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We apply the (𝐺󸀠/𝐺2)-expansion method to construct exact solutions of three interesting problems in physics and nanobiosciences
which are modeled by nonlinear partial differential equations (NPDEs). The problems to which we want to obtain exact solutions
consist of the Benny-Luke equation, the equation of nanoionic currents along microtubules, and the generalized Hirota-Satsuma
coupled KdV system.The obtained exact solutions of the problems via using the method are categorized into three types including
trigonometric solutions, exponential solutions, and rational solutions. The applications of the method are simple, efficient, and
reliable by means of using a symbolically computational package. Applying the proposed method to the problems, we have some
innovative exact solutions which are different from the ones obtained using other methods employed previously.

1. Introduction

Various phenomena such as shallow water waves and multi-
cellular biological dynamics arising in the nonlinear physical
sciences [1, 2], engineering [3, 4], and biology [5] can bemod-
eled by a class of integrable nonlinear evolution equations
which can be expressed in terms of nonlinear partial differen-
tial equations (NPDEs) of integer orders. Consequently, study
of traveling wave solutions of NPDEs plays a significant role
in the investigation of behaviors of nonlinear phenomena.
Due to the efficiency, reliability, and easy use of symbolic soft-
ware packages such asMaple orMathematica,many powerful
methods have been constructed and developed to analytically
solve NPDEs with their aid. Over the last few decades, exact
solutions, analytical approximate solutions, and numerical
solutions of many NPDEs have been successfully obtained.
The methods for obtaining exact explicit solutions of NPDEs
are, for example, the (𝐺󸀠/𝐺)-expansion method [6–8], the(𝐺󸀠/𝐺, 1/𝐺)-expansion method [9–11], the novel (𝐺󸀠/𝐺)-
expansion method [12], the tanh-function method [13], the
exp-function method [14, 15], the F-expansion method [16],

Hirota’s direct method [17, 18], Kudryashov method [19, 20],
and the extended auxiliary equation method [21]. Examples
of themethods for obtaining analytical approximate solutions
toNPDEs are the variational iterationmethod [22, 23] (VIM),
the Adomian decomposition method [24, 25] (ADM), the
homotopy perturbation method [26, 27] (HPM), and the
reduced differential transform method [28]. In addition, the
examples of useful methods for solving NPDEs numerically
are the generalized finite difference method [29], the finite
volumemethod [30], the finite elementmethod [31], the spec-
tral collocation method [32], and the Galerkin finite element
method [33]. However, we prefer, if possible, to obtain exact
solutions of NPDEs.

In the recent decades, applications of the (𝐺󸀠/𝐺2)-
expansion method for solving NPDEs have been proposed in
various areas of applied sciences and engineering. For exam-
ple, Chen [34] gave the application of the (𝐺󸀠/𝐺2)-expansion
method for seeking exact solutions of the coupled nonlinear
Klein-Gordon equation. Wen-An et al. [35] demonstrated
the use of the (𝑤/𝑔)-expansion method for finding traveling
wave solutions of a nonlinear evolution equation. Zayed and
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Arnous [36] investigated the use of the modified (𝑤/𝑔)-
expansion method for finding traveling wave solutions of
nonlinear evolution equations. The modified method can
be thought as the generalization of the well-known (𝐺󸀠/𝐺)-
expansion method introduced in [37] with the special func-
tions 𝑤 and 𝑔 including the case of 𝑤 = 𝐺󸀠 and 𝑔 = 𝐺2. In
particular, Wen-An et al. [35] applied the modified method,
i.e., the (𝐺󸀠/𝐺2)-expansion method, to find the traveling
wave solutions of the Vakhnenko equation. Zhouzheng [38]
applied the (𝐺󸀠/𝐺2)-expansion method to obtain the exact
solutions of the modified Benjamin-Bona-Mahony (MBBM)
and Ostrovsky-Benjamin-Bona-Mahony (OBBM) equations.
They found that the explicit exact solutions of the equations
obtained by the method are in terms of some trigonometric,
hyperbolic, and rational functions. Gepreel [39] employed
the extended rational (𝐺󸀠/𝐺2)-expansion method to obtain
traveling wave solutions of the first equation of two integral
members of nonlinear Kadomtsev-Petviashvili (KP) hierar-
chy equations in mathematical physics. Mohyud-Din and
Bibi [40] used the (𝐺󸀠/𝐺2)-expansion method along with
the fractional complex transform to analytically solve the
space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-
Mahony (ZKBBM) and the space-time fractional coupled
Burgers equations for innovative exact solutions. Their exact
solutions include trigonometric, hyperbolic, and rational
function solutions, while Zhang et al. [41] proposed the use of
the (𝐺󸀠/𝐺2)-expansion method for solving the Schrödinger
equation with third-order dispersion.

The rest of this article is organized as follows. In Section 2,
the brief description of the (𝐺󸀠/𝐺2)-expansion method is
given. In Section 3, we apply the method to some real world
problems modeled by NPDEs in order to obtain their exact
solutions. Finally, the conclusions are drawn in Section 4.

2. Algorithm of the(𝐺󸀠/𝐺2)-Expansion Method

In this section, we provide the description of the (𝐺󸀠/𝐺2)-
expansion method which is discussed in [34, 40]. Consider
a nonlinear evolution partial differential equation (NEPDE)
in two independent variables 𝑥 and 𝑡 as follows:

𝑃 (𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑡𝑡, 𝑢𝑥𝑥, 𝑢𝑥𝑡, . . .) = 0, (1)

where 𝑢 = 𝑢(𝑥, 𝑡) is an unknown function of independent
variables 𝑥, 𝑡 and 𝑃 is a polynomial of 𝑢 and its various
partial derivatives in which the highest order derivatives and
nonlinear terms are involved.

Themain steps of the method to obtain exact solutions of
NPDEs can be given as follows [42, 43].

Step 1. Convert a nonlinear partial differential equation in
(1) into an ordinary differential equation (ODE) using the
traveling wave transformation in a variable 𝜉 as follows:

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) ,𝜉 = 𝑘𝑥 − 𝑐𝑡, (2)

where 𝑘 and 𝑐 are nonzero arbitrary constants. It can be noted
that another transform 𝜉 = 𝑘(𝑥 − 𝑐𝑡) can be sometimes used
for some certain problems. With the transformation in (2)
and integrations with respect to 𝜉 as many as possible, (1) is
reduced to an ODE in 𝑈 = 𝑈(𝜉) as follows:

𝑄(𝑈,𝑈󸀠, 𝑈󸀠󸀠, 𝑈󸀠󸀠󸀠, . . .) = 0, (3)

where 𝑄 is a polynomial of 𝑈(𝜉) and its various derivatives.
The prime notation (󸀠) denotes the derivative with respect to𝜉.
Step 2. Suppose that the formal solution of the ODE in (3)
can be expressed in powers of (𝐺󸀠/𝐺2) as follows:

𝑈 (𝜉) = 𝑎0 + 𝑁∑
𝑗=1

[𝑎𝑗 (𝐺󸀠𝐺2)
𝑗 + 𝑏𝑗 (𝐺󸀠𝐺2)

−𝑗] , (4)

where 𝐺 = 𝐺(𝜉) satisfies the following nonlinear ODE:
(𝐺󸀠𝐺2)

󸀠 = 𝜇 + 𝜆(𝐺󸀠𝐺2)
2 , (5)

in which 𝜇 ̸= 1 and 𝜆 ̸= 0 are integers. The unknown con-
stants 𝑎𝑁 or 𝑏𝑁may be zero, but both of them cannot be zero
simultaneously. The coefficients 𝑎0, 𝑎𝑗, 𝑏𝑗 (𝑗 = 1, 2, . . . , 𝑁)
are unknown constants to be determined at a later step.

