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In this paper, we introduce the concept of Rota-Baxter Leibniz algebras and explore two characterizations of Rota-Baxter Leibniz
algebras. And we construct a number of Rota-Baxter Leibniz algebras from Leibniz algebras and associative algebras and discover
some Rota-Baxter Leibniz algebras from augmented algebra, bialgebra, and weak Hopf algebra. In the end, we give all Rota-Baxter
operators of weight 0 and −1 on solvable and nilpotent Leibniz algebras of dimension ≤3, respectively.

1. Introduction

The Leibniz algebra [1] was mentioned by Bloh at the first
time, which was called a D-algebra in 1965. Later, Loday
improved and named it as Leibniz algebra. In Loday’s work,
he was mainly interested in the properties of the correspond-
ing homology theory on “group level” (“Leibniz K-Theory”).

Leibniz algebras are a well-established algebraic structure
generalizing Lie algebraswith their own structure andhomol-
ogy theory. Moreover, they have much more applications
in homological algebra, noncommutative geometry, physics,
and so on (see [1–9]).

The Baxter algebra was firstly found in the work [3] of
Baxter in 1960, which was used to solve the problem of
probability [10]. A Baxter algebra is an associative algebra 𝐴
with a linear operator 𝑃 on𝐴 that satisfies the Baxter identity𝑃 (𝑥) 𝑃 (𝑦) = 𝑃 (𝑃 (𝑥) 𝑦 + 𝑥𝑃 (𝑦)) (1)

for all 𝑥, 𝑦 ∈ 𝐴.
In the 1960s, Rota began a study of Rota-Baxter algebras

from an algebraic and combinatorial perspective in connec-
tion with hypergeometric functions, incidence algebras, and
symmetric functions and obtained some interesting results
(see [11–13]). A Rota-Baxter algebra is an associative algebra𝐴 with a linear operator 𝑃 on 𝐴 that satisfies the Rota-Baxter
identity

𝑃 (𝑥) 𝑃 (𝑦) = 𝑃 (𝑃 (𝑥) 𝑦 + 𝑥𝑃 (𝑦) + 𝜆𝑥𝑦) (2)

for all 𝑥, 𝑦 ∈ 𝐴, where 𝜆 (called the weight) is a fixed element
in the base ring of the algebra 𝐴.

In recent years, many scholars such as Andrews, Guo,
and Bai et al. found and established the relations between
Rota-Baxter algebras and Hopf algebras, Lie algebras, shuffle
products, and dendriform algebras. Rota-Baxter algebras
have beenmore andmore important and have attractedmuch
attention nowadays (see [11, 14–22]).

In this paper, our main aims are to introduce the concept
of Rota-Baxter Leibniz algebras and to obtain a large number
of Rota-Baxter Leibniz algebras from augmented algebra,
bialgebra, and weak Hopf algebra, as well as construct all
Rota-Baxter operators of weight 0 and −1 on solvable and
nilpotent non-Lie Leibniz algebras of dimension ≤3.

The paper is organized as follows. In the second section,
we introduce the concept of Rota-Baxter Leibniz algebras
and explore two characterizations of Rota-Baxter Leibniz
algebras. One is a generalization of the Atkinson factorization
[23, 24]. One is new for a Rota-Baxter Leibniz algebra under
the assumption of quasi-idempotency. And we construct a
large number of Rota-Baxter Leibniz algebras from Leibniz
algebras and associative algebras, respectively, and discover
some Rota-Baxter Leibniz algebras from augmented algebra,
bialgebra, and weak Hopf algebra. In the third section, we
construct all Rota-Baxter operators of weight 0 and −1 on
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solvable and nilpotent non-Lie Leibniz algebras of dimension≤3.
Throughout the paper, all algebras, linear maps, and

tensor products are taken over the complex field C unless
otherwise specified.

2. Rota-Baxter Leibniz Algebras

In this section, we mainly give some characterizations of
Rota-Baxter Leibniz algebras and construct a large number
of Rota-Baxter Leibniz algebras from Leibniz algebras, aug-
mented algebra, and weak Hopf algebra, respectively.

Definition 1. Let𝐴 be a vector space.Then, (𝐴, [−, −]) is called
a (left) Leibniz algebra defined as in [5] if there is a bilinear
map [−, −] : 𝐴 ⊗ 𝐴 → 𝐴, 𝑎 ⊗ 𝑏 → [𝑎, 𝑏] satisfying[𝑎, [𝑏, 𝑐]] = [[𝑎, 𝑏] , 𝑐] + [𝑏, [𝑎, 𝑐]] (3)

for any 𝑎, 𝑏, 𝑐 ∈ 𝐴.
In the following, our considered Leibniz algebras are left

Leibniz algebras unless otherwise specified.
Let (𝐴, [−, −]) be a Leibniz algebra. Write 𝐴1 = 𝐴,𝐴𝜅+1 =[𝐴, 𝐴𝜅] and 𝐴(1) = [𝐴, 𝐴], 𝐴(𝜅+1) = [𝐴(𝜅), 𝐴(𝜅)], for any

integer 𝜅 ≥ 1. In another, we denote 𝑎1 by 𝑎 and [𝑎, 𝑎𝜅] by𝑎𝜅+1, for any 𝑎 ∈ 𝐴.
Let (𝐴, [−, −]𝐴), (𝐵, [−, −]𝐵) be Leibniz algebras. A linear

map 𝑓 : 𝐴 → 𝐵 is called a Leibniz algebra homomorphism
from 𝐴 to 𝐵, if 𝑓([𝑎, 𝑏]𝐴) = [𝑓(𝑎), 𝑓(𝑏)]𝐵, for any 𝑎, 𝑏 ∈ 𝐴.
Definition 2. Let (𝐴, [−, −]) be a Leibniz algebra. If there
exists a linear map 𝑃 : 𝐴 → 𝐴 and an element 𝜆 ∈ C
satisfying[𝑃 (𝑎) , 𝑃 (𝑏)] = 𝑃 ([𝑎, 𝑃 (𝑏)] + [𝑃 (𝑎) , 𝑏] + 𝜆 [𝑎, 𝑏]) (4)

for any 𝑎, 𝑏 ∈ 𝐴, then, (𝐴, [−, −]) is called a Rota-Baxter
Leibniz algebra of weight 𝜆, and 𝑃 is called a Rota-Baxter
operator on 𝐴. In what follows, we simply denote it by(𝐴, [−, −], 𝑃).

Let (𝐴, [−, −], 𝑃) be a Rota-Baxter Leibniz algebra of
weight 𝜆. The subspace 𝑀 of 𝐴 is called a subalgebra, if 𝑀
is a Leibniz algebra under the multiplication of 𝐴, and 𝑃 is
still a Rota-Baxter operator of weight 𝜆 on𝑀.

Example 3. (1) Let 𝐴 be a 2-dimensional vector space with
basis {𝑥, 𝑦}. Define a multiplication on 𝐴:[𝑥, 𝑥] = 0 = [𝑥, 𝑦] ,[𝑦, 𝑥] = 𝑥 = [𝑦, 𝑦] , (5)

and a linear map 𝑃 : 𝐴 → 𝐴 given by𝑃 (𝑥) = 𝑥,𝑃 (𝑦) = 2𝑥 − 𝑦. (6)

Then, (𝐴, [−, −], 𝑃) is a Rota-Baxter Leibniz algebra of
weight −1.

(2) Let (𝐴, [−, −], 𝑃) be a Rota-Baxter Leibniz algebra of
weight 0. Then, (𝐴, [−, −], ℓ𝑃) is also a Rota-Baxter Leibniz
algebra of weight 0, for any given element ℓ ∈ C.(3) Let (𝐴 𝑖, [−, −], 𝑃𝑖), 𝑖 ∈ 𝐼, be a family of Rota-Baxter
Leibniz algebras of weight 𝜆. Denote ⨁𝑖∈𝐼𝐴 𝑖 by 𝐴. Now
define a linear map 𝑃 : 𝐴 → 𝐴, such that 𝑃((𝑎𝑖)) = (𝑃𝑖(𝑎𝑖)),
for all (𝑎𝑖) ∈ 𝐴. Then (𝐴, [−, −], 𝑃) is also a Rota-Baxter
Leibniz algebra of weight 𝜆 by defining [(𝑎𝑖), (𝑏𝑖)] = ([𝑎𝑖, 𝑏𝑖]),
for all (𝑎𝑖), (𝑏𝑖) ∈ 𝐴.
Proof. (1) According to Example 2.1 in [5], we know that(𝐴, [−, −]) is a (left) Leibniz algebra, but it is not a (right)
Leibniz algebra since [[𝑦, 𝑦], 𝑦] ̸= [𝑦, [𝑦, 𝑦]] + [[𝑦, 𝑦], 𝑦].

It is easy to check that 𝑃 is a Rota-Baxter operator of
weight −1 on 𝐴.(2) For any 𝑎, 𝑏 ∈ 𝐴, we have[ℓ𝑃 (𝑎) , ℓ𝑃 (𝑏)]) = ℓ𝑃 ([ℓ𝑃 (𝑎) , 𝑏] + [𝑎, ℓ𝑃 (𝑏)]) . (7)(3) It is straightforward to check that (𝐴, [−, −], 𝑃) is a
Rota-Baxter Leibniz algebra of weight 𝜆.

