥ 𝜏 [3𝛾 − 𝛾] − (2𝑑 + 1) > 𝛾𝜏.

(52)
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Further, by Definition 17, an event

B𝑥 = {𝐵𝐿𝑘 (𝑥) is (𝐸, 𝛿𝑘, 𝐾) -S-bad or not (𝐸, 𝜖𝑘+1)
-SNR} (53)

is F(𝐵(1/2)𝐿𝜏
𝑘
(𝑥))-measurable, and so for 𝐾 disjoint cubes𝐵(1/2)𝐿𝜏

𝑘
(𝑥𝑖), 1 ≤ 𝑖 ≤ 𝐾, we obtain

P{ 𝐾⋂
𝑖=1

B𝑥𝑖
} = 𝐾∏

𝑖=1

P {B𝑥𝑖
} ≤ 𝑝𝐾𝑘 . (54)

By (52), we have (s − 𝛼𝑑)/𝛼 = 𝛾𝜏/(1 + 𝜎)𝜏 = 𝛾/(1 + 𝜎). Thus
with 𝐾 = 2𝑀s(1 + 𝜎)𝛾−1, one has for the maximal number𝑆(𝜔) of pairwise 𝐿𝜏𝑘-distant singular cubes 𝐵(1/2)𝐿𝜏𝑘(𝑥𝑖) inside𝐵𝐿𝑘+1(𝑢):

P {𝑆 (𝜔) ≥ 𝐾} ≤ 𝐶𝐿𝐾𝑑𝑘+1𝑝𝐾𝑘 ≤ 𝐶𝐿−𝐾(s/𝛼−𝑑)𝑘+1 < 14𝐿−𝑀s
𝑘+1 . (55)

This proves inequality (51).

For future use, note that one can take, for example,

𝑀 = 𝛾4 (1 + 𝜎) s𝐿𝛼−𝜏𝑘 > 𝐿𝜎𝜏/2𝑘 . (56)

The last inequality holds for all 𝑘 with 𝐿0 large enough.
Lemma 24 (scale induction). Assume that the bound

P {∃𝐸 ∈ 𝐼∃𝑧 ∈ {𝑥, 𝑦} 𝐵𝐿𝑗 (𝑧) is not (𝐸, 𝛿j) -SNS}
≤ 𝐿−s𝑗

(57)

holds for 𝑗 = 𝑘 ≥ 0. Then it also holds for 𝑗 = 𝑘 + 1.
Proof. By Corollary 21, if the cube 𝐵𝐿𝑘+1(𝑧) is not(𝐸, 𝛿𝑘+1)-SNS, then either

(i) 𝐵𝐿𝑘+1(𝑧) is not (𝐸, 𝜖𝑘+1)-SNR, or
(ii) 𝐵𝐿𝑘+1(𝑧) is not (𝐸, 𝛿𝑘, 𝐾)-S-good.

By Lemmas 22 and 23, the probabilities of both events are
upper-bounded by (1/2)𝐿−s𝑘+1, so the claim follows.

Since the starting point for the scale induction (the Initial
Length Scale estimate) is provided by Lemma 19, by induction
on 𝑘 we come to the conclusion of the multiscale analysis of
our model.

Theorem 25. Consider the random Hamiltonian 𝐻(𝜔) =−Δ + 𝑉(𝑥, 𝜔). Fix an interval 𝐼 ⊂ R. For any 𝐴 > 2𝑑 there
exist s∗ = s∗(𝐴) < +∞ and 𝐿∗ ∈ N such that if 𝐿0 ≥ 𝐿∗ and
the inequality

sup
𝐸∈𝐼

P {𝐵𝐿𝑘 (𝑥) is not (𝐸, 𝛿𝑘) -SNS} ≤ 𝐿−s𝑘 (58)

holds for 𝑘 = 0 with s ≥ s∗, then it also holds for all 𝑘 ≥ 1.