Step 3. The value of the positive integer𝑁 can be determined
using the homogeneous balance principle, i.e., by balancing
between the highest order derivatives and the nonlinear
terms occurring in (3). More precisely, if the degree of 𝑈(𝜉)
is deg [𝑈(𝜉)] = 𝑁, then the degree of the other terms will be
expressed as follows:

deg [𝑑𝑞𝑈 (𝜉)𝑑𝜉𝑞 ] = 𝑁 + 𝑞,
deg [(𝑈 (𝜉))𝑝 (𝑑𝑞𝑈 (𝜉)𝑑𝜉𝑞 )𝑠] = 𝑁𝑝 + 𝑠 (𝑁 + 𝑞) . (6)

Step 4. Substituting (4) along with (5) into (3), we obtain
a polynomial in (𝐺󸀠/𝐺2). Collecting all coefficients of like-
power of (𝐺󸀠/𝐺2)𝑘 (𝑘 = 0, ±1, ±2, . . . , ±𝑀, where𝑀 is some
positive integer) and setting all of the obtained coefficients to
zero, we acquire a system of nonlinear algebraic equations for
the unknown constants 𝑎0, 𝑎𝑗, 𝑏𝑗 (𝑗 = 1, 2, . . . , 𝑁), 𝑘, and 𝑐.
Assume that the resulting algebraic equations can be solved
for the unknown constants using symbolic software packages
such as Maple.

Step 5. Thegeneral solutions of (5) can be categorized into the
following three cases when 𝐶, 𝐷 are arbitrary nonzero con-
stants.

If 𝜇𝜆 > 0, then we obtain the general solution

𝐺󸀠𝐺2 = √𝜇𝜆 (𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉)) . (7)
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If 𝜇𝜆 < 0, then we obtain the general solution

𝐺󸀠𝐺2 = 12𝜆 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨 − 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 ) , (8)

which is equivalent to

𝐺󸀠𝐺2
= −√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝜆 (𝐶 sinh (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝜉) + 𝐶 cosh (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝜉) + 𝐷

𝐶 sinh (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝜉) + 𝐶 cosh (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝜉) − 𝐷) . (9)

If 𝜇 = 0 and 𝜆 ̸= 0, then we obtain the general solution

𝐺󸀠𝐺2 = − 𝐶𝜆 (𝐶𝜉 + 𝐷) . (10)

The explicit exact solutions of (1) can be obtained by inserting
the values of 𝑎0, 𝑎𝑗, 𝑏𝑗 (𝑗 = 1, 2, . . . , 𝑁), 𝑘, 𝑐 and the
solutions in (7)-(10) into (4) with the transformation in (2).

3. Applications of the(𝐺󸀠/𝐺2)-Expansion Method

In this section, we will demonstrate the use of the (𝐺󸀠/𝐺2)-
expansion method on three of the interesting problems in
mathematical physics.

3.1. The Benney-Luke Equation. In this section, we will pro-
vide a use of the (𝐺󸀠/𝐺2)-expansionmethod for seeking exact
solitarywave solutions of the Benney-Luke equation, which is
used to approximate the full water wave equations and appro-
priately described two-way water wave propagation with
surface tension. The equation can be written in the following
form [44, 45]:𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝛼𝑢𝑥𝑥𝑥𝑥 − 𝛽𝑢𝑥𝑥𝑡𝑡 + 𝑢𝑡𝑢𝑥𝑥 + 2𝑢𝑥𝑢𝑥𝑡 = 0, (11)

where 𝛼, 𝛽 are the positive integers such that their difference
is in terms of the inverse bond number capturing the effects
of gravity forces and surface tension.

Using the traveling wave transformation 𝜉 = 𝑘𝑥 − 𝑐𝑡, (11)
is converted into the followingODE in the variable𝑈 = 𝑈(𝜉):

(𝑐2 − 𝑘2)𝑈󸀠󸀠 + (𝛼𝑘4 − 𝛽𝑘2𝑐2)𝑈(4) − 3𝑐𝑘2𝑈󸀠𝑈󸀠󸀠 = 0. (12)

Integrating (12) with respect to 𝜉 once and then choosing the
constant of integration to be zero, we obtain the following
ODE:

2 (𝑐2 − 𝑘2)𝑈󸀠 + 2 (𝛼𝑘4 − 𝛽𝑘2𝑐2)𝑈󸀠󸀠󸀠 − 3𝑐𝑘2 (𝑈󸀠)2
= 0, (13)

for which the homogeneous balance principle is applied. Fol-
lowing Step 3 of the mentioned method, the highest order
derivative 𝑈󸀠󸀠󸀠 and the nonlinear term of the highest order(𝑈󸀠)2 are balanced via using formula (6) as follows:

deg [𝑈󸀠󸀠󸀠] = 𝑁 + 3 = deg [(𝑈󸀠)2] = 2 (𝑁 + 1) , (14)

which leads to 𝑁 = 1. Hence, the form of exact solutions of
the ODE in (13) using the (𝐺󸀠/𝐺2)-expansion method can be
expressed as

𝑈 (𝜉) = 𝑎0 + 𝑎1 (𝐺󸀠𝐺2) + 𝑏1 (𝐺󸀠𝐺2)
−1 , (15)

where 𝑎0, 𝑎1, 𝑏1 are unknown constants. Substituting (15)
into (13) along with (5), then collecting all the coefficients
with the same power of (𝐺󸀠/𝐺2)𝑖, (𝑖 = 0, ±1, ±2, . . .),
and finally setting these resulting coefficients to be zero,
we consequently obtain the following system of algebraic
equations in 𝑎0, 𝑎1, 𝑏1, 𝑘, 𝑐, 𝜇, 𝜆, 𝛼, 𝛽:
(𝐺󸀠𝐺2)

−4

: − 12𝛼𝑘4𝜇3𝑏1 + 12𝛽𝑐2𝑘2𝜇3𝑏1
− 3𝑐𝑘2𝜇2𝑏21 = 0,

(𝐺󸀠𝐺2)
−2

: − 16𝛼𝑘4𝜆𝜇2𝑏1 + 16𝛽𝑐2𝑘2𝜆𝜇2𝑏1
− 6𝑐𝑘2𝜆𝜇𝑏21 + 6𝑐𝑘2𝜇2𝑎1𝑏1 − 2𝑐2𝜇𝑏1 + 2𝑘2𝜇𝑏1 = 0,

(𝐺󸀠𝐺2)
0

: − 4𝛼𝑘4𝜆2𝜇𝑏1 + 4𝛼𝑘4𝜆𝜇2𝑎1 + 4𝛽𝑐2𝑘2𝜆2𝜇𝑏1
− 4𝛽𝑐2𝑘2𝜆𝜇2𝑎1 − 3𝑐𝑘2𝜆2𝑏21 + 12𝑐𝑘2𝜆𝜇𝑎1𝑏1− 3𝑐𝑘2𝜇2𝑎21 − 2𝑐2𝜆𝑏1 + 2𝑐2𝜇𝑎1 + 2𝑘2𝜆𝑏1− 2𝑘2𝜇𝑎1 = 0,

(𝐺󸀠𝐺2)
2

: 16𝛼𝑘4𝜆2𝜇𝑎1 − 16𝛽𝑐2𝑘2𝜆2𝜇𝑎1 + 6𝑐𝑘2𝜆2𝑎1𝑏1
− 6𝑐𝑘2𝜆𝜇𝑎21 + 2𝑐2𝜆𝑎1 − 2𝑘2𝜆𝑎1 = 0,

(𝐺󸀠𝐺2)
4

: 12𝛼𝑘4𝜆3𝑎1 − 12𝛽𝑐2𝑘2𝜆3𝑎1 − 3𝑐𝑘2𝜆2𝑎21 = 0.

(16)

Solving the obtained algebraic system (16) by use of Maple,
we get the following three cases.