In what follows, we will give some constructions of Rota-
Baxter Leibniz algebras.

Proposition 4. Let 𝐴 be an algebra and 𝑃 an algebra map
from 𝐴 to 𝐴 with 𝑃2 = 𝑃. 	en the following conclusions hold.

(1) Define a linear map [−, −]𝑃 : 𝐴 ⊗ 𝐴 → 𝐴 by[𝑎, 𝑏]𝑃 = 𝑃 (𝑎) 𝑏 − 𝑏𝑃 (𝑎) . (8)

	en (𝐴, [−, −]𝑃, 𝑃) is a Rota-Baxter Leibniz algebra of
weight −1.

(2) Define a linear map [−, −]𝑃 : 𝐴 ⊗ 𝐴 → 𝐴 by[𝑎, 𝑏]𝑃 = 𝑃 (𝑎𝑏) − 𝑏𝑃 (𝑎) . (9)

	en, (𝐴, [−, −]𝑃, 𝑃) is a Rota-Baxter Leibniz algebra of
weight −1.

(3) Suppose that 𝐴 is a commutative algebra. Define a
linear map [−, −]𝑃 : 𝐴 ⊗ 𝐴 → 𝐴 by[𝑎, 𝑏]𝑃 = 𝑃 (𝑎𝑏) − 𝑃 (𝑎) 𝑏. (10)

	en, (𝐴, [−, −]𝑃, 𝑃) is a Rota-Baxter Leibniz algebra of
any weight ℓ ∈ C.

Proof. (1) According to Example 2.2 in [5], we know that the
conclusion (1) holds.(2) For any 𝑎, 𝑏, 𝑐 ∈ 𝐴, we can prove that[𝑎, [𝑏, 𝑐]𝑃]𝑃 = [[𝑎, 𝑏]𝑃 , 𝑐]𝑃 + [𝑏, [𝑎, 𝑐]𝑃]𝑃 .𝑃 ([𝑎, 𝑃 (𝑏)]𝑃) + 𝑃 ([𝑃 (𝑎) , 𝑏]𝑃) − 𝑃 ([𝑎, 𝑏]𝑃)= [𝑃 (𝑎) , 𝑃 (𝑏)]𝑃 . (11)

(3) It is obvious that (𝐴, [−, −]) is a Leibniz algebra by (2).
Remark 5. (1) Let 𝐴 be an algebra. If 𝐴 is a augmented
algebra as in [25] in the sense that there exists an algebra
homomorphism 𝑓 : 𝐴 → C, then, by Proposition 4 (2),



Advances in Mathematical Physics 3(𝐴, [−, −]𝑃𝑓 , 𝑃𝑓) is a Rota-Baxter Leibniz algebra of weight−1,
where the operator 𝑃𝑓 on 𝐴 is defined by 𝑃𝑓(𝑎) = 𝑓(𝑎)1𝐴 for
any 𝑎 ∈ 𝐴, and the operator [−, −]𝑃𝑓 on 𝐴 ⊗ 𝐴 is given by[𝑎, 𝑏]𝑃𝑓 = 𝑓 (𝑎𝑏) 1𝐴 − 𝑓 (𝑎) 𝑏 (12)

for any 𝑎, 𝑏 ∈ 𝐴.(2) Let𝐴 be a bialgebra or a Hopf algebra as in [26].Then,
the counit map 𝜀 : 𝐴 → C is an algebra map. So, by (1),(𝐴, [−, −]𝑃𝜀 , 𝑃𝜀) is a Rota-Baxter Leibniz algebra of weight −1.(3) Let𝐴 be a weakHopf algebra with an antipode 𝑆 given
in [27]. Define a linear map Π𝐿 : 𝐴 → 𝐴 (called the target
map) by Π𝐿(𝑎) = 𝜀(11𝑎)12, where Δ(1𝐴) is denoted by 11 ⊗12 ∈ 𝐴 ⊗ 𝐴.

Then, according to Corollary 2.2 (1) in [28], we know thatΠ𝐿 is idempotent. Furthermore, if𝐴 is commutative, then, by
Corollary 2.2 (4) in [28], Π𝐿 is also an algebra map. So, by
Proposition 4 (3), (𝐴, [−, −]Π𝐿 , Π𝐿) is a Rota-Baxter Leibniz
algebra of any weight ℓ, with the product [𝑎, 𝑏]Π𝐿 = Π𝐿(𝑎𝑏) −Π𝐿(𝑎)𝑏.
Proposition 6. Let (𝐴, [−, −], 𝑃) be a Rota-Baxter Leibniz
algebra of nonzero weight 𝜆. 	en, (𝐴, [−, −], 𝑄𝑃) is a Rota-
Baxter Leibniz algebra of weight −ℓ, where𝑄𝑃 = (ℓ/𝜆)𝑃+ℓ𝑖𝑑,
for any given element ℓ ∈ C.

Proof. It is straightforward to check that (𝐴, [−, −], 𝑄𝑃) is a
Rota-Baxter Leibniz algebra of weight −ℓ.
Example 7. Let 𝐴 be an algebra and 𝑃 an algebra map from𝐴 to 𝐴 with 𝑃2 = 𝑃. Then, according to Proposition 4 (1)
and Proposition 6, we know that (𝐴, [−, −]𝑃, 𝑄𝑃 = −ℓ𝑃+ℓ𝑖𝑑)
is a Rota-Baxter Leibniz algebra of weight −ℓ, for any given
element ℓ ∈ C.

Proposition 8. Let (𝐴, [−, −], 𝑃) be a Rota-Baxter Leibniz
algebra of weight 𝜆. Define a new binary product [−, −]𝑃 :𝐴 ⊗ 𝐴 → 𝐴 with[𝑎, 𝑏]𝑃 = [𝑎, 𝑃 (𝑏)] + [𝑃 (𝑎) , 𝑏] + 𝜆 [𝑎, 𝑏] . (13)

	en we have the following conclusions.
(1) [𝑃(𝑎), 𝑃(𝑏)] = 𝑃([𝑎, 𝑏]𝑃).
(2) (𝐴, [−, −]𝑃, 𝑃) is a Rota-Baxter Leibniz algebra of

weight 𝜆. So 𝑃 is a Leibniz algebra map from (𝐴, [−, −]𝑃) to(𝐴, [−, −]).
Proof. (1) It is just the Rota-Baxter Leibniz algebra equation.(2) By the definition of [−, −]𝑃 and the equality of Rota-
Baxter Leibniz algebra, we easily prove[𝑎, [𝑏, 𝑐]𝑃]𝑃 = [[𝑎, 𝑏]𝑃 , 𝑐]𝑃 + [𝑏, [𝑎, 𝑐]𝑃]𝑃 , (14)

so (𝐴, [−, −]𝑃) is a Leibniz algebra. It is easy to see that 𝑃 is a
Rota-Baxter operator of weight 𝜆.

In the following, we give two differentiated conditions for
a Leibniz algebra to be a Rota-Baxter Leibniz algebra.

Theorem9. Let (𝐴, [−, −]) be a nondegenerate Leibniz algebra
and 𝑃 : 𝐴 → 𝐴 be a linear map.

(1) Suppose that 𝑃 satisfies 𝑃([𝑎, 𝑏]) = [𝑎, 𝑃(𝑏)], for any𝑎, 𝑏 ∈ 𝐴. 	en, (𝐴, [−, −], 𝑃) is a Rota-Baxter Leibniz algebra
of weight 𝜆, if and only if 𝑃 is quasi-idempotent of weight 𝜆.

(2) Denote𝐶𝐴 fl {𝑎 ∈ 𝐴 | 𝑃 ([𝑎, 𝑏]) = [𝑎, 𝑃 (𝑏)] , ∀𝑏 ∈ 𝐴} (15)

	en, 𝐶𝐴 is a subalgebra of 𝐴 such that 𝑃([𝑎, 𝑏]) =[𝑎, 𝑃(𝑏)], for all 𝑎 ∈ 𝐶𝐴, 𝑏 ∈ 𝐴.
(3) Suppose that 𝑃|𝐶𝐴 is a Rota-Baxter operator of weight𝜆 on 𝐶𝐴 and 𝐶𝐴 is idempotent (i.e., [𝐶𝐴, 𝐶𝐴] = 𝐶𝐴). 	en,𝑃|𝐶𝐴 is quasi-idempotent of weight 𝜆. Conversely, if 𝑃 is quasi-

idempotent of weight𝜆, then (𝐶𝐴, [−, −], 𝑃|𝐶𝐴) is a Rota-Baxter
Leibniz algebra of weight 𝜆.
Proof. (1) For any 𝑎, 𝑏 ∈ 𝐴, if (𝐴, [−, −], 𝑃) is a Rota-Baxter
algebra of weight 𝜆, then, we easily prove that[𝑃 (𝑎) , 𝑃 (𝑏)] = [𝑎, 𝑃2 (𝑏)] + [𝑃 (𝑎) , 𝑃 (𝑏)]+ 𝜆 [𝑎, 𝑃 (𝑏)] . (16)

So we know that [𝑎, 𝑃2(𝑏)] + 𝜆[𝑎, 𝑃(𝑏)] = [𝑎, 𝑃2(𝑏) +𝜆𝑃(𝑏)] = 0. This implies that 𝑃2 + 𝜆𝑃 = 0.
Conversely, if 𝑃2 +𝜆𝑃 = 0, then, for any 𝑎, 𝑏 ∈ 𝐴, we have𝑃 ([𝑎, 𝑃 (𝑏)] + [𝑃 (𝑎) , 𝑏]) + 𝜆 [𝑎, 𝑏]) = [𝑃 (𝑎) , 𝑃 (𝑏)] (17)

as desired.(2) In order to prove that𝐶𝐴 is a subalgebra of𝐴, we only
need to prove that [𝑎, 𝑏] ∈ 𝐶𝐴, for all 𝑎, 𝑏 ∈ 𝐶𝐴.

