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An adaptive fuzzy synchronization controller is designed for a class of fractional-order neural networks (FONNs) subject to
backlash-like hysteresis input. Fuzzy logic systems are used to approximate the system uncertainties as well as the unknown terms
of the backlash-like hysteresis. An adaptive fuzzy controller, which can guarantee the synchronization errors tend to an arbitrary
small region, is given.The stability of the closed-loop system is rigorously analyzed based on fractional Lyapunov stability criterion.
Fractional adaptation laws are established to update the fuzzy parameters. Finally, some simulation examples are provided to
indicate the effectiveness and the robust of the proposed control method.

1. Introduction

In the past two decades, study results of fractional calculus
have received more and more attention because, compared
with the classical integer-order calculus, the fractional-order
one has many interesting and special properties. It has also
been proven that a lot kinds of actual systems, ranging from
life science and engineering to secret communication and
system control, can be better modeled by using fractional-
order differential equations (FDE) [1–10]. The nonlinear sys-
tem, which is described by FDE, has memory.This advantage
makes it possible to describe the hereditary aswell asmemory
characters of many systems and processes. On this account,
a lot of scholars employed the fractional-order derivative
to replace the integer-order one in neural networks to get
the FONNs [11–18]. It is known that the fractional model
equips the neurons with more powerful computation ability,
and these abilities could be used in information processing,
frequency-independent phase shifts of oscillatory neuronal
firing, and stimulus anticipation [13, 19]. By far, lots of
methods have been given to synchronize FONNs [5, 12, 13,
20–22]. It should be mentioned that, in above works, the
model of the master FONN should be known in advance.

How to design synchronization controller when the master
system’s model is unknown is a challenging but interesting
work.

It is well known that hysteresis can be found in a
great mount of physical systems or devices, for instance,
biology optics, mechanical actuators, electromagnetism, and
electronic circuits [6, 23–26]. Hysteresis can damage the
control performance or even lead to the instability of the
controlled system. How to construct proper controller for
these kinds of systems is an interesting work. With respect
to integer-order systems subject to hysteresis, a lot of results
have been given. In [27], a feedback controller was introduced
to control nonlinear systems with hysteresis. The control of
systems subject to Prandtl-Ishlinskii hysteresis was studied
in [28]. To see more results on the control of integer-order
systems with hysteresis please refer to [29–33]. However, with
respect to fractional-order nonlinear systems with hysteresis,
the related literatures are very few.

Up to now, fuzzy control methods have been stud-
ied extensively [34–42]. Specially, this approach has been
particularly used to synchronize or control integer-order
neural networks (IONNs) [43–47]. In above literature, fuzzy
logic systems were employed to approximate the uncertain
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functions. To enhance the approximation ability of the
fuzzy system, some robust terms, for example, sliding mode
control, 𝐻∞ control should be used together with the main
fuzzy adaptive control term. It should be pointed out that the
above results are limited to uncertain IONNs. It is advisable to
discuss the synchronization problem for uncertain FONNs.

In our paper, an adaptive fuzzy control approach is
introduced for synchronizing two uncertain FONNs. Based
on some fractional Lyapunov stability theorems, the stability
analysis and the controller implement are given. To show the
effectiveness of the proposed synchronization method, some
illustrative examples are presented. Bearing the results of
aforementionedworks inmind, themain contributions of our
study consist of the following: (1) by designing an adaptive
fuzzy controller, a practical synchronization is proposed for
a class of uncertain FONNs. To the best of our knowledge,
how to construct fuzzy adaptive control for FONNs has
not been previously investigated up to now, except some
preliminaries works in [8, 46]. It should be pointed out that,
in these works, the integer-order stability analysis method
is used. However, in this paper, we will use the fractional
stability analysis approach, and the stability of the closed-loop
system is proved rigorously. (2)Themodels of the FONNs are
assumed to be fully unknown (i.e., the controller designed is
free of the models of both master and slave systems). (3) The
control of fractional-order nonlinear systems with backlash-
like hysteresis input is studied.

2. Preliminaries

2.1. Some Basic Results of Fractional Calculus. The 𝑞th frac-
tional integral is defined by

I
−𝑞𝑓 (𝑡) = 1Γ (𝑞) ∫𝑡

0

𝑓 (𝜏)
(𝑡 − 𝜏)1−𝑞 𝑑𝜏, (1)

where Γ(𝑞) = ∫+∞
0

𝜏𝑞−1𝑒−𝜏𝑑𝜏. The 𝑞th fractional-order deriv-
ative is given as

D
𝑞𝑓 (𝑡) = 1Γ (𝑛 − 𝑞) ∫𝑡

0

𝑓(𝑛) (𝜏)
(𝑡 − 𝜏)𝑞+1−𝑛 𝑑𝜏, (2)

where 𝑛 − 1 ≤ 𝑞 < 𝑛 (𝑛 ∈ N). The Laplace transform of the
Caputo fractional derivative is

∫∞
0

𝑒−𝑠𝑡D𝑞𝑓 (𝑡) 𝑑𝑡 = 𝑠𝑞𝐹 (𝑠) − 𝑛−1∑
𝑘=0

𝑠𝑞−𝑘−1𝑓(𝑘) (0) , (3)

where 𝐹(𝑠) = L{𝑓(𝑡)}. For convenience, we always assume
that 0 < 𝑞 ≤ 1 in the rest of this paper.

The following results on fractional calculus will help us to
facilitate the synchronization controller design as well as the
stability analysis.

Definition 1 (see [1]). The Mittag-Leffler function is defined
by

𝐸𝑞1 ,𝑞2 (𝜁) = ∞∑
𝑘=0

𝜁𝑘Γ (𝑞1𝑘 + 𝑞2) , (4)

where 𝑞1, 𝑞2 > 0, and 𝜁 ∈ C.