Case 1. 𝑎0 = 𝑎0,𝑎1 = 0,
𝑏1 = ∓ 4𝑘 (𝛼 − 𝛽) 𝜇√4𝛼𝑘2𝜆𝜇 + 1√4𝛽𝑘2𝜆𝜇 + 1 ,
𝑘 = 𝑘,
𝑐 = ±√4𝛼𝑘2𝜆𝜇 + 1𝑘√4𝛽𝑘2𝜆𝜇 + 1 ,

(17)

where 𝑎0, 𝑘, 𝛼, 𝛽, 𝜇, 𝜆 are arbitrary constants.
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Case 2. 𝑎0 = 𝑎0,
𝑎1 = ± 4𝑘 (𝛼 − 𝛽) 𝜆√4𝛼𝑘2𝜆𝜇 + 1√4𝛽𝑘2𝜆𝜇 + 1 ,
𝑏1 = 0,𝑘 = 𝑘,
𝑐 = ±√4𝛼𝑘2𝜆𝜇 + 1𝑘√4𝛽𝑘2𝜆𝜇 + 1 ,

(18)

where 𝑎0, 𝑘, 𝛼, 𝛽, 𝜇, 𝜆 are arbitrary constants.

Case 3. 𝑎0 = 𝑎0,
𝑎1 = ± 4𝑘 (𝛼 − 𝛽) 𝜆√16𝛼𝑘2𝜆𝜇 + 1√16𝛽𝑘2𝜆𝜇 + 1 ,

𝑏1 = ∓ 4𝑘 (𝛼 − 𝛽) 𝜇√16𝛼𝑘2𝜆𝜇 + 1√16𝛽𝑘2𝜆𝜇 + 1 ,
𝑘 = 𝑘,
𝑐 = ±√16𝛼𝑘2𝜆𝜇 + 1𝑘√16𝛽𝑘2𝜆𝜇 + 1 ,

(19)

where 𝑎0, 𝑘, 𝛼, 𝛽, 𝜇, 𝜆 are arbitrary constants.
When we substitute the above three cases of the obtained

parameters along with the functions 𝐺󸀠/𝐺2 specified in (7)-
(10) into the solution form (15), we can write three results of
solutions of (11) as follows.

Result 1. From Case 1 in (17), we have 𝜉 = 𝑘𝑥 ∓(√4𝛼𝑘2𝜆𝜇 + 1𝑘/√4𝛽𝑘2𝜆𝜇 + 1)𝑡 and the following exact solu-
tions.

When 𝜇𝜆 > 0, the trigonometric function solution
corresponding to the parameter values in Case 1 can be writ-
ten as

𝑢11 (𝑥, 𝑡) = 𝑎0 ∓ 4𝑘 (𝛼 − 𝛽)√𝜇𝜆√4𝛼𝑘2𝜆𝜇 + 1√4𝛽𝑘2𝜆𝜇 + 1 (
𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))

−1 . (20)

When 𝜇𝜆 < 0, the exponential function solution associ-
ated with the parameter values in Case 1 can be expressed as

𝑢12 (𝑥, 𝑡) = 𝑎0 ∓ 8𝑘 (𝛼 − 𝛽) 𝜇𝜆√4𝛼𝑘2𝜆𝜇 + 1√4𝛽𝑘2𝜆𝜇 + 1 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨
− 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )

−1

.
(21)

When 𝜇 = 0, 𝜆 ̸= 0, the exact solution corresponding to
the parameter values in Case 1 is 𝑢13(𝑥, 𝑡) = 𝑎0, which is the
constant solution.

Result 2. From Case 2 in (18), we have 𝜉 = 𝑘𝑥 ∓(√4𝛼𝑘2𝜆𝜇 + 1𝑘/√4𝛽𝑘2𝜆𝜇 + 1)𝑡 and the following exact solu-
tions.

When 𝜇𝜆 > 0, the trigonometric function solution cor-
responding to the parameter values in Case 2 can be written
as

𝑢21 (𝑥, 𝑡) = 𝑎0 ± 4𝑘 (𝛼 − 𝛽)√𝜇𝜆√4𝛼𝑘2𝜆𝜇 + 1√4𝛽𝑘2𝜆𝜇 + 1 (
𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉)) . (22)

When 𝜇𝜆 < 0, the exponential function solution associ-
ated with the parameter values in Case 2 can be expressed as

𝑢22 (𝑥, 𝑡) = 𝑎0
± 2𝑘 (𝛼 − 𝛽)√4𝛼𝑘2𝜆𝜇 + 1√4𝛽𝑘2𝜆𝜇 + 1 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨
− 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 ) .

(23)

When 𝜇 = 0, 𝜆 ̸= 0, the rational function solution cor-
responding to the parameter values inCase 2 can be expressed
as 𝑢23 (𝑥, 𝑡) = 𝑎0 ∓ 4𝑘 (𝛼 − 𝛽) ( 𝐶𝐶𝜉 + 𝐷) , (24)

for which the traveling wave transformation for this case is𝜉 = 𝑘(𝑥 ∓ 𝑡).
Result 3. From Case 3 in (19), we have 𝜉 = 𝑘𝑥 ∓(√16𝛼𝑘2𝜆𝜇 + 1𝑘/√16𝛽𝑘2𝜆𝜇 + 1)𝑡 and the following exact
solutions.
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When 𝜇𝜆 > 0, the trigonometric function solution corre-
sponding to the parameter values in Case 3 can be written as

𝑢31 (𝑥, 𝑡) = 𝑎0 ± 4𝑘 (𝛼 − 𝛽)√𝜇𝜆√16𝛼𝑘2𝜆𝜇 + 1√16𝛽𝑘2𝜆𝜇 + 1 (
𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))

∓ 4𝑘 (𝛼 − 𝛽)√𝜇𝜆√16𝛼𝑘2𝜆𝜇 + 1√16𝛽𝑘2𝜆𝜇 + 1 (
𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))

−1 .
(25)

When 𝜇𝜆 < 0, the exponential function solution associ-
ated with the parameter values in Case 3 can be expressed as

𝑢32 (𝑥, 𝑡) = 𝑎0
± 2𝑘 (𝛼 − 𝛽)√16𝛼𝑘2𝜆𝜇 + 1√16𝛽𝑘2𝜆𝜇 + 1 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨
− 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )
∓ 8𝑘 (𝛼 − 𝛽) 𝜇𝜆√16𝛼𝑘2𝜆𝜇 + 1√16𝛽𝑘2𝜆𝜇 + 1 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨
− 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )

−1

.

(26)

When 𝜇 = 0, 𝜆 ̸= 0, the rational function solution cor-
responding to the parameter values inCase 3 can be expressed
as

𝑢33 (𝑥, 𝑡) = 𝑎0 ∓ 4𝑘 (𝛼 − 𝛽)𝐶𝐶𝜉 + 𝐷 , (27)

for which the traveling wave transformation for this case is𝜉 = 𝑘(𝑥 ∓ 𝑡).
Akter and Akbar [44] utilized the modified simple equa-

tion method to obtain exact solutions of (11) which were
written as fractions of exponential functions. They can be
transformed into the tanh and coth functions for which the
arbitrary constants are selected appropriately as shown in
their paper. Islam et al. [45] demonstrated the application
of the improved 𝐹-expansion method with Riccati equation
to obtain exact traveling wave solutions of (11). Their results
were expressed in terms of the following functions:

(i) tanh, coth, their reciprocals, and their summations
(ii) tan, cot, their reciprocals, and their summations
(iii) rational functions.