In fact, we have[[𝑎, 𝑏] , 𝑃 (𝑐)] = [𝑎, [𝑏, 𝑃 (𝑐)]] − [𝑏, [𝑎, 𝑃 (𝑐)]]= [𝑎, 𝑃 ([𝑏, 𝑐])] − [𝑏, 𝑃 ([𝑎, 𝑐])]= 𝑃 ([𝑎, [𝑏, 𝑐]]) − 𝑃 ([𝑏, [𝑎, 𝑐]])= 𝑃 ([[𝑎, 𝑏] , 𝑐]) , (18)

so 𝑃([[𝑎, 𝑏], 𝑐]) = [[𝑎, 𝑏], 𝑃(𝑐)], that is, [𝑎, 𝑏] ∈ 𝐶𝐴. Hence 𝐶𝐴
is a subalgebra of 𝐴.(3) Suppose that 𝑃|𝐶𝐴 is a Rota-Baxter operator of
weight 𝜆 on 𝐶𝐴. Then, for any 𝑎, 𝑏 ∈ 𝐶𝐴, 𝑃(𝑎) ∈𝐶𝐴, that is, [𝑃|𝐶𝐴(𝑎), 𝑃|𝐶𝐴(𝑏)] = 𝑃|𝐶𝐴([𝑃|𝐶𝐴(𝑎), 𝑏]), and[𝑃|𝐶𝐴(𝑎), 𝑃|𝐶𝐴(𝑏)] − 𝑃|𝐶𝐴([𝑎, 𝑃|𝐶𝐴(𝑏)]) − 𝑃|𝐶𝐴([𝑃|𝐶𝐴(𝑎), 𝑏]) −𝜆𝑃|𝐶𝐴([𝑎, 𝑏]) = 0. So we get0 = [𝑃|𝐶𝐴 (𝑎) , 𝑃|𝐶𝐴 (𝑏)] − 𝑃|𝐶𝐴 ([𝑎, 𝑃|𝐶𝐴 (𝑏)])− 𝑃|𝐶𝐴 ([𝑃|𝐶𝐴 (𝑎) , 𝑏]) − 𝜆𝑃|𝐶𝐴 ([𝑎, 𝑏])= [𝑃|𝐶𝐴 (𝑎) , 𝑃|𝐶𝐴 (𝑏)] − 𝑃|2𝐶𝐴 ([𝑎, 𝑏])− 𝑃|𝐶𝐴 ([𝑃|𝐶𝐴 (𝑎) , 𝑏]) − 𝜆𝑃|𝐶𝐴 ([𝑎, 𝑏])= −𝑃|2𝐶𝐴 ([𝑎, 𝑏]) − 𝜆𝑃|𝐶𝐴 ([𝑎, 𝑏]) ,

(19)

that is, −𝑃|2𝐶𝐴([𝑎, 𝑏]) − 𝜆𝑃|𝐶𝐴([𝑎, 𝑏]) = 0. Hence 𝑃|2𝐶𝐴 =−𝜆𝑃|𝐶𝐴 by [𝐶𝐴, 𝐶𝐴] = 𝐶𝐴.
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Conversely, if 𝑃 is quasi-idempotent of weight 𝜆, then, for
any 𝑎 ∈ 𝐶𝐴, 𝑏 ∈ 𝐴, we have0 = [𝑃 (𝑎) , 𝑃 (𝑏)] − 𝑃 ([𝑎, 𝑃 (𝑏)]) − 𝑃 ([𝑃 (𝑎) , 𝑏])− 𝜆𝑃 ([𝑎, 𝑏])= [𝑃 (𝑎) , 𝑃 (𝑏)] − 𝑃2 ([𝑎, 𝑏]) − 𝑃 ([𝑃 (𝑎) , 𝑏])− 𝜆𝑃 ([𝑎, 𝑏]) = [𝑃 (𝑎) , 𝑃 (𝑏)] − 𝑃 ([𝑃 (𝑎) , 𝑏]) ,

(20)

that is, [𝑃(𝑎), 𝑃(𝑏)] = 𝑃[𝑃(𝑎), 𝑏], so 𝑃(𝑎) ∈ 𝐶𝐴. Hence,
according to items (1) and (2), we easily see that 𝑃|𝐶𝐴 is a
Rota-Baxter operator of weight 𝜆 on 𝐶𝐴.
Theorem 10. Let (𝐴, [−, −]) be a Leibniz algebra. If(𝐴, [−, −], 𝑃) is a Rota-Baxter Leibniz algebra of nonzero
weight 𝜆, then, for any given 𝑎, 𝑏 ∈ 𝐴, there is an element𝑐 ∈ 𝐴, such that ℓ𝜆 [𝑃 (𝑎) , 𝑃 (𝑏)] = 𝑃 (𝑐) ,[𝑄 (𝑎) , 𝑄 (𝑏)] = 𝑄 (𝑐) , (21)

where 𝑄 = (ℓ/𝜆)𝑃 + ℓ𝑖𝑑 as in Proposition 6.
Conversely, if there exists an element 𝑐 ∈ 𝐴 satisfying the

above equalities and the annihilator of ℓ ∈ C in𝐴 has only zero,
then, (𝐴, [−, −], 𝑃) is a Rota-Baxter Leibniz algebra of nonzero
weight 𝜆.
Proof. For any 𝑎, 𝑏 ∈ 𝐴, and 𝜆 ∈ C, we have

[𝑃 (𝑎) , 𝑃 (𝑏)] = 𝑃 ([𝑎, 𝑃 (𝑏)] + [𝑃 (𝑎) , 𝑏] + 𝜆 [𝑎, 𝑏]) . (22)

Taking 𝑐 = (ℓ/𝜆)([𝑎, 𝑃(𝑏)] + [𝑃(𝑎), 𝑏] + 𝜆[𝑎, 𝑏]), then, we
can obtain

𝑃 (𝑐) = ℓ𝜆𝑃 ([𝑎, 𝑃 (𝑏)] + [𝑃 (𝑎) , 𝑏] + 𝜆 [𝑎, 𝑏])= ℓ𝜆 [𝑃 (𝑎) , 𝑃 (𝑏)] ,𝑄 (𝑐) = [𝑄 (𝑎) , 𝑄 (𝑏)] .
(23)

Conversely, if there is an element 𝑐 ∈ 𝐴 such thatℓ𝜆 [𝑃 (𝑎) , 𝑃 (𝑏)] = 𝑃 (𝑐) ,[𝑄 (𝑎) , 𝑄 (𝑏)] = 𝑄 (𝑐) , (24)

for any given 𝑎, 𝑏 ∈ 𝐴.Then, when𝑄 = (ℓ/𝜆)𝑃+ℓ𝑖𝑑, we have
that[𝑄 (𝑎) , 𝑄 (𝑏)] = [ ℓ𝜆𝑃 (𝑎) + ℓ𝑎, ℓ𝜆𝑃 (𝑏) + ℓ𝑏]= [ ℓ𝜆𝑃 (𝑎) , ℓ𝜆𝑃 (𝑏) + ℓ𝑏]+ [ℓ𝑎, ℓ𝜆𝑃 (𝑏) + ℓ𝑏]= [ ℓ𝜆𝑃 (𝑎) , ℓ𝜆𝑃 (𝑏)] + [ ℓ𝜆𝑃 (𝑎) , ℓ𝑏]+ [ℓ𝑎, ℓ𝜆𝑃 (𝑏)] + [ℓ𝑎, ℓ𝑏]= ℓ2𝜆2 [𝑃 (𝑎) , 𝑃 (𝑏)] + ℓ2𝜆 [𝑃 (𝑎) , 𝑏]+ ℓ2𝜆 [𝑎, 𝑃 (𝑏)] + ℓ2 [𝑎, 𝑏] = 𝑄 (𝑐)= ℓ𝜆𝑃 (𝑐) + ℓ𝑐 = ℓ2𝜆2 [𝑃 (𝑎) , 𝑃 (𝑏)] + ℓ𝑐.