5. Derivation of Strong
Dynamical Localization

5.1. Enhancement of the MSA Estimates

Theorem 26. Under the assumptions and with notations of
Theorem 25, for any two cubes𝐵𝐿𝑘(𝑥),𝐵𝐿𝑘(𝑦)with |𝑥−𝑦| ≥ 𝐿𝜏𝑘
one has for some 󰜚 > 0

P {∃𝐸} ≤ 𝐿−𝐿󰜚𝑘𝑘 . (59)

Proof. It suffices tomodify the proof of Lemma 23 (and of the
Lemma 24 stemming from it) in the following way. Instead
of the condition that 𝐵𝐿𝑘(𝑧) be (𝐸, 𝜖𝑘)-strongly nonresonant
we employ the condition of (𝐸, 𝜖𝑘)-nonresonance. As a result,
the choice of 𝜖𝑘+1 is no longer restricted to 𝜖𝑘+1 ≥ 𝐿−(𝐴−𝑑)𝜏𝑘

: we
can take an arbitrarily small value of 𝜖𝑘+1. Indeed, the strong
nonresonance is required for the scale induction, but now we
enhance the MSA estimates scale by scale, individually for
each 𝐿𝑘, without resorting to another scale induction.

Consequently, we can also replace a fixed, scale-
independent parameter 𝐾 (figuring in the condition
“𝐵𝐿𝑘+1(𝑧) is (𝐸, 𝛿𝑘+1, 𝐾)-good” by a growing value). Setting
𝐾 = 𝐾𝑘+1 = (1/2)𝐿1−𝜏/𝛼

𝑘
= (1/2)𝐿1−𝜎/𝛼

𝑘
, the claim

follows.

5.2. Strong Dynamical Localization. It is well-known by now
that the energy-interval MSA estimates imply strong dynam-
ical localization; the shortest derivation is due to Germinet
and Klein [24] who operated with the eigenfunction correla-
tors in the entire space.Their argument becomes particularly
simple in the situationwhere one proves first the decay bound
for the eigenfunction correlators in finite cubes, where it can
be encapsulated in a fairly elementary functional-analytical
lemma, as was shown in our prior papers, for example, [25,
26].

Proposition 27 (cf. [26, Thm. 7], [25, Thm. 3]). Suppose that
a bound of the form

P {∃𝐸 ∈ 𝐼∃𝑧 ∈ {𝑥, 𝑦} : 𝐵𝐿𝑘(𝑧) is not (𝐸, 𝛿𝑘) -𝑁𝑆}
≤ 𝑓 (𝐿𝑘) (60)

is established for some function 𝑓 ≥ 0 and all 𝑘 ≥ 0. Then for|𝑥 − 𝑦| =: 𝑅 ∈ [3𝐿𝑘, 3𝐿𝑘+1], one has
E [𝜒𝑥𝜙𝐼 (𝐻 (𝜔)) 𝜒𝑦] ≤ 𝐶1𝑅𝑑𝑓(𝑅𝛼−1) + 𝐶2𝑒−𝑚𝑅. (61)

Taking into account theMSA estimates fromTheorem 26,
assertion (B) of Theorem 1 follows directly from Proposi-
tion 27.
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matical Physics, Birkhäuser Boston, Inc., Boston, MA, 2001.

[5] J. Lott and G. Stolz, “The spectral minimum for random
displacement models,” Journal of Computational and Applied
Mathematics, vol. 148, no. 1, pp. 133–146, 2002.

[6] J. Baker, M. Loss, and G. Stolz, “Minimizing the ground
state energy of an electron in a randomly deformed lattice,”
Communications in Mathematical Physics, vol. 283, no. 2, pp.
397–415, 2008.

[7] J. Baker, M. Loss, and G. Stolz, “Low energy properties of the
random displacement model,” Journal of Functional Analysis,
vol. 256, no. 8, pp. 2725–2740, 2009.

[8] F. Klopp, M. Loss, S. Nakamura, and G. Stolz, “Understanding
the random displacement model: From ground state properties
to localization,” Spectral Analysis of Quantum Hamiltonians:
Spectral Days 2010, pp. 183–219, 2012.

[9] W.Kirsch, P. Stollmann, andG. Stolz, “Anderson localization for
random Schrödinger operators with long range interactions,”
Communications in Mathematical Physics, vol. 195, no. 3, pp.
495–507, 1998.
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