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In the present paper we study the existence of positive ground state solutions for the nonautonomous Schrödinger-Poisson system
with competing potentials. Under some assumptions for the potentials we prove the existence of positive ground state solution.

1. Introduction

In this paper we are concerned with the existence of solution
of the nonautonomous Schrödinger-Poisson system

−Δ𝑢 + 𝐴 (𝑥) 𝑢 + 𝐵 (𝑥) 𝜙 (𝑥) 𝑢 = 𝑄 (𝑥) |𝑢|𝑝−1 𝑢,
𝑥 ∈ R

3,
−Δ𝜙 = 𝐵 (𝑥) 𝑢2,

𝑢 ∈ 𝐻1 (R3) ,
(1)

where 𝑝 ∈ (3, 5), 𝐴(𝑥), 𝐵(𝑥), and 𝑄(𝑥) are positive functions
such that lim|𝑥|󳨀→∞ 𝐴(𝑥) = 𝑎∞ > 0, lim|𝑥|󳨀→∞ 𝐵(𝑥) = 𝑏∞ >0, and lim|𝑥|󳨀→∞𝑄(𝑥) = 𝑞∞ > 0. Here 𝐵 : R3 󳨀→ R denotes
the nonnegative measurable function which represents a
nonconstant charge corrector to the density 𝑢2. 𝐴 and 𝑄
are called the potentials of system (1). In the context of the
so-called Density Functional Theory, variants of system (1)
appear as mean field approximations of quantum many-body
systems; see [1–3].

This kind of system also arises in many fields of physics.
Indeed, one considers the following system:

𝑖ℏ𝜕𝜓𝜕𝑡 = − ℏ
2

2𝑚Δ𝜓 + 𝑘 (𝑥) 𝜓 + 𝐵 (𝑥) 𝜙𝜓
− 𝑄 (𝑥) 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨𝑝−2 𝜓, 𝑥 ∈ R

3, 𝑡 ∈ R,

− ℏ22𝑚Δ𝜙 (𝑥) = 𝐵 (𝑥) 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 , 𝑢 ∈ 𝐻1 (R3) ,
(2)

where 𝑖 is the imaginary unit, Δ is the Laplacian operator, andℏ is the Planck constant. A standing wave is a solution of (2)
of the form 𝜓(𝑥, 𝑡) = 𝑢(𝑥)𝑒𝑖𝜔𝑡, 𝜔 > 0 and 𝑡 ∈ R. It is clear
that 𝜓(𝑥, 𝑡) solves (2) if and only if 𝑢(𝑥) solves the so-called
stationary system

− ℏ22𝑚Δ𝑢 + 𝐴 (𝑥) 𝑢 + 𝐵 (𝑥) 𝜙 (𝑥) 𝑢 = 𝑄 (𝑥) |𝑢|𝑝−2 𝑢,
𝑥 ∈ R

3,
− ℏ22𝑚Δ𝜙 = 𝐵 (𝑥) 𝑢2,

𝑥 ∈ R
3,

(3)

where 𝐴(𝑥) = 𝑘(𝑥) + 𝜔ℏ. Here we consider that the case ℏ is
constant. Without loss of generality we assume that ℏ2/2𝑚 =1, then system (3) becomes (1). System (1) is also modeled in
Abelian GaugeTheories; for instance, see [4–6] and reference
therein. In fact, in order to describe the interaction of a
nonlinear Schrödinger field with an electromagnetic field E−
H, the gauge potentials A − F

A : R3 × R 󳨀→ R
3,

F : R3 × R 󳨀→ R
(4)
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are related to E − H by the Maxwell equations

E = −(∇F + 𝜕A𝜕𝑡 ) ,
H = ∇ ×A.

(5)

If we are interested in finding standing waves (solutions of
a field equation whose energy travels as a localized packet
preserving this localization in time) and we consider the
electrostatic case (when A = 0), the Schrödinger field
is described by a real function 𝑢 : R3 󳨀→ R, which
represents the matter (see [4, 7]). In this situation we need to
consider the stationary states of Schrödinger-Maxwell system
(1). The system is also used in quantum electrodynamics,
semiconductor theory, nonlinear optics, and plasma physics;
for more information on this direction, one can refer to [7–9]
and the references therein.

In recent years many papers focus on the existence,
multiplicity, and concentration of positive solutions of (3)
for the semiclassical case (ℏ > 0 sufficiently small). In this
framework one is interested not only in existence of solutions
but also in their asymptotic behavior as ℏ 󳨀→ 0. Typically,
the solution tends to concentrate on critical points of 𝐴(𝐵 or𝑄). These solutions are called spikes. For more information
on this direction. one can refer to [10–14] and the references
therein.