(25)

so we haveℓ𝑐 = ℓ2𝜆 ([𝑃 (𝑎) , 𝑏] + [𝑎, 𝑃 (𝑏)] + 𝜆 [𝑎, 𝑏]) . (26)

Since ℓ has not trivial annihilator in 𝐴, we have𝑐 = ℓ𝜆 ([𝑎, 𝑃 (𝑏)] + [𝑃 (𝑎) , 𝑏] + 𝜆 [𝑎, 𝑏]) . (27)

Soℓ𝜆 [𝑃 (𝑎) , 𝑃 (𝑏)] = 𝑃 (𝑐)= 𝑃 ( ℓ𝜆 ([𝑎, 𝑃 (𝑏)] + [𝑃 (𝑎) , 𝑏] + 𝜆 [𝑎, 𝑏])) . (28)

This means that [𝑃(𝑎), 𝑃(𝑏)] = 𝑃([𝑎, 𝑃(𝑏)] + [𝑃(𝑎), 𝑏] +𝜆[𝑎, 𝑏]) as desired.
In the following, we describe some properties of Rota-

Baxter Leibniz algebras.

Proposition 11. Let (𝐴, [−, −], 𝑃) be a Rota-Baxter Leibniz
algebra of weight 𝜆 and 𝑃 idempotent. 	en, for any 𝑎, 𝑏 ∈ 𝐴,(1 + 𝜆) 𝑃 ([𝑎, 𝑃 (𝑏)]) = 0,(1 + 𝜆) 𝑃 ([𝑃 (𝑎) , 𝑏]) = 0,(1 + 𝜆) ([𝑃 (𝑎) , 𝑃 (𝑏)] − 𝜆𝑃 ([𝑎, 𝑏])) = 0. (29)

Proof. This proof is straightforward by Proposition 8.

Proposition 12. Let (𝐴, [−, −], 𝑃) be a Rota-Baxter Leibniz
algebra of weight 𝜆. If 𝑃 is quasi-idempotent of weight 𝜆, that
is, 𝑃2 = −𝜆𝑃.	en, for any 𝑥, 𝑦 ∈ Im𝑃,[𝑃 (𝑥) , 𝑃 (𝑦)] = −𝜆𝑃 ([𝑥, 𝑦]) . (30)

In particular, if𝑃 is idempotent, then,𝑃 is a Leibniz algebra
homomorphism from Im𝑃 to Im𝑃.
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Proof. The proof is left for the readers.

Proposition 13. Let (𝐴, [−, −], 𝑃) be a Rota-Baxter Leibniz
algebra of nonzero weight 𝜆.	en the following conclusions are
satisfied.

(1) −(ℓ2/𝜆)[𝑎, 𝑏]𝑃 = (ℓ2/𝜆2)[𝑃(𝑎), 𝑃(𝑏)] − [𝑄(𝑎), 𝑄(𝑏)].
(2) −(ℓ2/𝜆)[𝑃(𝑎), 𝑃(𝑏)] = 𝑃((ℓ2/𝜆2)[𝑃(𝑎), 𝑃(𝑏)] −[𝑄(𝑎), 𝑄(𝑏)]).
(3) [29] For any integer 𝑛 ≥ 2, and 𝑎𝑖 ∈ 𝐴, 𝑖 = 1, 2, . . . , 𝑛,− ℓ𝑛𝜆𝑛−1 [𝑃 (𝑎1) , [𝑃 (𝑎2) , [⋅ ⋅ ⋅ [𝑃 (𝑎𝑛−1) , 𝑃 (𝑎𝑛)] ⋅ ⋅ ⋅]]]= 𝑃( ℓ𝑛𝜆𝑛 [𝑃 (𝑎1) ,[𝑃 (𝑎2) , [⋅ ⋅ ⋅ [𝑃 (𝑎𝑛−1) , 𝑃 (𝑎𝑛)] ⋅ ⋅ ⋅]]] − [𝑄 (𝑎1) ,[𝑄 (𝑎2) , [⋅ ⋅ ⋅ [𝑄 (𝑎𝑛−1) , 𝑄 (𝑎𝑛)] ⋅ ⋅ ⋅]]]) .

(31)

(4) −(ℓ𝑛/𝜆𝑛−1)𝑃(𝑎)𝑛 = 𝑃((ℓ𝑛/𝜆𝑛)𝑃(𝑎)𝑛 − 𝑄(𝑎)𝑛),
where𝑃(𝑎)𝑛 = [𝑃(𝑎), [𝑃(𝑎), [⋅ ⋅ ⋅ [𝑃(𝑎), 𝑃(𝑎)] ⋅ ⋅ ⋅ ]]] and so does𝑄(𝑎)𝑛.

In particular, taking ℓ = 𝜆, we have−𝜆𝑃 (𝑎)𝑛 = 𝑃 (𝑃 (𝑎)𝑛 − 𝑄 (𝑎)𝑛) . (32)

Here 𝑄 = (ℓ/𝜆)𝑃 + ℓ𝑖𝑑 is defined in Proposition 6 and[−, −]𝑃 defined in Proposition 8.

Proof. (1) For any 𝑎, 𝑏 ∈ 𝐴 and ℓ ∈ C, we easily proveℓ2𝜆2 [𝑃 (𝑎) , 𝑃 (𝑏)] − [𝑄 (𝑎) , 𝑄 (𝑏)] = −ℓ2𝜆 [𝑎, 𝑏]𝑃 . (33)(2) According to (1) and the equality 𝑃([𝑎, 𝑏]𝑃) =[𝑃(𝑎), 𝑃(𝑏)] for any 𝑎, 𝑏 ∈ 𝐴, we can prove (2).(3)We can prove this conclusion by using induction on 𝑛.(4)This follows from (3) by taking 𝑎𝑖 = 𝑎, 𝑖 = 1, 2, . . . , 𝑛.
3. Rota-Baxter Operators on Low-Dimensional
Leibniz Algebras

In this section, we mainly focus on the Rota-Baxter operators
of weight 𝜆 = 0 and 𝜆 = −1, and give all Rota-
Baxter operators on solvable and nilpotent Leibniz algebras
of dimension ≤3.

Suppose 𝐴 is a Lebniz algebra with basis {𝑎1, 𝑎2, . . . , 𝑎𝑛}.
Then, for any given Rota-Baxter operator 𝑃 of weight 𝜆 on𝐴,
it can be presented by a matrix 𝑅 = (𝑟𝑖𝑗)𝑛×𝑛, that is, there are𝑛2 elements 𝑟𝑖𝑗 ∈ C (𝑖 = 1, 2, . . . 𝑛; 𝑗 = 1, 2, . . . 𝑛), such that

𝑃(𝑎1𝑎2...𝑎𝑛)=(𝑟11 𝑟12 ⋅ ⋅ ⋅ 𝑟1𝑛𝑟21 𝑟22 ⋅ ⋅ ⋅ 𝑟2𝑛... ... d
...𝑟𝑛1 𝑟𝑛2 ⋅ ⋅ ⋅ 𝑟𝑛𝑛)(𝑎1𝑎2...𝑎𝑛) (34)

satisfies[𝑃 (𝑥) , 𝑃 (𝑦)] = 𝑃 ([𝑥, 𝑃 (𝑦)] + [𝑃 (𝑥) , 𝑦] + 𝜆 [𝑥, 𝑦]) (35)

for any 𝑥, 𝑦 ∈ 𝐴.
By [5], we know that any non-Lie Leibniz algebra in

dimension ≤ 3 and nilpotent Leibniz algebra are solvable.
In what follows, we choose the low-dimensional nilpotent

Leibniz algebras and the solvable ones to construct Rota-
Baxter operators. Andwe denote the set of all the Rota-Baxter
operators on 𝐴 by RBO(A).

Firstly, we recall the conception of nilpotent Leibniz
algebras and solvable ones.

Definition 14. A Leibniz algebra 𝐴 is solvable if 𝐴(𝜅) = 0 for
some integers 𝜅 ≥ 0.
Definition 15. A Leibniz algebra 𝐴 is nilpotent of class 𝜅 if𝐴𝜅+1 = 0 but 𝐴𝜅 ̸= 0 for some integer 𝜅 ≥ 0.
Lemma 16. Let 𝐴 be a non-Lie Leibniz algebra and dim(𝐴) =2. 	en, by 	eorem 6.1 in [5], 𝐴 is isomorphic to a cyclic
Leibniz algebra generated by a single element 𝑎with [𝑎, 𝑎2] = 0
(hence 𝐴 is nilpotent), or [𝑎, 𝑎2] = 𝑎2 (hence 𝐴 is solvable).

In the following, for the proofs of our given results, the
readers can see Appendix.

Theorem 17. 	e Rota-Baxter operators on 2-dimensional
non-Lie Leibniz algebra 𝐴 are given in Table 1.

In what follows, Lemmas 18 and 20 follow fromTheorems
6.4 and 6.5 in [5], respectively.