The Laplace transform of (4) is as follows [1]:

L {𝑡𝛽−1𝐸𝑞1 ,𝑞2 (−𝑎𝑡𝑞1)} = 𝑠𝑞1−𝑞2𝑠𝑞1 + 𝑎 . (5)

Lemma 2 (see [1]). Let 𝑥(𝑡) ∈ 𝐶1[0, 𝑇] with 𝑇 > 0; then one
has

0I
−𝑞
𝑡 D
𝑞𝑥 (𝑡) = 𝑥 (𝑡) − 𝑥 (0) ,

D
𝑞
0I
−𝑞
𝑡 𝑥 (𝑡) = 𝑥 (𝑡) . (6)

Lemma 3 (see [1]). Let 𝛽 ∈ C and to constants 𝑞, 𝜇 satisfying0 < 𝑞 < 2 and
𝜋𝑞2 < 𝜇 < min {𝜋, 𝜋𝑞} , (7)

and then the following equality holds:

𝐸𝑞,𝛽 (𝑧) = − 𝑛∑
𝑗=1

1Γ (𝛽 − 𝑞𝑗) 𝑧𝑗 + 𝑜( 1
|𝑧|𝑛+1) ,

|𝑧| 󳨀→ ∞, 𝜇 ≤ 󵄨󵄨󵄨󵄨arg (𝑧)󵄨󵄨󵄨󵄨 ≤ 𝜋.
(8)

Lemma 4 (see [1]). Let 0 < 𝑞 < 2 and 𝛽 ∈ R. If there exists a
positive constant 𝜇 such that 𝜋𝑞/2 < 𝜇 ≤ min{𝜋, 𝜋𝑞}, then one
has

󵄨󵄨󵄨󵄨󵄨𝐸𝑞,𝛽 (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑏01 + |𝑧| , (9)

where 𝑏0 is a positive real constant, 𝜇 ≤ | arg(𝑧)| ≤ 𝜋 and |𝑧| ≥0.
Lemma 5 (see [2]). Let 𝑥(𝑡) = 0 be an equilibrium point of the
following fractional-order nonlinear system:

D
𝑞𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) . (10)

If one can find a Lyapunov function 𝑉(𝑡, 𝑥(𝑡)) as well as three
class-𝐾 functions 𝑔𝑖, 𝑖 = 1, 2, 3 such that

𝑔1 (‖𝑥 (𝑡)‖) ≤ 𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝑔2 (‖𝑥 (𝑡)‖) ,
D
𝑞𝑉 (𝑡, 𝑥 (𝑡)) ≤ −𝑔3 (‖𝑥 (𝑡)‖) , (11)

then system (10) will be asymptotically stable.

Lemma 6 (see [4]). Let 𝑥(𝑡) ∈ R𝑛 be a continuous and deriv-
able function. Then, for any 𝑡 > 0,

12D𝑞𝑥𝑇 (𝑡) 𝑥 (𝑡) ≤ 𝑥𝑇 (𝑡)D𝑞𝑥 (𝑡) . (12)

Lemma 7 (see [3]). Let 𝑥(𝑡) ∈ R𝑛 be a continuous and deriv-
able function. Then, for any 𝑡 > 0,

12D𝑞𝑥𝑇 (𝑡) 𝐵𝑥 (𝑡) ≤ 𝑥𝑇 (𝑡) 𝐵D𝑞𝑥 (𝑡) , (13)

where 𝐵 ∈ R𝑛×𝑛 is a positive definite constant matrix.
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2.2. Description of a Fuzzy System. A fuzzy logic system
consists of four parts: the knowledge base, the fuzzifier,
the fuzzy inference engine working on the fuzzy rules, and
the defuzzifier [34–40, 48]. Usually, a fuzzy logic system is
modeled by

𝑓 (𝑥 (𝑡)) = ∑𝑗∈𝐽 𝜗𝑗 (𝑡) 𝜇𝑗 (𝑥 (𝑡))
∑𝑗∈𝐽 𝜇𝑗 (𝑥 (𝑡)) , (14)

where 𝑓 (a Lipschitz-continuous mapping from a compact
subset Ω ⊆ R𝑛 to the real lineR) is called the output of the
fuzzy logic system, 𝑥 = [𝑥1, . . . , 𝑥𝑛]𝑇 ∈ 𝐶1[I, Ω] (the set of
all continuous mappings fromI = [0, +∞) ⊆ R toΩ which
have continuous derivatives) is called the input vector, 𝐽 =∏𝑛𝑖=1F𝑖, F𝑖 consists of 𝑁𝑖 fuzzy sets (1 ≤ 𝑖 ≤ 𝑛), 𝜇𝑗 (a map-
ping fromR𝑛 to the closed unit interval [0, 1] ⊆ R) is called
themembership function of rule 𝑗 (𝑗 ∈ 𝐽), and 𝜗𝑗 (a mapping
fromI toR) is called the centroid of the 𝑗th consequent set
(𝑗 ∈ 𝐽); we may identify 𝐽 with {1, 2, . . . , 𝑁} for the sake of
convenience. Write 𝜗(𝑡) = [𝜗1(𝑡), . . . , 𝜗𝑁(𝑡)]𝑇 and 𝜑(𝑥(𝑡)) =[𝑞1(𝑥(𝑡)), 𝑞2(𝑥(𝑡)), . . . , 𝑞𝑁(𝑥(𝑡))]𝑇, where 𝑞𝑗 (called the 𝑗th
fuzzy basis function, 𝑗 ∈ 𝐽) is a continuousmapping (and thus𝜑 : Ω → R𝑁 is continuous) defined by

𝑞𝑗 (𝑥 (𝑡)) = 𝜗𝑗 (𝑡)∑𝑠∈𝐽 𝜇𝑠 (𝑥 (𝑡)) . (15)

Then system (14) can be rewritten as

𝑓 (𝑥 (𝑡)) = 𝜗𝑇 (𝑡) 𝜑 (𝑥 (𝑡)) . (16)

3. Main Results

3.1. Problem Description. Consider a class of FONNs de-
scribed as

D
𝑞𝑥𝑖 (𝑡) = −𝑎𝑖𝑥𝑖 (𝑡) + 𝑛∑

𝑘=1

𝑏𝑖𝑘𝑓𝑘 (𝑥𝑘 (𝑡)) + 𝐼𝑖, (17)

where 𝑖 = 1, . . . , 𝑛, 𝑥𝑖(𝑡) is the state variable, 𝑎𝑖 > 0 and𝑏𝑖𝑘, 𝑘 = 1, 2, . . . , 𝑚 are constants, 𝐼𝑖 represents the external
input, and 𝑓𝑘(⋅) is a smooth nonlinear function.