In the present paper we are interested in studying the case
when ℏ is constant. In [15], the authors studied the existence
and nonexistence of solutions of (1) when 𝐴 = 𝐵 = 𝑄 = 1.
The existence of themultiple solutions of (1) has been found in
the paper [16] in a radial setting. In the paper [17], the author
considers that the case 𝐵 = 1,𝑉,𝐾 is radial and satisfies

𝐴01 + |𝑥|𝛼 ≤ 𝐴 (𝑥) ≤ 𝐴1,
0 < 𝑄 (𝑥) ≤ 𝑄01 + |𝑥|𝛽 ,

(6)

where𝛼 ∈ (0, 2],𝛽, 𝐴0,𝐴1, and𝑄0 are positive constants. The
author proved the existence of nontrivial positive classical
mountain-pass solution of (1). Moreover, some generaliza-
tions of the last cases, with 𝑄(𝑥)|𝑢|𝑝−1𝑢 replaced by a more
generic function 𝑓(𝑥, 𝑢), were considered in [18, 19]. It is well
known that, dealing with system (1), one has to face different
kinds of difficulties, which are related to the potential and to
the unboundedness of the space R3. Many early studies were
devoted to the autonomous case and to the case in which
the coefficients are supposed to be radial (see [16, 20, 21]),
just to overcome the lack of compactness-taking advantage
of the compact embedding 𝐻1

𝑟 (R3) 󳨅→ L𝑞(R3) (∀𝑞 ∈ (2, 6)).
More recently, many contributions to (1) have also been given
looking at cases in which no symmetry assumptions are given
on the coefficients appearing in (1); one can refer to the papers
[22–24]. Furthermore, for more results on the existence of
positive solutions, ground and bound states, one can see
[18, 19, 21, 25–33] and references therein. Nearly, the paper
[34] proves the existence of bound state solution of (1) under
some decay condition on 𝐴, 𝐵, and 𝑄. Precisely, assume that

𝐴(𝑥) = 𝑉∞ + 𝑊(𝑥) and ∫
R3
𝑊(𝑥)(|𝑥|𝑒2√𝑉∞|𝑥|) < ∞, 𝑄(𝑥) =

𝑄∞ − 𝛽(𝑥) and ∫R3 𝛽(𝑥)(|𝑥|𝑒2√𝑉∞|𝑥|) < ∞, and

0 ≤ 𝐵 (𝑥) ≤ 𝑐𝑒−𝜎|𝑥|, for |𝑥| large enough, (7)

where 𝑉∞ and 𝑄∞ are positive constants. From this assump-
tion one can easily deduce that lim|𝑥|󳨀→∞ 𝐵(𝑥) = 0. In order
to get the compactness, the paper [34] studies the case when
the limit equation is Scalar Schrödinger equation, i.e.,

−Δ𝑢 + 𝑎∞𝑢 = 𝑞∞ |𝑢|𝑝−1 𝑢, 𝑢 ∈ 𝐻1 (R3) . (8)

According to [35, 36], (8) has unique positive solution, and
the energy level of any sign-changing solution is strictly
greater than 2𝑐∞, where 𝑐∞ is the least energy level for the
positive solution of (8). This information is very important
for proving the existence of positive bound solution (high
energy) of (1.1) in [34].

Motivated by [34, 37], in the present paper we shall study
the case when the limit equation is the Schrödinger-Poisson
system

−Δ𝑢 + 𝑎∞𝑢 + 𝑏∞𝜙 (𝑥) 𝑢 = 𝑞∞ |𝑢|𝑝−1 𝑢, in R
3,

−Δ𝜙 = 𝑏∞𝑢2, 𝑢 ∈ 𝐻1 (R3) , (9)

and, under some conditions for the 𝐴, 𝐵, and𝑄, we prove the
existence of positive ground state solution of (1).