Lemma 18. Let 𝐴 be a non-Lie nilpotent Leibniz algebra and
dim(𝐴) = 3. 	en, 𝐴 is isomorphic to a Leibniz algebra
spanned by {𝑎, 𝑏, 𝑐} with the nonzero product given by one of
the following:

(1) [𝑎, 𝑎] = 𝑏, [𝑎, 𝑏] = 𝑐;
(2) [𝑎, 𝑎] = 𝑐;
(3) [𝑎, 𝑏] = 𝑐, [𝑏, 𝑎] = 𝑐;
(4) [𝑎, 𝑏] = 𝑐, [𝑏, 𝑎] = −𝑐, [𝑏, 𝑏] = 𝑐;
(5) [𝑎, 𝑏] = 𝑐, [𝑏, 𝑎] = 𝛼𝑐, 𝛼 ∈ C\{1, −1}.

Theorem 19(A). 	e Rota-Baxter operators of weight 0 on
3-dimensional non-Lie nilpotent Leibniz algebra 𝐴 are given
in Table 2.

Theorem 19(B). 	e Rota-Baxter operators of weight −1 on
3-dimensional non-Lie nilpotent Leibniz algebra 𝐴 are given
in Table 3.

Lemma 20. Let 𝐴 be a non-Lie nonnilpotent solvable Leibniz
algebra and dim(𝐴) = 3. 	en, 𝐴 is isomorphic to a Leibniz
algebra spanned by {𝑎, 𝑏, 𝑐} with the nonzero product given by
one of the following:
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Table 1

Non-Lie Leibniz algebra A RBO(A) of weight 𝜆 = 0 RBO(A) of weight 𝜆 = −1(1) [𝑎, 𝑎2] = 0 (0 𝑟120 𝑟22),(2𝑟22 𝑟120 𝑟22) . (𝑟11 𝑟120 𝑟22)(𝑟211 = (2𝑟11 − 1) 𝑟22) .(2) [𝑎, 𝑎2] = 𝑎2 (0 𝑟120 0 ),(𝑟11 −𝑟110 0 ). (0 𝑟120 0 ),(𝑟11 −𝑟110 0 ),(1 𝑟120 1 ),(𝑟11 1 − 𝑟110 1 ).
Table 2

Non-Lie nilpotent Leibniz
algebra 𝐴 RBO(A) of weight 𝜆 = 0
(1) [𝑎, 𝑎] = 𝑏; [𝑎, 𝑏] = 𝑐 (0 0 𝑟130 0 𝑟230 0 𝑟33),(0 𝑟12 𝑟130 𝑟22 𝑟230 0 0 ),(2𝑟22 3𝑟23 𝑟130 𝑟22 𝑟230 0 23𝑟22).

(2) [𝑎, 𝑎] = 𝑐 (0 𝑟12 𝑟130 𝑟22 𝑟230 𝑟32 𝑟33),(𝑟11 𝑟12 𝑟130 𝑟22 𝑟230 0 12𝑟11).

(3) [𝑎, 𝑏] = 𝑐; [𝑏, 𝑎] = 𝑐 (𝑟11 0 𝑟13𝑟21 0 𝑟230 0 0 ),(0 𝑟12 𝑟130 𝑟22 𝑟230 0 0 ), (𝑟11 𝑟211𝑟21 𝑟13𝑟21 𝑟11 𝑟230 0 𝑟11)(𝑟21 ̸= 0),
(𝑟11 0 𝑟130 𝑟22 𝑟230 0 𝑟33)((𝑟11 + 𝑟22)𝑟33 = 𝑟11𝑟22).

(4) [𝑎, 𝑏] = 𝑐; [𝑏, 𝑎] =−𝑐; [𝑏, 𝑏] = 𝑐 (𝑟11 0 𝑟13𝑟21 0 𝑟230 0 0 ),( 0 0 𝑟13𝑟21 0 𝑟230 0 𝑟33),(2𝑟33 0 𝑟13𝑟21 2𝑟33 𝑟230 0 𝑟33).

(5) [𝑎, 𝑏] = 𝑐; [𝑏, 𝑎] =𝛼𝑐 (𝛼 ∈ C\{1, −1}) ( 0 0 𝑟13𝑟21 0 𝑟230 0 0 ),(𝑟11 0 𝑟13𝑟21 0 𝑟230 0 0 ),(0 𝑟12 𝑟130 𝑟22 𝑟230 0 0 ),

(𝑟11 0 𝑟130 𝑟22 𝑟230 0 𝑟33)(𝑟22𝑟33 + 𝑟11𝑟33 − 𝑟11𝑟22 = 0).
(1) [𝑐, 𝑎] = 𝑎;
(2) [𝑐, 𝑎] = 𝛼𝑎 (𝛼 ∈ C\{0}), [𝑐, 𝑏] = 𝑏, [𝑏, 𝑐] = −𝑏;
(3) [𝑐, 𝑏] = 𝑏, [𝑏, 𝑐] = −𝑏, [𝑐, 𝑐] = 𝑎;
(4) [𝑐, 𝑎] = 2𝑎, [𝑏, 𝑏] = 𝑎, [𝑐, 𝑏] = 𝑏, [𝑏, 𝑐] = −𝑏, [𝑐, 𝑐] = 𝑎;
(5) [𝑐, 𝑎] = 𝑎 + 𝑏, [𝑐, 𝑏] = 𝑏;
(6) [𝑐, 𝑎] = 𝑏, [𝑐, 𝑏] = 𝑏, [𝑐, 𝑐] = 𝑎;
(7) [𝑐, 𝑏] = 𝑏, [𝑐, 𝑎] = 𝛼𝑎 (𝛼 ∈ C\{0}).

Theorem 21(A). 	e Rota-Baxter operators of weight 0 on 3-
dimensional non-Lie and nonnilpotent solvable Leibniz algebra𝐴 are given in in Table 4.

Theorem 21(B).	e Rota-Baxter operators of weight −1 on 3-
dimensional non-Lie and nonnilpotent solvable Leibniz algebra𝐴 are given in Table 5.

Appendix

In this section, we mainly give the proof of some results in
Section 3.
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Table 3

Non-Lie nilpotent Leibniz algebra 𝐴 RBO(A) of weight 𝜆 = −1
(1) [𝑎, 𝑎] = 𝑏; [𝑎, 𝑏] = 𝑐 (𝑟11 𝑟12 𝑟130 𝑟2112𝑟11 − 1 𝑟12 (𝑟11 − 𝑟33)2𝑟11 − 10 0 𝑟33 )( 𝑟11 ̸= 12(𝑟211 + (𝑟11 − 1) (2𝑟11 − 1)) 𝑟33 = 𝑟311).

(2) [𝑎, 𝑎] = 𝑐 (𝑟11 𝑟12 𝑟130 𝑟22 𝑟230 0 𝑟2112𝑟11 − 1)(𝑟11 ̸= 12).
(3) [𝑎, 𝑏] = 𝑐; [𝑏, 𝑎] = 𝑐 (𝑟11 0 𝑟13𝑟21 0 𝑟230 0 0 ),(𝑟11 0 𝑟13𝑟21 1 𝑟230 0 1 ),(0 𝑟12 𝑟130 𝑟22 𝑟230 0 0 ),(1 𝑟12 𝑟130 𝑟22 𝑟230 0 1 ),

(𝑟11 0 𝑟130 𝑟22 𝑟230 0 𝑟33)((𝑟11 + 𝑟22 − 1) 𝑟33 = 𝑟11𝑟22),
(𝑟11 𝑟211 − 𝑟11𝑟21 𝑟13𝑟21 𝑟11 𝑟230 0 𝑟11)(𝑟21 ̸= 0).

(4) [𝑎, 𝑏] = 𝑐; [𝑏, 𝑎] = −𝑐; [𝑏, 𝑏] = 𝑐 (𝑟11 0 𝑟13𝑟21 𝑟22 𝑟230 0 𝑟2222𝑟22 − 1)( 𝑟22 ̸= 12(𝑟11 + 𝑟22 − 1) 𝑟222 = 𝑟11𝑟22 (2𝑟22 − 1)).