However, our obtained results in (20)-(27) are more
generalized than the ones described above; i.e., selecting the
appropriate constants 𝐶 and 𝐷 in our solutions can lead to
the solutions obtained by other existing methods mentioned
previously. Here we present the plots of the exact solution𝑢12(𝑥, 𝑡) in (21) with the positive formula using the following
parameter values: 𝛼 = 2, 𝛽 = 3, 𝑘 = 1, 𝑎0 = 1, 𝜇 = 0.5, 𝜆 =−1, 𝐶 = 𝐷 = 1.The three-dimensional and two-dimensional
plots of this solution are portrayed in Figure 1 demonstrating
the solitary wave solution of kink type.

3.2. Equation of Nanoionic Currents along Microtubules. In
this section, we will show an application of the (𝐺󸀠/𝐺2)-ex-
pansion method in nanobiosciences. One of the important
models in such fields is the nonlinear transmission linemodel
for nanoionic currents along microtubules (MTs) segmented
into identical elementary rings (ERs). The model is playing
an important role in cellular signalling and the elaborated
details of derivation of the equation can be found in [46, 47].
The equation of nanoionic currents alongMTs is described as
follows [47]:

𝑙23 𝑢𝑥𝑥𝑥 + 𝑍3/2𝑙 (𝑤𝐺0 − 2𝛿𝐶0) 𝑢𝑢𝑡 + 2𝑢𝑥 + 𝑍𝐶0𝑙 𝑢𝑡
+ 1𝑙 (𝑅𝑍−1 − 𝐺0𝑍) 𝑢 = 0, (28)

where𝑅 = 0.34×109 Ω is the resistance of the ERwith length𝑙 = 8×10−9 m, 𝐶0 = 1.8×10−15 F is the total maximal capaci-
tance of the ER,𝐺0 = 1.1×10−13 Si is conductance of pertain-
ing nanopores (NPs), and𝑍 = 5.56 × 1010 Ω is the character-
istic impedance of the system. Parameters 𝜔 and 𝛿 represent
conductance of NPs in ER and nonlinearity of ER capacitor,
respectively.

Using the dimensionless wave variable 𝜉 = (1/𝑙)𝑥−(𝑐/𝜏)𝑡,
where 𝑐 is the dimensionless velocity of wave and 𝜏 = 𝑅𝐶0 =0.6×10−6 s is the characteristic time of charging ER capacitor,
we obtain the traveling wave transformation 𝑢(𝑥, 𝑡) = 𝑈(𝜉)
and then (28) is converted to the following new ODE:

𝑈󸀠󸀠󸀠 + 𝛼𝑐𝑈𝑈󸀠 + (6 − 𝛽𝑐)𝑈󸀠 + 𝛾𝑈 = 0, (29)

where 𝛼 = (3𝑍3/2/𝜏)(2𝛿𝐶0 − 𝑤𝐺0), 𝛽 = 3𝑍𝐶0/𝜏, and 𝛾 =3(𝑅𝑍−1 − 𝐺0𝑍).
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Figure 1: The solitary wave solutions of kink type for 𝑢12(𝑥, 𝑡) in (21) when 𝛼 = 2, 𝛽 = 3, 𝑘 = 1, 𝑎0 = 1, 𝜇 = 0.5, 𝜆 = −1, and 𝐶 = 𝐷 = 1.

Balancing between the highest order derivative 𝑈󸀠󸀠󸀠 and
the nonlinear term of the highest order𝑈𝑈󸀠 by using formula
(6), we obtain

deg [𝑈󸀠󸀠󸀠] = 𝑁 + 3 = deg [𝑈𝑈󸀠] = 2𝑁 + 1 󳨐⇒
𝑁 = 2. (30)

Thus, the form of exact solutions of (29) using the(𝐺󸀠/𝐺2)-expansion method can be expressed as

𝑈 (𝜉) = 𝑎0 + 𝑎1 (𝐺󸀠𝐺2) + 𝑎2 (𝐺󸀠𝐺2)
2 + 𝑏1 (𝐺󸀠𝐺2)

−1

+ 𝑏2 (𝐺󸀠𝐺2)
−2 , (31)

where 𝑎0, 𝑎1, 𝑎2, 𝑏1, 𝑏2 are unknown constants. Substituting
(31) into (29) alongwith (5), then collecting all the coefficients
with the same power of (𝐺󸀠/𝐺2)𝑖, (𝑖 = 0, ±1, ±2, . . .), and
finally setting these resulting coefficients to be zero, we con-
sequently obtain the following system of algebraic equations
in 𝑎0, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐, 𝜇, 𝜆, 𝛼, 𝛽, 𝛾:

(𝐺󸀠𝐺2)
−5

: − 2𝛼𝑐𝜇𝑏22 − 24𝜇3𝑏2 = 0,
(𝐺󸀠𝐺2)

−4

: − 3𝛼𝑐𝜇𝑏1𝑏2 − 6𝜇3𝑏1 = 0,
(𝐺󸀠𝐺2)

−3

: − 2𝛼𝑐𝜆𝑏22 − 2𝛼𝑐𝜇𝑎0𝑏2 − 𝛼𝑐𝜇𝑏21 + 2𝛽𝑐𝜇𝑏2

− 40𝜆𝜇2𝑏2 − 12𝜇𝑏2 = 0,
(𝐺󸀠𝐺2)

−2

: − 3𝛼𝑐𝜆𝑏1𝑏2 − 𝛼𝑐𝜇𝑎0𝑏1 − 𝛼𝑐𝜇𝑎1𝑏2 + 𝛽𝑐𝜇𝑏1
− 8𝜆𝜇2𝑏1 + 𝛾𝑏2 − 6𝜇𝑏1 = 0,

(𝐺󸀠𝐺2)
−1

: − 2𝛼𝑐𝜆𝑎0𝑏2 − 𝛼𝑐𝜆𝑏21 + 2𝛽𝑐𝜆𝑏2 − 16𝜆2𝜇𝑏2
+ 𝛾𝑏1 − 12𝜆𝑏2 = 0,

(𝐺󸀠𝐺2)
0

: − 𝛼𝑐𝜆𝑎0𝑏1 − 𝛼𝑐𝜆𝑎1𝑏2 + 𝛼𝑐𝜇𝑎0𝑎1 + 𝛼𝑐𝜇𝑎2𝑏1
+ 𝛽𝑐𝜆𝑏1 − 𝛽𝑐𝜇𝑎1 − 2𝜆2𝜇𝑏1 + 2𝜆𝜇2𝑎1 + 𝛾𝑎0 − 6𝜆𝑏1+ 6𝜇𝑎1 = 0,

(𝐺󸀠𝐺2)
1

: 2𝛼𝑐𝜇𝑎0𝑎2 + 𝛼𝑐𝜇𝑎21 − 2𝛽𝑐𝜇𝑎2 + 16𝜆𝜇2𝑎2
+ 𝛾𝑎1 + 12𝜇𝑎2 = 0,

(𝐺󸀠𝐺2)
2

: 𝛼𝑐𝜆𝑎0𝑎1 + 𝛼𝑐𝜆𝑎2𝑏1 + 3𝛼𝑐𝜇𝑎1𝑎2 − 𝛽𝑐𝜆𝑎1
+ 8𝜆2𝜇𝑎1 + 𝛾𝑎2 + 6𝜆𝑎1 = 0,

(𝐺󸀠𝐺2)
3

: 2𝛼𝑐𝜆𝑎0𝑎2 + 𝛼𝑐𝜆𝑎21 + 2𝛼𝑐𝜇𝑎22 − 2𝛽𝑐𝜆𝑎2
+ 40𝜆2𝜇𝑎2 + 12𝜆𝑎2 = 0,
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(𝐺󸀠𝐺2)
4

: 3𝛼𝑐𝜆𝑎1𝑎2 + 6𝜆3𝑎1 = 0,
(𝐺󸀠𝐺2)

5

: 2𝛼𝑐𝜆𝑎22 + 24𝜆3𝑎2 = 0.
(32)

Using Maple to solve algebraic system (32), we obtain the
following three cases.

Case 1.