Write 𝑥(𝑡) = [𝑥1(𝑡), . . . , 𝑥𝑛(𝑡)]𝑇 ∈ R𝑛, 𝑓(⋅) = [𝑓1(⋅), . . . ,𝑓𝑛(⋅)]𝑇 ∈ R𝑛, 𝐼 = [𝐼1, . . . , 𝐼𝑛]𝑇 ∈ R𝑛, 𝐴 = − diag(𝑎1, . . . , 𝑎𝑛) ∈
R𝑛×𝑛, 𝑢(𝑡) = [𝑢1(𝑡), . . . , 𝑢𝑚(𝑡)] ∈ R𝑚,

𝐵 = [[[[
[

𝑏11 ⋅ ⋅ ⋅ 𝑏1𝑛... d
...

𝑏1𝑛 ⋅ ⋅ ⋅ 𝑏𝑛𝑛
]]]]
]

∈ R
𝑛×𝑛, (18)

then (17) can be written into the following compact form:

D
𝑞𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑓 (𝑥 (𝑡)) + 𝐼. (19)

To guarantee the existence and uniqueness of the solu-
tions of the fractional-order neural network (19) (see, [3]), we

assume that the functions𝑓 are Lipschitz-continuous, i.e., for
all 𝑥(𝑡), 𝑦(𝑡) ∈ R𝑛,

󵄩󵄩󵄩󵄩𝑓 (𝑥 (𝑡)) − 𝑓 (𝑦 (𝑡))󵄩󵄩󵄩󵄩 ≤ 𝜎 󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)󵄩󵄩󵄩󵄩 , (20)

where 𝜎 is a positive constant.
The slave system is expressed by

D
𝛼𝑦 (𝑡) = 𝐴𝑦 (𝑡) + 𝐵𝑓 (𝑦 (𝑡)) + 𝐼 + 𝐺] (𝑡) + 𝑑 (𝑡) , (21)

where 𝑦(𝑡) ∈ R𝑛 is the state vector of the slave system, 𝐺 ∈
R𝑛×𝑛 is a positive definite control gain matrix, 𝑑(𝑡) = [𝑑1(𝑡),𝑑2(𝑡), . . . , 𝑑𝑛(𝑡)]𝑇 ∈ R𝑛 is an unknown external disturbance,
and ](𝑡) ∈ R𝑛 represents hysteresis type of nonlinear control
input which is described by

𝑑] (𝑡)𝑑𝑡 = 𝛾1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑢 (𝑡)𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (𝛾3𝑢 (𝑡) − ] (𝑡)) + 𝛾2 𝑑𝑢 (𝑡)𝑑𝑡 , (22)

where 𝑢(𝑡) = [𝑢1(𝑡), . . . , 𝑢𝑛(𝑡)]𝑇 ∈ R𝑛 is the control input,𝛾1, 𝛾2 and 𝛾3 are three constants satisfying 𝛾3 > 0 and 𝛾3 > 𝛾2.
One can rewrite (22) as

] (𝑡) = 𝛾3𝑢 (𝑡) + ℏ (𝑡)
ℏ (𝑡) = [𝜔 (0) − 𝑐𝑢 (0)] 𝑒−𝑎(𝑢(𝑡)−𝑢(0)) sign(𝑢̇(𝑡))

+ 𝑒−𝑎𝑢(𝑡) sign(𝑢̇(𝑡)) ∫𝑢(𝑡)
𝑢(0)

(𝑏 − 𝑐) 𝑒𝑎𝜏 sign(𝑢̇(𝑡))𝑑𝜏.
(23)

When 𝛾1 = 1.1, 𝛾3 = 3.22, 𝛾2 = 0.44, 𝑢(𝑡) = 5.1 sin(2𝑡)
and ](0) = 0, the behavior of the backlash-like hysteresis is
depicted in Figure 1.

The objective of this paper is to construct an adaptive
fuzzy controller such that the slave system (21) synchronizes
the master system (19). To proceed, the following assumption
is needed.

Assumption 8. The external disturbance is bounded, i.e.,|𝑑𝑖(𝑡)| ≤ 𝑑𝑖, 𝑖 = 1, 2, . . . , 𝑛 where 𝑑𝑖 is an unknown positive
constant.

3.2. Synchronization Controller Implement. In this part, we
will give the detailed procedure of the adaptive fuzzy
controller design as well as the stability analysis. Let the
synchronization error be 𝑒(𝑡) = 𝑥(𝑡) − 𝑦(𝑡). It follows from
(19), (21), and (23) that

D
𝑞𝑒 (𝑡) = 𝐴𝑒 (𝑡) + 𝐴 (𝑓 (𝑥 (𝑡)) − 𝑓 (𝑦 (𝑡))) − 𝛾3𝐺𝑢 (𝑡)

− 𝐺ℏ (𝑡) − 𝑑 (𝑡) . (24)

Denote Ξ = (1/𝛾3)𝐺−1; (24) implies that

ΞD𝑞𝑒 (𝑡) = 𝜛 (𝑒 (𝑡)) − 𝑢 (𝑡) , (25)

where𝜛(𝑒(𝑡)) = Ξ(𝐴𝑒(𝑡)+𝐴(𝑓(𝑥(𝑡))−𝑓(𝑦(𝑡)))−𝐺ℏ(𝑡)−𝑑(𝑡))
is an unknown nonlinear function.