(5) [𝑎, 𝑏] = 𝑐; [𝑏, 𝑎] = 𝛼𝑐 (𝛼 ∈ C\{1, −1}) (0 𝑟12 𝑟130 𝑟22 𝑟230 0 0 ),(1 𝑟12 𝑟130 𝑟22 𝑟230 0 1 ),(𝑟11 0 𝑟13𝑟21 0 𝑟230 0 0 ),(𝑟11 0 𝑟13𝑟21 1 𝑟230 0 1 ),

(𝑟11 0 𝑟130 𝑟22 𝑟230 0 𝑟33)((𝑟11 + 𝑟22 − 1) 𝑟33 = 𝑟11𝑟22) .
Proof of 	eorem 17. We firstly construct Rota-Baxter opera-
tors of weight 𝜆 = 0 in the case (1). Assume that

𝑃( 𝑎𝑎2) = (𝑟11 𝑟12𝑟21 𝑟22)( 𝑎𝑎2) , (A.1)

with 𝑃 ∈ 𝑅𝐵𝑂(𝐴). Then, we have[𝑃 (𝑎) , 𝑃 (𝑎)] = 𝑃 ([𝑎, 𝑃 (𝑎)] + [𝑃 (𝑎) , 𝑎]) ,[𝑃 (𝑎) , 𝑃 (𝑎2)] = 𝑃 ([𝑎, 𝑃 (𝑎2)] + [𝑃 (𝑎) , 𝑎2]) ,[𝑃 (𝑎2) , 𝑃 (𝑎)] = 𝑃 ([𝑎2, 𝑃 (𝑎)] + [𝑃 (𝑎2) , 𝑎]) ,[𝑃 (𝑎2) , 𝑃 (𝑎2)] = 𝑃 ([𝑎2, 𝑃 (𝑎2)] + [𝑃 (𝑎2) , 𝑎2]) ,
(A.2)

that is,[𝑟11𝑎 + 𝑟12𝑎2, 𝑟11𝑎 + 𝑟12𝑎2]= 𝑃 ([𝑎, 𝑟11𝑎 + 𝑟12𝑎2] + [𝑟11𝑎 + 𝑟12𝑎2, 𝑎]) ,[𝑟11𝑎 + 𝑟12𝑎2, 𝑟21𝑎 + 𝑟22𝑎2]= 𝑃 ([𝑎, 𝑟21𝑎 + 𝑟22𝑎2] + [𝑟11𝑎 + 𝑟12𝑎2, 𝑎2]) ,[𝑟21𝑎 + 𝑟22𝑎2, 𝑟11𝑎 + 𝑟12𝑎2]= 𝑃 ([𝑎2, 𝑟11𝑎 + 𝑟12𝑎2] + [𝑟21𝑎 + 𝑟22𝑎2, 𝑎]) ,[𝑟21𝑎 + 𝑟22𝑎2, 𝑟21𝑎 + 𝑟22𝑎2]= 𝑃 ([𝑎2, 𝑟21𝑎 + 𝑟22𝑎2] + [𝑟21𝑎 + 𝑟22𝑎2, 𝑎2]) .

(A.3)
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Table 4

Non-Lie solvable Leibniz algebra 𝐴 RBO(A) of weight 𝜆 = 0
(1) [𝑐, 𝑎] = 𝑎 (0 0 00 𝑟22 𝑟230 𝑟32 𝑟33),(0 𝑟12 00 𝑟22 00 𝑟32 0),( 0 0 0𝑟21 𝑟22 0𝑟31 𝑟32 0).

(2) [𝑐, 𝑎] = 𝛼𝑎 (𝛼 ∈ C\{0}); [𝑐, 𝑏] = 𝑏; [𝑏, 𝑐] = −𝑏 ( 0 0 0𝑟21 0 0𝑟31 𝑟32 0),(0 𝑟12 00 0 00 𝑟32 0),(0 0 00 𝑟22 𝑟230 𝑟32 −𝑟22) (𝑟222 + 𝑟23𝑟32 = 0) .
(3) [𝑐, 𝑏] = 𝑏; [𝑏, 𝑐] = −𝑏; [𝑐, 𝑐] = 𝑎 (𝑟11 0 0𝑟21 0 0𝑟31 𝑟32 0),(𝑟11 0 00 0 0𝑟31 𝑟32 2𝑟11),(𝑟11 𝑟12 00 0 0𝑟31 𝑟32 0).

(4) [𝑐, 𝑎] = 2𝑎; [𝑏, 𝑏] = 𝑎; [𝑐, 𝑏] = 𝑏; [𝑏, 𝑐] = −𝑏; [𝑐, 𝑐] = 𝑎 ( 0 0 0𝑟21 0 0𝑟31 0 0),( 0 0 0𝑟21 0 −2𝑟210 0 0 ),

( 0 0 00 0 0𝑟31 𝑟32 𝑟33) (𝑟232 + 2𝑟33𝑟31 + 𝑟233 = 0) ,
( 0 0 0𝑟21 𝑟22 𝑟23𝑟31 𝑟32 𝑟33)( 𝑟222 + 2𝑟23𝑟21 + 𝑟223 = 0𝑟31 = 𝑟322 + 𝑟22𝑟2232𝑟223 , 𝑟32 = −𝑟222𝑟23𝑟22 + 𝑟33 = 0, 𝑟23 ̸= 0 ).

(5) [𝑐, 𝑎] = 𝑎 + 𝑏; [𝑐, 𝑏] = 𝑏 (0 𝑟12 00 0 00 0 𝑟33),( 0 0 00 0 0𝑟31 𝑟32 0),(
(

0 0 0𝑟21 −𝑟21 0𝑟31 −𝑟31 0))
,(0 𝑟12 00 0 00 𝑟32 0),

(𝑟11 𝑟12 0𝑟21 𝑟22 0𝑟31 𝑟32 0)(𝑟12 = −𝑟211 − 𝑟11𝑟21𝑟21𝑟32 = 𝑟31𝑟22𝑟21 , 𝑟21 ̸= 0𝑟22 = −𝑟11 − 𝑟21 ).

(6) [𝑐, 𝑎] = 𝑏; [𝑐, 𝑏] = 𝑏; [𝑐, 𝑐] = 𝑎 (𝑟11 𝑟12 00 0 0𝑟31 𝑟32 0),(𝑟11 −𝑟11 0𝑟21 −𝑟21 0𝑟31 −𝑟31 0),(𝑟11 −𝑟11 00 0 0𝑟31 −2𝑟11 − 𝑟31 2𝑟11).

(7) [𝑐, 𝑏] = 𝑏; [𝑐, 𝑎] = 𝛼𝑎 (𝛼 ∈ C\{0}) ( 0 0 0𝑟21 0 0𝑟31 0 0),(0 𝑟12 00 0 00 𝑟32 0),( 0 0 00 0 0𝑟31 𝑟32 0),(0 0 00 0 00 0 𝑟33),

(𝑟11 𝑟12 0𝑟21 −𝛼𝑟11 0𝑟31 𝑟32 0)( 𝑟31 = 𝑟11𝑟32𝑟12𝑟21 = −𝛼𝑟211𝑟12 , 𝑟12 ̸= 0).
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Table 5

Non-Lie solvable
Leibniz algebra 𝐴 RBO(A) of weight 𝜆 = −1
(1) [𝑐, 𝑎] = 𝑎 ( 0 0 0𝑟21 𝑟22 0𝑟31 𝑟32 0),(0 0 00 𝑟22 00 𝑟32 𝑟33),(0 𝑟12 00 𝑟22 00 𝑟32 1),(1 0 00 𝑟22 𝑟230 𝑟32 𝑟33),

(1 𝑟12 00 𝑟22 00 𝑟32 0),( 1 0 0𝑟21 𝑟22 0𝑟31 𝑟32 1),(0 0 00 𝑟22 𝑟230 𝑟32 𝑟33).

(2) [𝑐, 𝑎] = 𝛼𝑎 (𝛼 ∈
C\{0}); [𝑐, 𝑏] =𝑏; [𝑏, 𝑐] = −𝑏 ( 0 0 0𝑟21 1 0𝑟31 𝑟32 0),( 1 0 0𝑟21 0 0𝑟31 𝑟32 1),(1 0 00 1 00 𝑟32 𝑟33),(1 𝑟12 00 0 00 𝑟32 0),

(0 0 00 0 00 𝑟32 𝑟33),( 0 0 00 0 0𝑟31 𝑟32 0),(1 0 00 0 00 𝑟32 𝑟33),( 1 0 00 0 0𝑟31 𝑟32 1),

( 0 0 00 1 0𝑟31 𝑟32 0),( 1 0 00 1 0𝑟31 𝑟32 1),(0 𝑟12 00 1 00 𝑟32 1),(0 0 00 1 00 𝑟32 𝑟33),

(
(

0 0 00 𝑟22 𝑟230 (1 − 𝑟22) 𝑟22𝑟23 1 − 𝑟22))
(𝑟23 ̸= 0),

(
(

1 0 00 𝑟22 𝑟230 (1 − 𝑟22)𝑟22𝑟23 1 − 𝑟22))
(𝑟23 ̸= 0).

(3) [𝑐, 𝑏] =𝑏; [𝑏, 𝑐] =−𝑏; [𝑐, 𝑐] = 𝑎 ( 1 0 0𝑟21 0 0𝑟31 𝑟32 1),(𝑟11 0 00 0 0𝑟31 𝑟32 𝑟33)(𝑟11 (2𝑟33 − 1) = 𝑟233),
( 0 0 0𝑟21 1 0𝑟31 𝑟32 0),(𝑟11 0 00 1 0𝑟31 𝑟32 𝑟33)(𝑟11 (2𝑟33 − 1) = 𝑟233).
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Table 5: Continued.