𝑎0 = 𝛽𝑐 − 8𝜆𝜇 − 6𝛼𝑐 ,
𝑎1 = 0,𝑎2 = 0,𝑏1 = 0,
𝑏2 = −12𝜇2𝛼𝑐 ,
𝑐 = 𝑐,

(33)

with 𝑐 ̸= 0, 𝜇, 𝜆 which are arbitrary constants.

Case 2.

𝑎0 = 𝛽𝑐 − 8𝜆𝜇 − 6𝛼𝑐 ,
𝑎1 = 0,
𝑎2 = −12𝜆2𝛼𝑐 ,
𝑏1 = 0,𝑏2 = 0,𝑐 = 𝑐,

(34)

with 𝑐 ̸= 0, 𝜇, 𝜆 which are arbitrary constants.

Case 3.

𝑎0 = 𝛽𝑐 − 8𝜆𝜇 − 6𝛼𝑐 ,
𝑎1 = 0,
𝑎2 = −12𝜆2𝛼𝑐 ,
𝑏1 = 0,
𝑏2 = −12𝜇2𝛼𝑐 ,
𝑐 = 𝑐,

(35)

with 𝑐 ̸= 0, 𝜇, 𝜆 which are arbitrary constants.

Inserting the above three cases in (33)-(35) along with the
functions 𝐺󸀠/𝐺2 described in (7)-(10) into the solution form
(31), we attain three results of solutions of (28) as follows.

Result 1. Using parameter values of Case 1 in (33) and 𝜉 =(1/𝑙)𝑥 − (𝑐/𝜏)𝑡, we have the following exact solutions.
When 𝜇𝜆 > 0, the trigonometric function solution of (28)

can be written as𝑢11 (𝑥, 𝑡)
= 𝛽𝑐 − 8𝜇𝜆 − 6𝛼𝑐
− 12𝜇𝜆𝛼𝑐 (𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))

−2 .
(36)

When 𝜇𝜆 < 0, the exponential function solution of (28)
can be expressed as

𝑢12 (𝑥, 𝑡)
= 𝛽𝑐 − 8𝜇𝜆 − 6𝛼𝑐
− 48𝜇2𝜆2𝛼𝑐 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨 − 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )

−2

.
(37)

When 𝜇 = 0, 𝜆 ̸= 0, the exact solution of (28) is the
constant solution 𝑢13(𝑥, 𝑡) = (𝛽𝑐 − 6)/𝛼𝑐.
Result 2. Using parameter values of Case 2 in (34) and 𝜉 =(1/𝑙)𝑥 − (𝑐/𝜏)𝑡, we have the following exact solutions.

When 𝜇𝜆 > 0, the trigonometric function solution of (28)
can be written as𝑢21 (𝑥, 𝑡)

= 𝛽𝑐 − 8𝜇𝜆 − 6𝛼𝑐
− 12𝜇𝜆𝛼𝑐 (𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))

2 .
(38)

When 𝜇𝜆 < 0, the exponential function solution of (28)
can be expressed as

𝑢22 (𝑥, 𝑡) = 𝛽𝑐 − 8𝜇𝜆 − 6𝛼𝑐
− 3𝛼𝑐 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨 − 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )

2

. (39)

When 𝜇 = 0, 𝜆 ̸= 0, the rational function solution of (28)
can be expressed as

𝑢23 (𝑥, 𝑡) = 𝛽𝑐 − 6𝛼𝑐 − 12𝐶2𝛼𝑐 (𝐶𝜉 + 𝐷)2 . (40)
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Result 3. Using parameter values of Case 3 in (35) and 𝜉 =(1/𝑙)𝑥 − (𝑐/𝜏)𝑡, we have the following exact solutions.
When 𝜇𝜆 > 0, the trigonometric function solution of (28)

can be written as

𝑢31 (𝑥, 𝑡)
= 𝛽𝑐 − 8𝜇𝜆 − 6𝛼𝑐
− 12𝜇𝜆𝛼𝑐 (𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))

2

− 12𝜇𝜆𝛼𝑐 (𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))
−2 .

(41)

When 𝜇𝜆 < 0, the exponential function solution of (28)
can be expressed as

𝑢32 (𝑥, 𝑡)
= 𝛽𝑐 − 8𝜇𝜆 − 6𝛼𝑐
− 3𝛼𝑐 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨 − 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )

2

− 48𝜇2𝜆2𝛼𝑐 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨 − 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )
−2

.

(42)

When 𝜇 = 0, 𝜆 ̸= 0, the rational function solution of (28)
can be expressed as

𝑢33 (𝑥, 𝑡) = 𝛽𝑐 − 6𝛼𝑐 − 12𝐶2𝛼𝑐 (𝐶𝜉 + 𝐷)2 . (43)

Satarić et al. [46] firstly proposed model (28) and
obtained its analytical solution by converting (28) with the
change of variables and the use of the appropriate boundary
conditions into the solvable ODE in a new variable. The
analytical solution was expressed in terms of a square of
the exponential secant function. Later, Sekulić et al. [47]
applied themodified extended tanh-functionmethod to solve
(28) for exact traveling wave solutions. The solutions were
written as the square of the following functions: tan, cot, tanh,
and coth. It is not difficult to verify that the mathematical
structures of their exact solutions are the particular cases of
those of our solutions as shown in (36), (37), (38), (39), (41),
and (42). Meanwhile our rational function solutions do not
appear in their work. In addition, Zayed and Alurrfi [48]
utilized the (𝐺󸀠/𝐺, 1/𝐺)-expansion method to analytically
obtain the exact traveling wave solutions of problem (28).
Their solutions included the solitary wave solutions and
the periodic wave solutions when the appropriate values of
the parameters were particularly selected. Comparing the

mathematical structures of their specific solutions with our
obtained solutions, almost all of their specific solutions can
be obtained from our solutions. For instance, solutions (20),
(23), and (24) in their paper are structurally equivalent to the
hyperbolic form of the solution in (39) via using 𝐶 = 𝐷 = 1
and 𝐶 = 1, 𝐷 = −1. The trigonometric solution (28) in their
paper has the same mathematical structure as our solution in
(38) with 𝐶 = 𝐷 = 1 and 𝐶 = −1, 𝐷 = 1. Solutions (29),
(32), and (33) in their article can be equivalently transformed
to our solution in (38) by choosing 𝐶 = 0, 𝐷 = 1 and𝐶 = 1, 𝐷 = 0. Finally, rational solutions (36) and (37) in their
paper with 𝜉 of degree two in the denominators are struc-
turally equivalent to our rational solution in (40). Further-
more, the exact solutions in (41) and (42) can generate other
types of solutions different from the compared ones.

In [46, 47], they used the estimated dimensionless param-
eter 𝜎 = 1.67×102 and took 𝜎𝑐 = 2.5, 2𝛿−𝑤(𝐺0/𝐶0) = 0.1 for
plotting their solutions. Using the parameter values men-
tioned above and choosing 𝜇 = 0.5, 𝜆 = −1, 𝐶 = 1,𝐷 = −1,
we obtain the graphical representations of the exact traveling
wave solution 𝑢22(𝑥, 𝑡) in (39) as demonstrated in Figure 2
describing the soliton solution of bell-type. The obtained
three-dimensional graph shown in Figure 2(a) is similar to
their results.

3.3. The Generalized Hirota-Satsuma Coupled KdV System.
In 1982 Satsuma and Hirota proposed the new system of
equations which is called the generalized Hirota-Satsuma
coupled KdV system as follows [49]:

𝑈𝑡 = 14𝑈𝑥𝑥𝑥 + 3𝑈𝑈𝑥 + 3 (−𝑉2 +𝑊)
𝑥
,

𝑉𝑡 = −12𝑉𝑥𝑥𝑥 − 3𝑈𝑉𝑥,
𝑊𝑡 = −12𝑊𝑥𝑥𝑥 − 3𝑈𝑊𝑥.