Remark 9. In fact, it is easy to know that 𝜛 is a function
of 𝑥(𝑡), 𝑦(𝑡), 𝑒(𝑡), and 𝑡. In this paper, the synchronization
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Figure 1: Hysteresis curve.

error will be used as the input of the fuzzy logic systems.
In addition, the synchronization error 𝑒(𝑡) can be seen as a
bridge between the signals 𝑥(𝑡) and 𝑦(𝑡). Consequently, we
will use the denotation 𝜛(𝑒(𝑡)) for convenience.

Firstly, let us consider an ideal condition. Suppose that𝜛(𝑒(𝑡)) is known (i.e., 𝑑(𝑡),𝑓(𝑥(𝑡)), and𝑓(𝑦(𝑡)) are all known
in advance). Thus, the ideal controller can be given by

𝑢𝑒𝑞 = 𝜛 (𝑒 (𝑡)) + 𝐾𝑒 (𝑡) , (26)

where 𝐾 = diag(𝑘1, . . . , 𝑘𝑛) with 𝑘𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑛. Then,
we can give the following theorem.

Theorem 10. If the models of the master and slave systems
are known, and the synchronization controller is given by (26),
then we have that the synchronization error converges to zero
asymptotically.

Proof. Substituting (26) into (25), one has
ΞD𝑞𝑒 (𝑡) = −𝐾𝑒 (𝑡) . (27)

Define the following Lyapunov function:

V (𝑡) = 12𝑒𝑇 (𝑡) Ξ𝑒 (𝑡) . (28)

According to Lemma 7, the 𝑞th derivative of V(𝑡) is
bounded by

D
𝛼
V (𝑡) = 12D𝑞𝑒𝑇 (𝑡) Ξ𝑒 (𝑡) ≤ 𝑒𝑇 (𝑡) ΞD𝑞𝑒 (𝑡)

≤ −𝑘 (𝑡) ,
(29)

where 𝑘 = min{𝑘1, 𝑘2, . . . , 𝑘𝑛}. Thus, according to Lemma 5
and (29) that the synchronization error will converge to zero
asymptotically.

Since 𝜛(𝑒(𝑡)) is an unknown function, the above con-
troller (26) may be inapplicable. In such a case, by using the
fuzzy logic system, let us approximate 𝜛(𝑒(𝑡)) (16) as

𝜛𝑖 (𝜗𝑖 (𝑡) , 𝑒 (𝑡)) = 𝜗𝑇𝑖 (𝑡) 𝜑𝑖 (𝑒 (𝑡)) , (30)

where 𝜑𝑖(𝑥(𝑡)) is a fuzzy basis function, and 𝜗𝑖(𝑡) is
an adjustable parameter of the fuzzy system which drive
sup{|𝜛𝑖(𝑒(𝑡)) − 𝜛𝑖(𝜗∗𝑖 , 𝑒(𝑡))| small enough. Let the parameter
estimation error with respect to 𝜗𝑖 be

𝜗𝑖 (𝑡) = 𝜗𝑖 (𝑡) − 𝜗∗𝑖 , (31)

and the fuzzy approximation error with respect to 𝜗∗𝑖 be
𝜀𝑖 (𝑒 (𝑡)) = 𝜛𝑖 (𝑒 (𝑡)) − 𝜛𝑖 (𝜗∗𝑖 , 𝑒 (𝑡)) . (32)

According to the universal approximation theorem, one
can know that the fuzzy systems do not violate the universal
approximator property. Consequently, one can make the
following assumption.

Assumption 11. There exists an unknown constant 𝜀∗ > 0
such that

sup {󵄨󵄨󵄨󵄨𝜀𝑖 (𝑒 (𝑡))󵄨󵄨󵄨󵄨} ≤ 𝜀∗. (33)

Based on the above analysis, one has

𝜛𝑖 (𝜗𝑖 (𝑡) , 𝑒 (𝑡)) − 𝜛𝑖 (𝑒 (𝑡))
= 𝜛𝑖 (𝜗𝑖 (𝑡) , 𝑒 (𝑡)) − 𝜛𝑖 (𝜗∗𝑖 , 𝑒 (𝑡)) + 𝜛𝑖 (𝜗∗𝑖 , 𝑒 (𝑡))

− 𝜛𝑖 (𝑒 (𝑡))
= 𝜛𝑖 (𝜗𝑖 (𝑡) , 𝑒 (𝑡)) − 𝜛𝑖 (𝜗∗𝑖 , 𝑒 (𝑡)) − 𝜀𝑖 (𝑒 (𝑡))
= 𝜗𝑇𝑖 (𝑡) 𝜑𝑖 (𝑒 (𝑡)) − 𝜀𝑖 (𝑒 (𝑡)) .

(34)

Denote 𝜗(𝑡)𝜑(𝑒(𝑡)) = [𝜗𝑇1 (𝑡)𝜑1(𝑒(𝑡)), 𝜗𝑇2 (𝑡)𝜑2(𝑒(𝑡)), . . . ,𝜗𝑇𝑛 (𝑡)𝜑𝑛(𝑒(𝑡))]𝑇 and 𝜗(𝑡)𝜑(𝑒(𝑡))= [𝜗𝑇1 (𝑡)𝜑1(𝑒(𝑡)), 𝜗𝑇2 (𝑡)𝜑2(𝑒(𝑡)),. . .,𝜗𝑇𝑛 (𝑡)𝜑𝑛(𝑒(𝑡))]𝑇, then one can rewrite (34) as

𝜛 (𝜗 (𝑡) , 𝑒 (𝑡)) − 𝜛 (𝑒 (𝑡)) = 𝜗𝑇 (𝑡) 𝜑 (𝑒 (𝑡)) − 𝜀 (𝑒 (𝑡)) , (35)

where 𝜗(𝑡) = [𝜗𝑇1 (𝑡), 𝜗𝑇2 (𝑡), . . . , 𝜗𝑇𝑛 (𝑡)]𝑇 ∈ R𝑁×𝑛 (𝑁 represents
the amount of the fuzzy rules).