Non-Lie solvable
Leibniz algebra 𝐴 RBO(A) of weight 𝜆 = −1(4) [𝑐, 𝑎] =2𝑎; [𝑏, 𝑏] =𝑎; [𝑐, 𝑏] =𝑏; [𝑏, 𝑐] =−𝑏; [𝑐, 𝑐] = 𝑎 ( 0 0 00 0 0𝑟31 𝑟32 𝑟33)(𝑟232 + 2𝑟33𝑟31 + 𝑟233 = 0),

(((
(

0 0 0−𝑟222 + 𝑟2232𝑟23 𝑟22 𝑟23
−𝑟222𝑟33 + 𝑟223𝑟332𝑟223 𝑟33𝑟22𝑟23 𝑟33

)))
)

(𝑟22 + 𝑟33 = 1𝑟23 ̸= 0 ) .
(5) [𝑐, 𝑎] =𝑎 + 𝑏; [𝑐, 𝑏] = 𝑏 ( 0 0 00 0 0𝑟31 𝑟32 0),(0 0 00 0 00 0 𝑟33),(0 𝑟12 00 1 00 𝑟32 1),(1 0 01 0 00 0 0),

(1 𝑟12 00 0 00 𝑟32 0),(1 0 00 1 00 0 𝑟33),( 1 0 00 1 0𝑟31 𝑟32 1),

(𝑟11 𝑟12 0𝑟21 𝑟22 00 0 𝑟33)
(((
(

𝑟12 = 𝑟33𝑟21 + 𝑟11𝑟22𝑟21 , 𝑟21 ̸= 0𝑟11 (𝑟11 − 1) + (𝑟11 + 𝑟12 + 𝑟33 − 1) 𝑟21 = 0𝑟12 (𝑟11 − 1) + (𝑟11 + 𝑟12 + 𝑟33 − 1) 𝑟22 = 𝑟33𝑟11𝑟11 + 𝑟21 + 𝑟22 − 1 = 0
)))
)

.

(6) [𝑐, 𝑎] =𝑏; [𝑐, 𝑏] = 𝑏; [𝑐, 𝑐] =𝑎 ( 0 0 00 0 0𝑟31 𝑟32 0),(𝑟11 1 − 𝑟11 0𝑟11 1 − 𝑟11 0𝑟31 1 − 𝑟31 0),( 𝑟11 −𝑟11 0𝑟11 − 1 1 − 𝑟11 0𝑟31 −1 − 𝑟31 1),

(𝑟11 1 − 𝑟11 00 1 0𝑟31 𝑟32 𝑟33)( 𝑟11 = 𝑟2332𝑟33 − 1 , 𝑟33 ̸= 12(2𝑟33 − 1) (1 − 𝑟11) = (𝑟33 − 1)(𝑟31 + 𝑟32)),

( 1 0 00 1 0𝑟31 𝑟32 1).
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Table 5: Continued.

Non-Lie solvable
Leibniz algebra 𝐴 RBO(A) of weight 𝜆 = −1
(7) [𝑐, 𝑏] =𝑏; [𝑐, 𝑎] = 𝛼𝑎 (𝛼 ∈
C\{0}) (1 0 00 0 01 0 1),(1 0 00 1 00 0 0),( 0 0 00 0 0𝑟31 𝑟32 0),(0 0 00 0 00 0 𝑟33),( 0 0 00 1 0𝑟31 0 0),

(0 0 00 1 00 0 𝑟33),(0 0 00 1 00 𝑟32 1),(1 0 00 0 00 𝑟32 0),(−1 0 00 1 01 0 1),(1 0 00 1 01 𝑟32 1),

( 0 0 0𝑟21 1 0𝑟31 0 0),( 0 0 0𝑟21 0 00 0 − 1𝛼 − 1)(𝛼 ̸= 1),( 0 0 0𝑟21 1 00 0 𝑟33)(𝛼 = 1),
( 1 0 0𝑟21 0 0𝑟31 −𝑟31𝑟21 0

)( 𝛼 = 1𝑟21 ̸= 0),( 1 0 0𝑟21 0 0𝑟31 0 1),( 1 0 0𝑟21 1 00 0 𝛼𝛼 − 1)(𝛼 ̸= 1),
( 0 𝑟12 00 1 0−𝑟32𝑟12 𝑟32 0

)( 𝛼 = 1𝑟12 ̸= 0),(0 𝑟12 00 0 00 0 𝛼𝛼 − 1)(𝛼 ̸= 1),(0 𝑟12 00 1 00 𝑟32 1),

(0 𝑟12 00 1 00 0 𝑟33)(𝛼 = 1),(1 𝑟12 00 0 00 𝑟32 0),(1 𝑟12 00 1 00 0 − 1𝛼 − 1)(𝛼 ̸= 1),
(1 0 00 0 00 0 𝑟33),(1 0 00 1 00 0 𝑟33),( 1 0 00 1 0𝑟31 𝑟32 1),(1 𝑟12 00 0 00 0 𝑟33)(𝛼 = 1),

( 1 𝑟12 00 0 0𝑟31 𝑟31𝑟12 1)(𝛼 = 1),(0 𝑟12 00 1 00 𝑟32 1)(𝛼 = 1),
( 0 0 0𝑟21 1 00 0 𝑟33)(𝛼 = 1),((

𝑟11 −𝑟11 (𝑟11 − 1)𝑟21 0𝑟21 1 − 𝑟11 0𝑟11 −𝑟11 (𝑟11 − 1)𝑟21 1))
( 𝛼 = 1𝑟21 ̸= 0).
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By computing, we easily get𝑟211𝑎2 = 𝑃 (2𝑟11𝑎2) ,𝑟11𝑟21𝑎2 = 𝑃 (𝑟21𝑎2) ,𝑟221𝑎2 = 𝑃 (0) , (A.4)

that is, the following equations hold:𝑟211𝑎2 = 2𝑟11𝑟21𝑎 + 2𝑟11𝑟22𝑎2,𝑟11𝑟21𝑎2 = 𝑟221𝑎 + 𝑟21𝑟22𝑎2,𝑟221𝑎2 = 0. (A.5)

Again by computing, we can obtain the following solu-
tions: 𝑟21 = 0,𝑟11 = 0,𝑟21 = 0,𝑟11 = 2𝑟22. (A.6)

In a similar way, we can show the other cases.

Proof of 	eorem 19(A). In the following, we firstly prove the
case (1). Suppose that𝑃 is Rota-Baxter operator of weight 𝜆 =0, with the representation

𝑃(𝑎𝑏𝑐) = (𝑟11 𝑟12 𝑟13𝑟21 𝑟22 𝑟23𝑟31 𝑟32 𝑟33)(𝑎𝑏𝑐) . (A.7)

Applying the above equalities to Rota-Baxter identity, we
obtain the following:[𝑃 (𝑎) , 𝑃 (𝑎)] = 𝑃 ([𝑎, 𝑃 (𝑎)] + [𝑃 (𝑎) , 𝑎]) ,[𝑃 (𝑎) , 𝑃 (𝑏)] = 𝑃 ([𝑎, 𝑃 (𝑏)] + [𝑃 (𝑎) , 𝑏]) ,[𝑃 (𝑎) , 𝑃 (𝑐)] = 𝑃 ([𝑎, 𝑃 (𝑐)] + [𝑃 (𝑎) , 𝑐]) ,[𝑃 (𝑏) , 𝑃 (𝑎)] = 𝑃 ([𝑏, 𝑃 (𝑎)] + [𝑃 (𝑏) , 𝑎]) ,[𝑃 (𝑏) , 𝑃 (𝑏)] = 𝑃 ([𝑏, 𝑃 (𝑏)] + [𝑃 (𝑏) , 𝑏]) ,[𝑃 (𝑏) , 𝑃 (𝑐)] = 𝑃 ([𝑏, 𝑃 (𝑐)] + [𝑃 (𝑏) , 𝑐]) ,[𝑃 (𝑐) , 𝑃 (𝑎)] = 𝑃 ([𝑐, 𝑃 (𝑎)] + [𝑃 (𝑐) , 𝑎]) ,[𝑃 (𝑐) , 𝑃 (𝑏)] = 𝑃 ([𝑐, 𝑃 (𝑏)] + [𝑃 (𝑐) , 𝑏]) ,[𝑃 (𝑐) , 𝑃 (𝑐)] = 𝑃 ([𝑐, 𝑃 (𝑐)] + [𝑃 (𝑐) , 𝑐]) .