In order to state our main results, we shall give some
assumptions. For 𝜆 ∈ R+, we define 𝐴(𝑥) = 𝑎∞ + 𝜆𝑎(𝑥),𝐵(𝑥) = 𝑏∞ − 𝑏(𝑥), and 𝑄(𝑥) = 𝑞∞ + 𝑞(𝑥). Throughout the
paper we need the following conditions.(𝐴1) 𝑎∞ > 1, 𝑎 ∈ 𝐿3/2(R3), 0 < 𝑎 < 1, 𝑎 ̸= 0,
lim|𝑥|󳨀→∞ 𝑎(𝑥) = 0.(𝐴2) 𝑏∞ > 1, 𝑏 ∈ 𝐿3/2(R3) ∩ 𝐿∞(R3), 0 ≤ 𝑏 ≤ 1, 𝑏 ̸= 0,
lim|𝑥|󳨀→∞ 𝑏(𝑥) = 0.(𝐴3) 𝑞∞ > 1, 𝑞 ∈ 𝐿∞(R3), 0 < 𝑞 < 1, 𝑞 ̸= 0,
lim|𝑥|󳨀→∞ 𝑞(𝑥) = 0.

Clearly, system (1) becomes

− Δ𝑢 + (𝑎∞ + 𝜆𝑎 (𝑥)) 𝑢 + (𝑏∞ − 𝑏 (𝑥)) 𝜙 (𝑥) 𝑢
= (𝑞∞ + 𝑞 (𝑥)) |𝑢|𝑝−1 𝑢, in R

3,
− Δ𝜙 = (𝑏∞ − 𝑏 (𝑥)) 𝑢2, 𝑢 ∈ 𝐻1 (R3) ,

(10)

where 𝜆 ∈ R+ and 𝑝 ∈ (3, 5). In the following we shall
focus on system (10). According to [11, 12], we know that (9)
has a positive radial symmetric solution 𝑤. Moreover, 𝑤 is
decreasing when the radial coordinate increases. Precisely,
there exists a constant 𝑐∗ > 0 such that

lim
|𝑥|󳨀→+∞

|𝑤 (𝑥)| 𝑒𝑐∗|𝑥| = Constant. (11)

Then we have the following main results.

Theorem 1. Assume that 𝑝 ∈ (3, 5) and (𝐴1)-(𝐴3) hold.
Moreover, if one of the following conditions holds
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(1) lim|𝑥|󳨀→∞ 𝑞(𝑥)𝑒(2𝜏/(1+𝜏))𝑐∗|𝑥| = ∞
and lim|𝑥|󳨀→∞ 𝑞(𝑥)𝑒(2𝜏/(1+2𝜏))𝑐∗|𝑥| ≤ 𝑐0,
lim|𝑥|󳨀→∞ 𝑎(𝑥)|𝑥|1+𝜏𝑒(2𝜏/(1−𝜏))𝑐∗|𝑥| ≤ 𝑐1,
lim|𝑥|󳨀→∞ 𝑏(𝑥)𝑒(2𝜏(1−𝜏)/(1+𝜏)(1+2𝜏))𝑐∗|𝑥| ≥ 𝑐2, where 𝜏 ∈ (0, 1),𝑐0, 𝑐1, and 𝑐2 are positive constants.

(2) lim|𝑥|󳨀→∞ 𝑞(𝑥)𝑒(2𝜏/(1+𝜏))𝑐∗|𝑥| = ∞ and
lim|𝑥|󳨀→∞ 𝑎(𝑥)𝑒((𝑝−1)𝜏/(1−𝜏))𝑐∗|𝑥| ≤ 𝑐3, where 𝜏 ∈ (0, 1)
and 𝑐3 is positive constant.

Then system (10) has a positive ground state solution for
each 𝜆 ∈ R+.

Remark 2. (i) From the assumptions on 𝐵, we know that
lim|𝑥|󳨀→∞ 𝐵(𝑥) = 𝑏∞. Hence we need to consider the
limit equation (9) to recover the compactness. This is quite
different from the recent work of [34].Themain novelty here
is that we shall compare the decay rate of 𝐴, 𝐵, and 𝑄 to
recover the compactness and prove the existence of positive
ground state solution.

(ii) Note that in condition (1) of Theorem 1, we know
that 𝑎(𝑥) is decaying faster than 𝑏(𝑥). In condition (2)
of Theorem 1, we only need the decay condition for 𝑎(𝑥)
(whatever the decay speed of 𝑏(𝑥) to 0 as |𝑥| 󳨀→ ∞)
to prove the existence of positive solution. This is different
phenomenon compared to [34].