To simplify the stability analysis, we give the following
results first.
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Theorem 12. Suppose that ℎ(𝑡) ∈ R is a positive definite
smooth function. 𝛿1 > 0, 𝛿2 ∈ R are two adjustable param-
eters. If it holds that

D
𝑞ℎ (𝑡) ≤ −𝛿1ℎ (𝑡) + 𝛿2, (36)

then ℎ(𝑡) will be small enough eventually if proper parameters
are chosen.

Proof. According to (36), one can find a function 𝜁(𝑡) satisfy-
ing 𝜁(𝑡) ≥ 0 and

D
𝑞ℎ (𝑡) + 𝜁 (𝑡) = −𝛿1ℎ (𝑡) + 𝛿2. (37)

It follows from (37) that

𝐻(𝑠) = 𝑠𝑞−1𝑠𝑞 + 𝛿1 ℎ (0) + 𝑠𝑞−(1+𝑞)𝛿2(𝑠𝑞 + 𝛿1) − 𝑍 (𝑠)𝑠𝑞 + 𝛿1 , (38)

where 𝐻(𝑠) = L{ℎ(𝑡)} and 𝑍(𝑠) = L{𝜁(𝑡)}. One solves (38)
according to (5) as

ℎ (𝑡) = ℎ (0) 𝐸𝑞,1 (−𝛿1𝑡𝑞) + 𝛿2𝑡𝑞𝐸𝑞,1+𝑞 (−𝛿1𝑡𝑞) − 𝜁 (𝑡)
∗ 𝑡−1𝐸𝑞,0 (−𝛿1𝑡𝑞) , (39)

where ∗ represents the convolution operator. Since that𝑡−1𝐸𝑞,0(−𝛿1𝑡𝑞) and 𝜁(𝑡) are all nonnegative, one has 𝜁(𝑡) ∗𝑡−1𝐸𝑞,0(−𝛿1𝑡𝑞) ≥ 0. Consequently, one has
ℎ (𝑡) ≤ ℎ (0) 𝐸𝑞,1 (−𝛿1𝑡𝑞) + 𝛿2𝑡𝑞𝐸𝑞,1+𝑞 (−𝛿1𝑡𝑞) . (40)

It is easy to know that arg(−𝛿1𝑡𝑞) = −𝜋, | − 𝛿1𝑡𝑞| ≥ 0 and𝑞 ∈ (0, 2); thus, by using Lemma 4, one obtains that

󵄨󵄨󵄨󵄨󵄨𝐸𝑞,1 (−𝛿1𝑡𝑞)󵄨󵄨󵄨󵄨󵄨 ≤ 𝜅1 + 𝛿1𝑡𝑞 , (41)

where 𝜅 > 0, i.e.,
lim
𝑡→∞

ℎ (0) 𝐸𝑞,1 (−𝛿1𝑡𝑞) = 0. (42)

Thus, by using Lemma 3, one has for every 𝜀 > 0 and large
enough time 𝑡 that

𝑡𝛼𝐸𝛼,𝛼+1 (−𝐴𝑡𝛼) ≤ 𝐵𝐴 + 𝜀3 . (43)

That is to say, if the design parameters are chosen as𝛿2/𝛿1 ≤ 𝜀, then according to (40) and (43) one has

ℎ (𝑡) < 𝜀. (44)

This completes the proof of Theorem 12.

Then, one can obtain the following theorem.

Theorem 13. Under Assumptions 8 and 11 and proper control
parameters, if 𝜀∗(𝑡) is the estimation of 𝜀∗, 𝑢(𝑡) is implemented
as

𝑢 (𝑡) = 𝐾𝑒 (𝑡) + 𝜗𝑇 (𝑡) 𝜑 (𝑒 (𝑡)) + 𝜀∗ (𝑡) sign (𝑒 (𝑡)) , (45)

and 𝜗𝑖(𝑡) and 𝜀∗(𝑡) are, respectively, updated by
D
𝑞𝜗𝑖 (𝑡) = 𝜍1𝑖𝑒𝑖 (𝑡) 𝜑𝑖 (𝑒 (𝑡)) − 𝜍1𝑖𝜍2𝑖𝜗𝑖 (𝑡) , (46)

D
𝑞𝜀∗ (𝑡) = 𝜍3 𝑛∑

𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 − 𝜍3𝜍4𝜀∗ (𝑡) , (47)

with 𝜍1𝑖, 𝜍2𝑖, 𝜍3, 𝜍4 being positive design parameters, then one
has that the synchronization error eventually converges to an
arbitrary small region of zero.

Proof. It follows from (25), (35), and (45) that

ΞD𝑞𝑒 (𝑡) = 𝜛 (𝑒 (𝑡)) − 𝑢 (𝑡)
= 𝜛 (𝑒 (𝑡)) − 𝐾𝑒 (𝑡) − 𝜗𝑇 (𝑡) 𝜑 (𝑒 (𝑡))

− 𝜀∗ (𝑡) sign (𝑒 (𝑡))
= −𝐾𝑒 (𝑡) − 𝜗𝑇 (𝑡) 𝜑 (𝑒 (𝑡))

− 𝜀∗ (𝑡) sign (𝑒 (𝑡)) + 𝜀 (𝑒 (𝑡)) .