(44)

The above system can be obtained from the four reductions of
KP hierarchy. In particular, the well-known Hirota-Satsuma
coupled KdV system [50], which was derived in 1981 by
Hirota and Satsuma to describe interactions of two long
waves with different dispersion relations, can be obtained by
setting 𝑊 = 0 in (44). We want to obtain traveling wave
solutions for system (44) which are in the following form:

𝑈 (𝑥, 𝑡) = 𝑢 (𝜉) ,𝑉 (𝑥, 𝑡) = V (𝜉) ,𝑊 (𝑥, 𝑡) = 𝑤 (𝜉) ,𝜉 = 𝑘 (𝑥 − 𝑐𝑡) ,
(45)

where 𝑘 and 𝑐 are nonzero arbitrary constants to be deter-
mined later. Substituting (45) into (44), we yield a system of
ODEs as follows:

−𝑐𝑘𝑢󸀠 = 14𝑘3𝑢󸀠󸀠󸀠 + 3𝑘𝑢𝑢󸀠 + 3𝑘 (−V2 + 𝑤)󸀠 , (46)
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Figure 2:The soliton solution of bell-type for 𝑢22(𝑥, 𝑡) in (39) when 𝛼 = 1.8×107, 𝛽 = 500.4, 𝑐 = 0.01497, 𝜇 = 0.5, 𝜆 = −1,𝐶 = 1, and𝐷 = −1.

−𝑐𝑘V󸀠 = −12𝑘3V󸀠󸀠󸀠 − 3𝑘𝑢V󸀠, (47)

−𝑐𝑘𝑤󸀠 = −12𝑘3𝑤󸀠󸀠󸀠 − 3𝑘𝑢𝑤󸀠. (48)

Let [51] 𝑢 = 𝛼V2 + 𝛽V + 𝛾,𝑤 = 𝐴V + 𝐵 (49)

where 𝛼, 𝛽, 𝛾, 𝐴, and 𝐵 are constants to be also determined
later.

Substituting (49) into (47) and (48) and then integrating
once, we know that (47) and (48) give the same equation as
follows: 𝑘2V󸀠󸀠 = −2𝛼V3 − 3𝛽V2 + 2 (𝑐 − 3𝛾) V + 𝑐1, (50)

where 𝑐1 is a constant of integration. Multiplying (50) by V󸀠
and then integrating the resulting equation with respect to 𝜉,
we obtain𝑘2 (V󸀠)2 = −𝛼V4 − 2𝛽V3 + 2 (𝑐 − 3𝛾) V2 + 2𝑐1V + 𝑐2, (51)

where 𝑐2 is also a constant of integration.
From (49)-(51), we obtain𝑘2𝑢󸀠󸀠 = 2𝛼𝑘2V󸀠2 + 𝑘2 (2𝛼V + 𝛽) V󸀠󸀠,
= 2𝛼 [−𝛼V4 − 2𝛽V3 + 2 (𝑐 − 3𝛾) V2 + 2𝑐1V + 𝑐2]
+ (2𝛼V + 𝛽) [−2𝛼V3 − 3𝛽V2 + 2 (𝑐 − 3𝛾) V + 𝑐1] .

(52)

Integrating (46) once, we get14𝑘2𝑢󸀠󸀠 + 32𝑢2 + 𝑐𝑢 + 3 (−V2 + 𝑤) + 𝑐3 = 0, (53)

where 𝑐3 is a constant of integration. Substituting (49) and
(52) into (53), we yield the following system:

3𝛼𝑐 − 3𝛼𝛾 + 34𝛽2 − 3 = 0,
12 (𝛼𝑐1 + 𝛽𝑐 + 𝛾𝛽) + 𝐴 = 0,

14 (2𝛼𝑐2 + 𝛽𝑐1) + 32𝛾2 + 𝑐𝛾 + 3𝐵 + 𝑐3 = 0.
(54)

Let 𝑐1 = 12𝛼2 (𝛽3 + 2𝑐𝛼𝛽 − 6𝛼𝛽𝛾) ,
V (𝜉) = 𝑎𝑃 (𝜉) − 𝛽2𝛼 .

(55)

We find from (54) that

𝛼 = 𝛽2 − 44 (𝛾 − 𝑐) ,
𝐴 = 4𝛽 (𝑐 − 𝛾)𝛽2 − 4 ,
𝐵 = 16 (−𝛾 + 𝑐) (𝛽2 − 4)2 (16𝑐3𝑐𝛽2 − 2𝑐3𝑐𝛽4

− 16𝑐3𝛾𝛽2 + 2𝑐3𝛾𝛽4 + 56𝑐2𝛾𝛽2 − 48𝛾2𝑐𝛽2 − 16𝑐2
+ 14𝑐2𝛽6 − 3𝑐2𝛽4 + 12𝑐2𝛽2 − 16𝛾2𝑐 − 32𝑐2𝛾− 8𝑐3𝛽2 + 𝛽4𝛾3 − 2𝛽4𝑐3 + 32𝑐3𝛾 − 32𝑐3𝑐 + 48𝛾3
+ 𝛽4𝛾2𝑐) .

(56)
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From (50), we therefore obtain

𝑎𝑘2𝑃󸀠󸀠 − 𝑎(2𝑐 − 6𝛾 + 3𝛽22𝛼 )𝑃 + 2𝛼𝑎3𝑃3 = 0. (57)

Applying the homogeneous balance principle and (6) men-
tioned in Step 3 to the terms 𝑃󸀠󸀠 and 𝑃3, we then have that

deg [𝑃󸀠󸀠] = 𝑁 + 2 = deg [𝑃3] = 3𝑁, (58)

which leads to 𝑁 = 1. Hence, the form of exact solutions of
the ordinary differential equation in (57) using the (𝐺󸀠/𝐺2)-
expansion method is

𝑃 (𝜉) = 𝑎0 + 𝑎1 (𝐺󸀠𝐺2) + 𝑏1 (𝐺󸀠𝐺2)
−1 , (59)

where 𝑎0, 𝑎1, 𝑏1 are unknown constants. Substituting (59)
into (57) along with (5), then collecting all the coefficients
with the same power of (𝐺󸀠/𝐺2)𝑖, (𝑖 = 0, ±1, ±2, . . .), and
finally setting these resulting coefficients to be zero, we con-
sequently attain the following system of algebraic equations
in 𝑎0, 𝑎1, 𝑏1, 𝑘, 𝑐, 𝑎, 𝛼, 𝛽, 𝛾:

(𝐺󸀠𝐺2)
−3

: 2𝛼𝑎3𝑏31 + 2𝑎𝑏1𝑘2𝜇2 = 0,
(𝐺󸀠𝐺2)

−2

: 6𝛼𝑎0𝑎3𝑏21 = 0,
(𝐺󸀠𝐺2)

−1

: 2𝑎𝑏1𝜇𝜆𝑘2 − 3𝑎𝑏1𝛽22𝛼 − 2𝑎𝑐𝑏1 + 6𝑎𝛾𝑏1
+ 6𝛼𝑏1𝑎3𝑎20 + 6𝛼𝑎1𝑎3𝑏21 = 0,

(𝐺󸀠𝐺2)
0

: − 3𝑎𝛽2𝑎02𝛼 − 2𝑎𝑐𝑎0 + 6𝑎𝛾𝑎0 + 2𝛼𝑎3𝑎30
+ 12𝛼𝑎3𝑎0𝑎1𝑏1 = 0,

(𝐺󸀠𝐺2)
1

: 2𝑘2𝑎𝑎1𝜆𝜇 − 3𝑎𝛽2𝑎12𝛼 − 2𝑎𝑐𝑎1 + 6𝑎𝛾𝑎1
+ 6𝛼𝑎3𝑎20𝑎1 + 6𝛼𝑎3𝑎21𝑏1 = 0,

(𝐺󸀠𝐺2)
2

: 6𝛼𝑎3𝑎0𝑎21 = 0,
(𝐺󸀠𝐺2)

3

: 2𝑎3𝛼𝑎31 + 2𝑎𝑘2𝜆2𝑎1 = 0.