(A.8)

That is, we have[𝑟11𝑎 + 𝑟12𝑏 + 𝑟13𝑐, 𝑟11𝑎 + 𝑟12𝑏 + 𝑟13𝑐]= 𝑃 ([𝑎, 𝑟11𝑎 + 𝑟12𝑏 + 𝑟13𝑐]+ [𝑟11𝑎 + 𝑟12𝑏 + 𝑟13𝑐, 𝑎]) ,[𝑟11𝑎 + 𝑟12𝑏 + 𝑟13𝑐, 𝑟21𝑎 + 𝑟22𝑏 + 𝑟23𝑐]= 𝑃 ([𝑎, 𝑟21𝑎 + 𝑟22𝑏 + 𝑟23𝑐]+ [𝑟11𝑎 + 𝑟12𝑏 + 𝑟13𝑐, 𝑏]) ,[𝑟11𝑎 + 𝑟12𝑏 + 𝑟13𝑐, 𝑟31𝑎 + 𝑟32𝑏 + 𝑟33𝑐]= 𝑃 ([𝑎, 𝑟31𝑎 + 𝑟32𝑏 + 𝑟33𝑐]+ [𝑟11𝑎 + 𝑟12𝑏 + 𝑟13𝑐, 𝑐]) ,[𝑟21𝑎 + 𝑟22𝑏 + 𝑟23𝑐, 𝑟11𝑎 + 𝑟12𝑏 + 𝑟13𝑐]= 𝑃 ([𝑏, 𝑟11𝑎 + 𝑟12𝑏 + 𝑟13𝑐]+ [𝑟21𝑎 + 𝑟22𝑏 + 𝑟23𝑐, 𝑎]) ,[𝑟21𝑎 + 𝑟22𝑏 + 𝑟23𝑐, 𝑟21𝑎 + 𝑟22𝑏 + 𝑟23𝑐]= 𝑃 ([𝑏, 𝑟21𝑎 + 𝑟22𝑏 + 𝑟23𝑐]+ [𝑟21𝑎 + 𝑟22𝑏 + 𝑟23𝑐, 𝑏]) ,[𝑟21𝑎 + 𝑟22𝑏 + 𝑟23𝑐, 𝑟31𝑎 + 𝑟32𝑏 + 𝑟33𝑐]= 𝑃 ([𝑏, 𝑟31𝑎 + 𝑟32𝑏 + 𝑟33𝑐]+ [𝑟21𝑎 + 𝑟22𝑏 + 𝑟23𝑐, 𝑐]) ,[𝑟31𝑎 + 𝑟32𝑏 + 𝑟33𝑐, 𝑟11𝑎 + 𝑟12𝑏 + 𝑟13𝑐]= 𝑃 ([𝑐, 𝑟11𝑎 + 𝑟12𝑏 + 𝑟13𝑐]+ [𝑟31𝑎 + 𝑟32𝑏 + 𝑟33𝑐, 𝑎]) ,[𝑟31𝑎 + 𝑟32𝑏 + 𝑟33𝑐, 𝑟21𝑎 + 𝑟22𝑏 + 𝑟23𝑐]= 𝑃 ([𝑐, 𝑟21𝑎 + 𝑟22𝑏 + 𝑟23𝑐]+ [𝑟31𝑎 + 𝑟32𝑏 + 𝑟33𝑐, 𝑏]) ,[𝑟31𝑎 + 𝑟32𝑏 + 𝑟33𝑐, 𝑟31𝑎 + 𝑟32𝑏 + 𝑟33𝑐]= 𝑃 ([𝑐, 𝑟31𝑎 + 𝑟32𝑏 + 𝑟33𝑐]+ [𝑟31𝑎 + 𝑟32𝑏 + 𝑟33𝑐, 𝑐]) .

(A.9)

Since [𝑎, 𝑎] = 𝑏, [𝑎, 𝑏] = 𝑐, we have𝑟211𝑏 + 𝑟11𝑟12𝑐 = (2𝑟11𝑟21 + 𝑟12𝑟31) 𝑎+ (2𝑟11𝑟22 + 𝑟12𝑟32) 𝑏+ (2𝑟11𝑟23 + 𝑟12𝑟33) 𝑐,𝑟11𝑟21𝑏 + 𝑟11𝑟22𝑐 = (𝑟221 + 𝑟22𝑟31 + 𝑟11𝑟31) 𝑎



Advances in Mathematical Physics 13+ (𝑟21𝑟22 + 𝑟22𝑟32 + 𝑟11𝑟32) 𝑏+ (𝑟21𝑟23 + 𝑟22𝑟33 + 𝑟11𝑟33) 𝑐,𝑟11𝑟31𝑏 + 𝑟11𝑟32𝑐 = (𝑟31𝑟21 + 𝑟32𝑟31) 𝑎+ (𝑟31𝑟22 + 𝑟232) 𝑏+ (𝑟31𝑟23 + 𝑟32𝑟33) 𝑐,𝑟21𝑟11𝑏 + 𝑟21𝑟12𝑐 = 𝑟221𝑎 + 𝑟21𝑟22𝑏 + 𝑟21𝑟23𝑐,𝑟221𝑏 + 𝑟21𝑟22𝑐 = 𝑟21𝑟31𝑎 + 𝑟21𝑟32𝑏 + 𝑟21𝑟33𝑐,𝑟21𝑟31𝑏 + 𝑟21𝑟32𝑐 = 0𝑟31𝑟11𝑏 + 𝑟31𝑟12𝑐 = 𝑟31𝑟21𝑎 + 𝑟31𝑟22𝑏 + 𝑟31𝑟23𝑐,𝑟31𝑟21𝑏 + 𝑟31𝑟22𝑐 = 𝑟231𝑎 + 𝑟31𝑟32𝑏 + 𝑟31𝑟33𝑐,𝑟231𝑏 + 𝑟31𝑟32𝑐 = 0.
(A.10)

Transposing and amalgamating, we get that2𝑟11𝑟21 + 𝑟12𝑟31 = 0;2𝑟11𝑟22 + 𝑟12𝑟32 − 𝑟211 = 0;2𝑟11𝑟23 + 𝑟12𝑟33 − 𝑟11𝑟12 = 0,𝑟221 + 𝑟22𝑟31 + 𝑟11𝑟31 = 0;𝑟21𝑟22 + 𝑟22𝑟32 + 𝑟11𝑟32 − 𝑟11𝑟21 = 0;𝑟21𝑟23 + 𝑟22𝑟33 + 𝑟11𝑟33 − 𝑟11𝑟22 = 0,𝑟31𝑟21 + 𝑟32𝑟31 = 0;𝑟31𝑟22 + 𝑟232 − 𝑟11𝑟31 = 0;𝑟31𝑟23 + 𝑟32𝑟33 − 𝑟11𝑟32 = 0,𝑟221 = 0;𝑟21𝑟22 − 𝑟21𝑟11 = 0;𝑟21𝑟23 − 𝑟21𝑟12 = 0,𝑟21𝑟31 = 0;𝑟21𝑟32 − 𝑟221 = 0;𝑟21𝑟33 − 𝑟21𝑟22 = 0,𝑟21𝑟31 = 0;𝑟21𝑟32 = 0,𝑟31𝑟21 = 0;𝑟31𝑟22 − 𝑟31𝑟11 = 0;

𝑟31𝑟23 − 𝑟31𝑟12 = 0,𝑟231 = 0;𝑟31𝑟32 − 𝑟31𝑟21 = 0;𝑟31𝑟33 − 𝑟31𝑟22 = 0,𝑟231 = 0;𝑟31𝑟32 = 0.
(A.11)

It is easy to see that 𝑟21 = 𝑟31 = 0 by the above equations.
So

2𝑟11𝑟22 + 𝑟12𝑟32 − 𝑟211 = 0,2𝑟11𝑟23 + 𝑟12𝑟33 − 𝑟11𝑟12 = 0,𝑟22𝑟32 + 𝑟11𝑟32 = 0,𝑟22𝑟33 + 𝑟11𝑟33 − 𝑟11𝑟22 = 0,𝑟232 = 0,𝑟32𝑟33 − 𝑟11𝑟32 = 0,
(A.12)

and 𝑟32 = 0. Hence we get
2𝑟11𝑟22 − 𝑟211 = 0,2𝑟11𝑟23 + 𝑟12𝑟33 − 𝑟11𝑟12 = 0,𝑟22𝑟33 + 𝑟11𝑟33 − 𝑟11𝑟22 = 0. (A.13)

In a light of the above first equality: 2𝑟11𝑟22 − 𝑟211 = 0, we
consider two cases: 𝑟11 = 0 or 𝑟11 ̸= 0.

Suppose that 𝑟11 = 0. Then, according to the above
equalities, it is easy to see that 𝑟12𝑟33 = 0 and 𝑟22𝑟33 = 0. So𝑟12 = 𝑟22 = 0 or 𝑟33 = 0.

Suppose that 𝑟11 ̸= 0.Then, by the above equalities, we
have

𝑟11 = 2𝑟22,2𝑟11𝑟23 + 𝑟12𝑟33 − 𝑟11𝑟12 = 0,3𝑟22𝑟33 − 2𝑟222 = 0. (A.14)

Since 𝑟11 = 2𝑟22 ̸= 0, we know that 𝑟33 = (2/3)𝑟22. So4𝑟22𝑟23 + (2/3)𝑟12𝑟22 − 2𝑟22𝑟12 = 0. It means that 𝑟12 = 3𝑟23.
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Hence we obtain all solutions as follows:𝑟11 = 𝑟12 = 0,𝑟21 = 𝑟22 = 0,𝑟31 = 𝑟32 = 0,𝑟11 = 0,𝑟21 = 0,𝑟31 = 𝑟32 = 𝑟33 = 0,𝑟11 = 2𝑟22,𝑟12 = 3𝑟23,𝑟21 = 0,𝑟31 = 𝑟32 = 0,𝑟33 = 23𝑟22.

(A.15)

The other cases can be similarly proved.

Similar to Theorem 19(A), we can prove Theorems 19(B),
21(A), and 21(B).
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