(48)

Multiplying 𝑒𝑇(𝑡) to both sides of (48) gives

𝑒𝑇 (𝑡) ΞD𝑞𝑒 (𝑡) = −𝑒𝑇 (𝑡) 𝐾𝑒 (𝑡) − 𝑒𝑇 (𝑡) 𝜗𝑇 (𝑡) 𝜑 (𝑒 (𝑡))
+ 𝑒𝑇 (𝑡) 𝜀 (𝑒 (𝑡))
− 𝑒𝑇 (𝑡) 𝜀∗ (𝑡) sign (𝑒 (𝑡))

≤ −𝑘𝑒𝑇 (𝑡) 𝑒 (𝑡)
− 𝑛∑
𝑖=1

𝑒𝑖 (𝑡) 𝜗𝑇𝑖 (𝑡) 𝜑𝑖 (𝑒 (𝑡))

+ 𝜀∗ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 − 𝜀∗ (𝑡) 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨
= −𝑘𝑒𝑇 (𝑡) 𝑒 (𝑡)

− 𝑛∑
𝑖=1

𝑒𝑖 (𝑡) 𝜗𝑇𝑖 (𝑡) 𝜑𝑖 (𝑒 (𝑡))

− 𝜀∗ (𝑡) 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 ,

(49)

where

𝜀∗ (𝑡) = 𝜀∗ (𝑡) − 𝜀∗ (50)

is the estimation error of 𝜀∗.
It is known that the D𝑞𝐶 = 0 where 𝐶 is an arbitrary

constant. Thus, it follows from (31) and (50) that D𝑞𝜗𝑖(𝑡) =
D𝑞𝜗𝑖(𝑡) and D𝑞𝜀∗(𝑡) = D𝑞𝜀∗(𝑡).

Define the Lyapunov function as

V (𝑡) = 12𝑒𝑇 (𝑡) Ξ𝑒 (𝑡) + 𝑛∑
𝑖=1

12𝜍1𝑖 𝜗𝑇𝑖 (𝑡) 𝜗𝑖 (𝑡)
+ 12𝜍3 𝜀∗2 (𝑡) .

(51)
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Using (46), (47), (49), and Lemma 6 one has

D
𝑞
V (𝑡)
≤ 𝑒𝑇 (𝑡) ΞD𝑞𝑒 (𝑡) + 𝑛∑

𝑖=1

1𝜍1𝑖 𝜗𝑇𝑖 (𝑡)D𝑞𝜗𝑖 (𝑡)
+ 1𝜍3 𝜀∗ (𝑡)D𝑞𝜀∗ (𝑡)

= −𝑘𝑒𝑇 (𝑡) 𝑒 (𝑡) − 𝑛∑
𝑖=1

𝑒𝑖 (𝑡) 𝜗𝑇𝑖 (𝑡) 𝜑𝑖 (𝑒 (𝑡))

− 𝜀∗ (𝑡) 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 +
𝑛∑
𝑖=1

1𝜍1𝑖 𝜗𝑇𝑖 (𝑡)D𝑞𝜗𝑖 (𝑡)
+ 1𝜍3 𝜀∗ (𝑡)D𝑞𝜀∗ (𝑡)

= −𝑘𝑒𝑇 (𝑡) 𝑒 (𝑡) − 𝑛∑
𝑖=1

𝑒𝑖 (𝑡) 𝜗𝑇𝑖 (𝑡) 𝜑𝑖 (𝑒 (𝑡))

+ 1𝜍3 𝜀∗ (𝑡) (𝜍3 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 − 𝜍3𝜍4𝜀∗ (𝑡))

− 𝜀∗ (𝑡) 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨
+ 𝑛∑
𝑖=1

1𝜍1𝑖 𝜗𝑇𝑖 (𝑡) (𝜍1𝑖𝑒𝑖 (𝑡) 𝜑𝑖 (𝑒 (𝑡)) − 𝜍1𝑖𝜍2𝑖𝜗𝑖 (𝑡))

= −𝑘𝑒𝑇 (𝑡) 𝑒 (𝑡) − 𝑛∑
𝑖=1

𝜍2𝑖𝜗𝑇𝑖 (𝑡) 𝜗𝑖 (𝑡) − 𝜍4𝜀∗ (𝑡) 𝜀∗ (𝑡)

= −𝑘𝑒𝑇 (𝑡) 𝑒 (𝑡) − 𝑛∑
𝑖=1

𝜍2𝑖𝜗𝑇𝑖 (𝑡) 𝜗𝑖 (𝑡) − 𝜍4𝜀∗ (𝑡) 𝜀∗ (𝑡)

− 𝜍4𝜀∗ (𝑡) 𝜀∗ (𝑡) − 𝑛∑
𝑖=1

𝜍2𝑖𝜗𝑇𝑖 (𝑡) 𝜗∗𝑖
≤ −𝑘𝑒𝑇 (𝑡) 𝑒 (𝑡) − 𝑛∑

𝑖=1

𝜍2𝑖2 𝜗𝑇𝑖 (𝑡) 𝜗𝑖 (𝑡) − 𝜍42 𝜀∗2 (𝑡)

+ 𝑛∑
𝑖=1

𝜍2𝑖2 𝜗∗𝑇𝑖 𝜗∗𝑖 + 𝜍42 𝜀∗2 ≤ −𝛿1V (𝑡) + 𝛿2

(52)

with 𝛿1 = min{2𝑘, 𝜍1𝑖𝜍2𝑖, 𝜍2𝜍4} and 𝛿2 = ∑𝑛𝑖=1(𝜍2𝑖/2)𝜗∗𝑇𝑖 𝜗∗𝑖 +(𝜍4/2)𝜀∗2 being two positive constants.
Thus, based on (52) and Theorem 12, one knows that the

synchronization error eventually converges to an arbitrary
small region of zero if proper control parameters are chosen.
This completes the proof of Theorem 13.

Remark 14. It should be pointed out that the fractional-
order adaptation law was also introduced in [3, 5, 49, 50].
However, the above adaptation laws only contain a positive
term (i.e., the adaptation law is designed as D𝑞𝜗(𝑡) =𝜎𝑒𝑖(𝑡)𝜑𝑖(𝑡)). Despite using this kind of adaptation law, the

asymptotical stability of the system can be guaranteed.
Yet, the boundedness of the control parameters cannot be
ensured. The proposed adaptation law contains a negative
term (for example, −𝜍1𝑖𝜍2𝑖𝜗𝑖(𝑡) in (46)) which will drive the
updated parameter tends to a small neighborhood of the
origin eventually (see the proof of Theorem 13).