(60)

By solving the nonlinear system in (60)withMaple, we obtain
the following cases.

Case 1. 𝑎0 = 0,𝑎1 = 0,
𝑏1 = ±√−1/𝛼𝜇𝑘𝑎 ,

𝑘 = 𝑘,
𝑐 = 14𝛼 (4𝑘2𝜆𝜇𝛼 + 12𝛼𝛾 − 3𝛽2) ,

(61)

where 𝑘, 𝑎 ̸= 0, 𝛽, 𝛾, 𝜇, 𝜆 are arbitrary constants, and 𝛼 ̸= 0 is
expressed in (56).

Case 2. 𝑎0 = 0,
𝑎1 = ±√−1/𝛼𝜆𝑘𝑎 ,
𝑏1 = 0,𝑘 = 𝑘,
𝑐 = 14𝛼 (4𝑘2𝜆𝜇𝛼 + 12𝛼𝛾 − 3𝛽2) ,

(62)

where 𝑘, 𝑎 ̸= 0, 𝛽, 𝛾, 𝜇, 𝜆 are arbitrary constants, and 𝛼 ̸= 0 is
expressed in (56).

Case 3. 𝑎0 = 0,
𝑎1 = ±√−1/𝛼𝜆𝑘𝑎 ,
𝑏1 = ±√−1/𝛼𝜇𝑘𝑎 ,
𝑘 = 𝑘,
𝑐 = 14𝛼 (−8𝑘2𝜆𝜇𝛼 + 12𝛼𝛾 − 3𝛽2) ,

(63)

where 𝑘, 𝑎 ̸= 0, 𝛽, 𝛾, 𝜇, 𝜆 are arbitrary constants, and 𝛼 ̸= 0 is
expressed in (56).

Case 4. 𝑎0 = 0,
𝑎1 = ±√−1/𝛼𝜆𝑘𝑎 ,
𝑏1 = ∓√−1/𝛼𝜇𝑘𝑎 ,
𝑘 = 𝑘,
𝑐 = 14𝛼 (16𝑘2𝜆𝜇𝛼 + 12𝛼𝛾 − 3𝛽2) ,

(64)

where 𝑘, 𝑎 ̸= 0, 𝛽, 𝛾, 𝜇, 𝜆 are arbitrary constants, and 𝛼 ̸= 0 is
expressed in (56).

Inserting the above four cases shown in (61)-(64) along
with the functions 𝐺󸀠/𝐺2 described in (7)-(10) into the
solution form (59), we obtain four results of solutions of
system (44) as follows.
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Result 1. Using parameter values specified in Case 1 as shown
in (61) and 𝜉 = 𝑘(𝑥− (1/4𝛼)(4𝑘2𝜆𝜇𝛼+12𝛼𝛾−3𝛽2)𝑡), we have
the following exact solutions.

When 𝜇𝜆 > 0, the trigonometric function solution of
system (44) can be written as

V11 (𝑥, 𝑡)
= ±𝑘√−𝜇𝜆𝛼 (𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))

−1

− 𝛽2𝛼 ,𝑢11 (𝑥, 𝑡) = 𝛼 (V11 (𝑥, 𝑡)) + 𝛽 (V11 (𝑥, 𝑡)) + 𝛾,
𝑤11 (𝑥, 𝑡) = 𝐴 (V11 (𝑥, 𝑡)) + 𝐵.

(65)

When 𝜇𝜆 < 0, the exponential function solution of
system (44) can be expressed as

V12 (𝑥, 𝑡)
= ±2𝜇𝜆𝑘√− 1𝛼 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨 − 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )

−1

− 𝛽2𝛼 ,𝑢12 (𝑥, 𝑡) = 𝛼 (V12 (𝑥, 𝑡)) + 𝛽 (V12 (𝑥, 𝑡)) + 𝛾,
𝑤12 (𝑥, 𝑡) = 𝐴 (V12 (𝑥, 𝑡)) + 𝐵.

(66)

When 𝜇 = 0, 𝜆 ̸= 0, the rational function solution of
system (44) can be written as

V13 (𝑥, 𝑡) = − 𝛽2𝛼 ,𝑢13 (𝑥, 𝑡) = 𝛼 (V13 (𝑥, 𝑡)) + 𝛽 (V13 (𝑥, 𝑡)) + 𝛾,
𝑤13 (𝑥, 𝑡) = 𝐴 (V13 (𝑥, 𝑡)) + 𝐵.

(67)

Result 2. Using parameter values specified in Case 2 as shown
in (62) and 𝜉 = 𝑘(𝑥−(1/4𝛼)(4𝑘2𝜆𝜇𝛼+12𝛼𝛾−3𝛽2)𝑡), we have
the following exact solutions.

When 𝜇𝜆 > 0, the trigonometric function solution of
system (44) can be written as

V21 (𝑥, 𝑡)
= ±𝑘√−𝜇𝜆𝛼 (𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))
− 𝛽2𝛼 ,𝑢21 (𝑥, 𝑡) = 𝛼 (V21 (𝑥, 𝑡)) + 𝛽 (V21 (𝑥, 𝑡)) + 𝛾,

𝑤21 (𝑥, 𝑡) = 𝐴 (V21 (𝑥, 𝑡)) + 𝐵.

(68)

When 𝜇𝜆 < 0, the exponential function solution of
system (44) can be expressed as

V22 (𝑥, 𝑡) = ±𝑘2√− 1𝛼 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨 − 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )
− 𝛽2𝛼 ,𝑢22 (𝑥, 𝑡) = 𝛼 (V22 (𝑥, 𝑡)) + 𝛽 (V22 (𝑥, 𝑡)) + 𝛾,

𝑤22 (𝑥, 𝑡) = 𝐴 (V22 (𝑥, 𝑡)) + 𝐵.

(69)

When 𝜇 = 0, 𝜆 ̸= 0, the rational function solution of
system (44) can be written as

V23 (𝑥, 𝑡) = ∓𝑘𝐶√−1/𝛼𝐶𝜉 + 𝐷 − 𝛽2𝛼 ,
𝑢23 (𝑥, 𝑡) = 𝛼 (V23 (𝑥, 𝑡)) + 𝛽 (V23 (𝑥, 𝑡)) + 𝛾,
𝑤23 (𝑥, 𝑡) = 𝐴 (V23 (𝑥, 𝑡)) + 𝐵,

(70)

for which the traveling wave transformation for this case is𝜉 = 𝑘(𝑥 − (6𝛾/(𝛽2 + 2))𝑡).
Result 3. Using parameter values specified in Case 3 as shown
in (63) and 𝜉 = 𝑘(𝑥 − (1/4𝛼)(−8𝑘2𝜆𝜇𝛼 + 12𝛼𝛾 − 3𝛽2)𝑡), we
have the following exact solutions.

When 𝜇𝜆 > 0, the trigonometric function solution of
system (44) can be written as

V31 (𝑥, 𝑡)
= ±𝑘√−𝜇𝜆𝛼 (𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))
± 𝑘√−𝜇𝜆𝛼 (𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))

−1

− 𝛽2𝛼 ,𝑢31 (𝑥, 𝑡) = 𝛼 (V31 (𝑥, 𝑡)) + 𝛽 (V31 (𝑥, 𝑡)) + 𝛾,
𝑤31 (𝑥, 𝑡) = 𝐴 (V31 (𝑥, 𝑡)) + 𝐵.