Remark 15. To enforce the synchronization error tending to
a region as small as possible, one must make 𝛿2/𝛿1 small
enough. To meet this objective, one should choose large 𝑘𝑖,𝜍1𝑖, 𝜍3 and choose small 𝜍2𝑖, 𝜍4.
Remark 16. It is worth mentioning that, in [51], to discuss
the stability of the fractional-order nonlinear systems, a very
complicated boundary condition

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∞∑
𝑘=1

Γ (1 + 𝛼)Γ (1 + 𝑘) Γ (1 − 𝑘 + 𝛼)D𝑘𝑥 (𝑡)D𝛼−𝑘𝑥 (𝑡)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 𝑎 ‖𝑥‖ (53)

is assumed to be known. The above condition was proven in
[51]. Yet, how to get the exact value of 𝑎 is a challenging work.
But in our paper, by using the quadratic Lyapunov functions,
the aforementioned problem is solved.

Remark 17. It should be pointed out that the proposed control
method does not need the prior knowledge of systems mod-
els. Therefore, the control method can be easily extended to
the following domains: control of fractional-order nonlinear
systems, synchronization of fractional-order chaotic system,
and secret communication, and so on. And relating out
control method to a potential application is one of our future
research directions.

4. Simulation Studies

In (19), letting 𝑥(𝑡) ∈ R3, 𝑥(0) = [−0.301, 0.400, 0.299]𝑇,𝑞 = 0.96, 𝑓𝑖(𝑥𝑖(𝑡)) = tanh(𝑥𝑖(𝑡)), 𝑎𝑖 = 1, 𝐼𝑖 = 0, 𝑢(𝑡) ≡ 0,
and

𝐵 = [[
[

2.001 −1.201 0
2.000 1.713 1.154
−4.751 0 1.101

]]
]

, (54)

the FONN (19) shows chaotic behavior, which is depicted in
Figure 2.

4.1. Synchronization of FONN with Constant System Param-
eters. Let the initial condition of the slave FONN (21) be𝑦(0) = [4.2, −3.1, −1.9], and 𝐺 = 𝐼3×3. The external
disturbance is defined as 𝑑(𝑡) = [sin 𝑡, cos 𝑡, sin 𝑡+cos 𝑡]𝑇.The
control design parameters are given as 𝑘1 = 𝑘2 = 𝑘3 = 0.5.𝜍11 = 𝜍12 = 𝜍13 = 1.1, 𝜍21 = 𝜍22 = 𝜍23 = 0.05, 𝜍3 = 1.55, 𝜍4 =0.02. In the simulation, the noncontinuous sign function in
(45) is replaced with arctan (10⋅).

With respect to the fuzzy logic systems, its input variable
is chosen as the synchronization error 𝑒𝑖(𝑡). For each input, we
give seven Gaussian membership functions on [−5 5]. The
parameters of the proposedmembership functions, which are



Advances in Mathematical Physics 7

Table 1: Fuzzy parameters.

Membership functions Parameter 𝑏 Parameter 𝑎
Membership function 1 1 −5
Membership function 2 0.8 −2
Membership function 3 0.2 −0.3
Membership function 4 0.09 0
Membership function 5 0.2 0.3
Membership function 6 0.8 2
Membership function 7 1 5
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Figure 2: Chaotic dynamic of the FONN (19) in (a) 3D space; (b) 𝑥1-𝑥2 plane; (c) 𝑥1-𝑥3 plane; (d) 𝑥2-𝑥3 plane.

defined as 𝑒−(𝑒𝑖(𝑡)−𝑎)2/2𝑏2 , are given in Table 1. These functions
are depicted in Figure 3. The initial conditions of the fuzzy
parameters are given as 𝜗1(0) = 𝜗2(0) = 𝜗3(0) = 0 ∈ R343.

The simulation results are depicted in Figures 4–6. The
results that the signals 𝑥1(𝑡), 𝑥2(𝑡), and 𝑥3(𝑡), respectively,
track 𝑦1(𝑡), 𝑦2(𝑡), and 𝑦3(𝑡), as well as the time response
of the synchronization errors are presented in Figure 4.
The smoothness and the boundedness of the control inputs
are given in Figure 5. The fuzzy parameters, which can
be concluded to be bounded according to the proposed
adaptation law (46), are shown in Figure 6. From these figures
one knows that the proposed controller works well and has
good synchronization performance.

It is well known that the conventional systems usually suf-
fer from discontented performance resulting from modeled

errors, parametric uncertainties, input nonlinearities, and
external disturbances, because it is impossible to provide
accurate mathematical models of practical systems. These
system uncertainties can damage the control performance or
even lead to unstable of the controlled system if they are not
well handled. To show the robust of the proposedmethod, let
us consider the condition that the master system (19) suffers
from time-varying system parameters and uncertainties.
Suppose that the model of the master FONN (19) is replaced
with

D
𝑞𝑥 (𝑡) = Δ𝐴𝑥 (𝑡) + 𝐵𝑓 (𝑥 (𝑡)) + Δ𝐶𝜉 (𝑡) + 𝐼, (55)

where Δ𝐴 = 𝐴 + 𝐴 ∈ R𝑛 × 𝑛, Δ𝐶 ∈ R𝑛×𝑚, and 𝜉 ∈
R𝑚×𝑛 is an unknown external input signal. 𝐴 and 𝐶 are two
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Figure 4: Simulation results in (a) 𝑥1(𝑡) and 𝑦1(𝑡); (b) 𝑥2(𝑡) and 𝑦2(𝑡); (c) 𝑥3(𝑡) and 𝑦3(𝑡); (d) synchronization errors.
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Figure 6: Fuzzy parameters.

unknown matrices. That is, 𝐴 represents unknown system
parameter perturbations, andΔ𝐶𝜉(𝑡) denotes unknown input
nonlinearities.

For convenience, let us suppose that [𝐴, 𝐶] = 𝑁1𝐷(𝑡)[𝑁2,𝑁3], where 𝑁1 ∈ R𝑛×𝑔, 𝑁2 ∈ R𝑔×𝑛 and 𝑁3 ∈ R𝑔×𝑚

are known matrices, and 𝐷(𝑡) ∈ R𝑔×𝑔 is an unknown
matrix.

In the simulation, let 𝑁1 = [ 0.1 00 0.1
0.1 0.1

], 𝑁2 = [ 0.1 0.1 00.1 0.2 0.1 ],𝑁3 = [ 0.1 0 0.10.1 0.1 0 ], and 𝐷(𝑡) = [ 0.2 sin 𝑡 00 0.2 cos 𝑡 ]. It is easy to
know that 𝐴 and Δ𝐶𝜉(𝑡) are time-varying matrices.

The simulations are presented in Figure 7. It should
be pointed out that, in the simulation, the slave system
and the controller are chosen to be the same as those in
Section 4.1. From the simulation results we can see that good
synchronization performance has been achieved even the
master system suffers from time-varying parameters and
input nonlinearities. That is, the proposed method has good
robustness.

To indicate the effectiveness of our methods, the simula-
tion results when 𝜉(𝑡) = −[2sin(10𝑡) + 15rand(𝑡), 2 cos(10𝑡) +
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Figure 7: Simulation results when 𝑢(𝑡) = [5 sin(20𝑡), 3 cos(20𝑡), 4 sin(10𝑡)]𝑇 in (a) 𝑥1(𝑡) and 𝑥1(𝑡); (b) 𝑥2(𝑡) and 𝑥2(𝑡); (c) 𝑥3(𝑡) and 𝑥3(𝑡); (d)
synchronization errors.

20rand(𝑡), 2 sin(5𝑡)+18rand(𝑡)]𝑇where rand(⋅) represents the
random function produced in MATLAB software are shown
in Figure 8.

5. Conclusions

In this paper, an synchronization method was proposed
for a class of FONNs subject to backlash-like hysteresis by
means of adaptive fuzzy control. We showed that fuzzy logic
systems can be employed to estimate nonlinear functions in
fractional-order nonlinear systems. Based on the fractional
stability theorems, an adaptive fuzzy synchronization con-
troller, which can guarantee the synchronization error tends
to an arbitrary small region of zero, was constructed. How to
combine the proposed method with other control method,
such as fractional-order sliding mode control, is one of our
future research directions.
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Figure 8: Simulation results when 𝜉(𝑡) = −[2 sin(10𝑡) + 15rand(𝑡); 2 cos(10𝑡) + 20rand(𝑡); 2 sin(5𝑡) + 18rand(𝑡)]𝑇 in (a) 𝑥1(𝑡) and 𝑦1(𝑡); (b)𝑥2(𝑡) and 𝑦2(𝑡); (c) 𝑥3(𝑡) and 𝑦3(𝑡); (d) synchronization errors.

References

[1] I. Podlubny, Fractional Differential Equations, vol. 198 ofMath-
ematics in Science and Engineering, Academic Press, San Diego,
Calif, USA, 1999.

[2] Y. Li, Y. Chen, and I. Podlubny, “Mittag-Leffler stability of
fractional order nonlinear dynamic systems,” Automatica, vol.
45, no. 8, pp. 1965–1969, 2009.

[3] H. Liu, S. Li, Y. Sun, and H. Wang, “Adaptive fuzzy synchro-
nization for uncertain fractional-order chaotic systems with
unknown non-symmetrical control gain,” Acta Physica Sinaca,
vol. 64, no. 7, Article ID 070503, 2015.

[4] N. Aguila-Camacho, M. A. Duarte-Mermoud, and J. A. Galle-
gos, “Lyapunov functions for fractional order systems,”Commu-
nications in Nonlinear Science andNumerical Simulation, vol. 19,
no. 9, pp. 2951–2957, 2014.

[5] H. Liu, S. Li, H. Wang, Y. Huo, and J. Luo, “Adaptive synchro-
nization for a class of uncertain fractional-order neural net-
works,” Entropy. An International and Interdisciplinary Journal
of Entropy and Information Studies, vol. 17, no. 10, pp. 7185–7200,
2015.

[6] Y.WuandH. Lv, “Adaptive neural network backstepping control
for a class of uncertain fractional-order chaotic systems with
unknown backlash-like hysteresis,” AIP Advances, vol. 6, no. 8,
Article ID 085121, 2016.

[7] K. Nakkeeran, “Mathematical description of differential equa-
tion solving electrical circuits,” Journal of Circuits, Systems and
Computers, vol. 18, no. 5, pp. 985–991, 2009.

[8] H. Liu, S. Li, J. D. Cao, A. G. Alsaedi, and F. E. Alsaadi,
“Adaptive fuzzy prescribed performance controller design for
a class of uncertain fractional-order nonlinear systems with
external disturbances,” Neurocomputing, vol. 219, pp. 422–430,
2017.



12 Advances in Mathematical Physics

[9] C. Volos, V.-T. Pham, E. Zambrano-Serrano, J. M. Munoz-
Pacheco, S. Vaidyanathan, and E. Tlelo-Cuautle, “Analysis of a
4-D hyperchaotic fractional-order memristive systemwith hid-
den attractors,” in Advances in Memristors, Memristive Devices
and Systems, vol. 701, pp. 207–235, Springer, 2017.

[10] Z.-Y. Sun, P. G. Kevrekidis, X. Yu, and K. Nakkeeran, “The-
oretical and computational advances in nonlinear dynamical
systems,”Advances inMathematical Physics, Article ID 3925964,
Art. ID 3925964, 3 pages, 2017.
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