(71)

When 𝜇𝜆 < 0, the exponential function solution of
system (44) can be expressed as

V32 (𝑥, 𝑡)
= ±𝑘2√− 1𝛼 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨 − 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )

± 2𝜇𝜆𝑘√− 1𝛼 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨 − 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )
−1
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− 𝛽2𝛼 ,𝑢32 (𝑥, 𝑡) = 𝛼 (V32 (𝑥, 𝑡)) + 𝛽 (V32 (𝑥, 𝑡)) + 𝛾,
𝑤32 (𝑥, 𝑡) = 𝐴 (V32 (𝑥, 𝑡)) + 𝐵.

(72)

When 𝜇 = 0, 𝜆 ̸= 0, the rational function solution of
system (44) can be written as

V33 (𝑥, 𝑡) = ∓𝑘𝐶√−1/𝛼𝐶𝜉 + 𝐷 − 𝛽2𝛼 ,
𝑢33 (𝑥, 𝑡) = 𝛼 (V33 (𝑥, 𝑡)) + 𝛽 (V33 (𝑥, 𝑡)) + 𝛾,
𝑤33 (𝑥, 𝑡) = 𝐴 (V33 (𝑥, 𝑡)) + 𝐵,

(73)

for which the traveling wave transformation for this case is𝜉 = 𝑘(𝑥 − (6𝛾/(𝛽2 + 2))𝑡).
Result 4. Using parameter values specified inCase 4 as shown
in (64) and 𝜉 = 𝑘(𝑥 − (1/4𝛼)(16𝑘2𝜆𝜇𝛼 + 12𝛼𝛾 − 3𝛽2)𝑡), we
have the following exact solutions.

When 𝜇𝜆 > 0, the trigonometric function solution of
system (44) can be written as

V41 (𝑥, 𝑡)
= ±𝑘√−𝜇𝜆𝛼 (𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))
∓ 𝑘√−𝜇𝜆𝛼 (𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))

−1

− 𝛽2𝛼 ,𝑢41 (𝑥, 𝑡) = 𝛼 (V41 (𝑥, 𝑡)) + 𝛽 (V41 (𝑥, 𝑡)) + 𝛾,
𝑤41 (𝑥, 𝑡) = 𝐴 (V41 (𝑥, 𝑡)) + 𝐵.

(74)

When 𝜇𝜆 < 0, the exponential function solution of
system (44) can be expressed as

V42 (𝑥, 𝑡)
= ±𝑘2√− 1𝛼 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨 − 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )

∓ 2𝜇𝜆𝑘√− 1𝛼 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨 − 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )
−1

− 𝛽2𝛼 ,

𝑢42 (𝑥, 𝑡) = 𝛼 (V42 (𝑥, 𝑡)) + 𝛽 (V42 (𝑥, 𝑡)) + 𝛾,
𝑤42 (𝑥, 𝑡) = 𝐴 (V42 (𝑥, 𝑡)) + 𝐵.

(75)

When 𝜇 = 0, 𝜆 ̸= 0, the rational function solution of
system (44) can be written as

V43 (𝑥, 𝑡) = ∓𝑘𝐶√−1/𝛼𝐶𝜉 + 𝐷 − 𝛽2𝛼 ,
𝑢43 (𝑥, 𝑡) = 𝛼 (V43 (𝑥, 𝑡)) + 𝛽 (V43 (𝑥, 𝑡)) + 𝛾,
𝑤43 (𝑥, 𝑡) = 𝐴 (V43 (𝑥, 𝑡)) + 𝐵,

(76)

for which the traveling wave transformation for this case is𝜉 = 𝑘(𝑥 − (6𝛾/(𝛽2 + 2))𝑡).
Lu et al. [52] applied the new improved Riccati equation

method to system (44) and then found that its exact solu-
tions were expressed in terms of fractions of trigonometric
functions and fractions of hyperbolic functions. El-Wakil and
Abdou [53] found some exact solutions for system (44) by the
modified extended tanh-functionmethod.All of the obtained
solutions had the forms of the following functions: tanh, coth,
tan, and cot. It is not difficult to check that our exact solu-
tions of system (44), which are shown in (65)-(76), are the
functions whose mathematical forms are equivalent to those
ofmost of the solutions found previously by choosing suitable
parameters and some of them are obviously novel.

In Figures 3 and 4, we present the three-dimensional and
two-dimensional plots of some exact solutions, which are
V41(𝑥, 𝑡) and V42(𝑥, 𝑡), expressed in (74) and (75), respectively.
They are depicted using the sets of the appropriate parameter
values as described below. Employing 𝑐 = −7.25, 𝛼 =−0.23077, which are solved implicitly using (56), (61) and the
parameter values 𝑘 = 0.5, 𝛽 = 1, 𝛾 = −4, 𝜇 = 1.5, 𝜆 = 1, and
choosing 𝐶 = 𝐷 = 1, we obtain the plots of the selected exact
traveling wave solution

V41 (𝑥, 𝑡)
= −𝑘√−𝜇𝜆𝛼 [[(

𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))
− (𝐶 cos (√𝜇𝜆𝜉) + 𝐷 sin (√𝜇𝜆𝜉)𝐷 cos (√𝜇𝜆𝜉) − 𝐶 sin (√𝜇𝜆𝜉))

−1]] − 𝛽2𝛼 ,
(77)

as shown in Figure 3 which represents the periodic wave
solutions.

Again implicitly solving (56) and (61) via using 𝑘 = 1, 𝛽 =2, 𝛾 = 2, 𝜇 = 2, 𝜆 = −7/8, we obtain 𝑐 = 2, 𝛼 = −1. Then
the graphical representations of the chosen exact solution

V42 (𝑥, 𝑡)
= −𝑘2√− 1𝛼 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨 − 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )
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Figure 3:The periodic wave solutions of V41(𝑥, 𝑡) in (77) when 𝑘 = 0.5, 𝛽 = 1, 𝛾 = −4, 𝜇 = 1.5, 𝜆 = 1, 𝑐 = −7.25, 𝛼 = −0.23077, and𝐶 = 𝐷 = 1.
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Figure 4: The singular wave solutions of V42(𝑥, 𝑡) in (78) when 𝑘 = 1, 𝛽 = 2, 𝛾 = 2, 𝜇 = 2, 𝜆 = −7/8, 𝑐 = 2, 𝛼 = −1, 𝐶 = −3, and𝐷 = 5.

+ 2𝜇𝜆𝑘√− 1𝛼 (2√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨 − 4𝐶√󵄨󵄨󵄨󵄨𝜇𝜆󵄨󵄨󵄨󵄨𝑒2𝜉√|𝜇𝜆|𝐶𝑒2𝜉√|𝜇𝜆| − 𝐷 )
−1

− 𝛽2𝛼
(78)

using the parameters asmentioned above and𝐶 = −3 ,𝐷 = 5
are simulated in Figure 4 describing the singular wave solu-
tions.

4. Conclusions

In this paper, the (𝐺󸀠/𝐺2)-expansion method has been
applied to find some new forms of the explicit exact solutions
of the three problems, i.e., the Benny-Luke equation, the
equation of nanoionic currents along microtubules, and
the generalized Hirota-Satsuma coupled KdV system. The
explicit exact solutions of the problems, which are obtained
by the method, can be considered as a part of the gigantic
variety of possible solution forms; however, they have pro-
vided physical representations in each problem. As shown in
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Section 3, we have found that the obtained exact solutions of
the problems are expressed in terms of trigonometric, expo-
nential (or equivalently hyperbolic), and rational functions.
The investigation demonstrates that the method is consid-
erably efficient and practically appropriate for analytically
solving such problemswith the aid ofMaple. All of the obtain-
ed exact solutions of each problem have ensured the correct-
ness by substituting them back into the original equations.
Moreover, the method could also be employed efficiently for
a broad range of NPDEs of integer orders.
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