2. Preliminary Results

We define the following notation:

(i) ‖ ⋅ ‖ is the norm of 𝐻1(R3) defined by ‖𝑢‖2 =∫
R3
(|∇𝑢|2 + 𝑎∞𝑢2);

(ii) ‖ ⋅ ‖𝐷1,2 is the norm of 𝐷1,2(R3) defined by ‖𝑢‖2𝐷1,2 =∫
R3
|∇𝑢|2;

(iii) (⋅, ⋅) is the scalar product of𝐻1 (R3) defined by (𝑢, V) =∫
R3
[∇𝑢∇V + 𝑢V];

(iv) let 𝐶, 𝑐∗, 𝑐, 𝑐𝑖 (𝑖 = 1, ⋅ ⋅ ⋅ ) denote different positive
constants.

In this part we mainly give some basic knowledge which
will be used later. We first show that the second equation of
(10) can be solved. We consider, for all 𝑢 ∈ 𝐻1(R3), the linear
functional 𝐽𝑢 defined in𝐷1,2(R3) by

𝐽𝑢 (V) = ∫
R3
(𝑏∞ − 𝑏 (𝑥)) 𝑢2V. (12)

We infer from condition (𝐴2) and Hölder inequality that

󵄨󵄨󵄨󵄨𝐽𝑢 (V)󵄨󵄨󵄨󵄨 ≤ 𝐶 |𝑢|212/5 ‖V‖𝐷1,2 . (13)

By the Lax-Milgram theorem, we know that there exists
unique 𝜙𝑢 ∈ 𝐷1,2(R3) such that

∫
R3
∇𝜙𝑢∇V = ∫

R3
(𝑏∞ − 𝑏 (𝑥)) 𝑢2V ∀V ∈ 𝐷1,2 (R3) . (14)

So, 𝜙𝑢 is a weak solution of −Δ𝜙 = 𝑢2 and the following
formula holds

𝜙𝑢 (𝑥) = ∫
R3

(𝑏∞ − 𝑏 (𝑦)) 𝑢2 (𝑦)
4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑦

= 14𝜋 |𝑥| ∗ ((𝑏∞ − 𝑏) 𝑢2) .
(15)

Moreover, 𝜙𝑢 > 0 when 𝑢 ̸= 0.
We recall the following classical Hardy-Littlewood-

Sobolev inequality (see [38, Theorem 4.3]). Assume that 𝑓 ∈𝐿𝑝(R3) and 𝑔 ∈ 𝐿𝑞(R3). Then one has

∫
R3
∫
R3

𝑓 (𝑥) 𝑔 (𝑦)󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑡 𝑑𝑥𝑑𝑦 ≤ 𝑐 (𝑝, 𝑞, 𝑡) 󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝑝 󵄨󵄨󵄨󵄨𝑔󵄨󵄨󵄨󵄨𝑞 , (16)

where 1 < 𝑝, 𝑞 < ∞, 0 < 𝑡 < 3, and 1/𝑝 + 1/𝑞 + 𝑡/3 = 2. By
(16) we know that

∫
R3
∫
R3

𝑢2 (𝑥) 𝑢2 (𝑦)󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦 ≤ 𝑐 |𝑢|412/5 ≤ 𝑐 ‖𝑢‖4 . (17)

It is well known that solutions of (10) correspond to critical
points of the energy functional

Φ𝜆 (𝑢) = 12 ∫R3 (|∇𝑢|2 + (𝑎∞ + 𝜆𝑎 (𝑥)) 𝑢2)
+ 14 ∫R3 (𝑏∞ − 𝑏 (𝑥)) 𝜙𝑢𝑢2
− 1𝑝 + 1 ∫R3 (𝑞∞ + 𝑞 (𝑥)) |𝑢|𝑝+1 .

(18)

From (17), we know that Φ𝜆 is well defined and that

Φ󸀠
𝜆 (𝑢) [V] = ∫

R3
(∇𝑢∇V + (𝑎∞ + 𝜆𝑎 (𝑥)) 𝑢V)

+ ∫
R3
(𝑏∞ − 𝑏 (𝑥)) 𝜙𝑢𝑢V

− ∫
R3
(𝑞∞ + 𝑞 (𝑥)) |𝑢|𝑝−2 𝑢V.

(19)

We define the operator 𝐼 : 𝐻1(R3) 󳨀→ 𝐷1,2(R3) as
𝐼 [𝑢] = 𝜙𝑢. (20)

We infer from [34, Proposition 2.1-2.2] that 𝐼 has the follow-
ing properties.

Lemma 3. (1) 𝐼 is continuous.
(2) 𝐼maps bounded sets into bounded sets.
(3) 𝐼[𝑡𝑢] = 𝑡2𝐼[𝑢] for all 𝑡 ∈ R.
(4) If 𝑢𝑛 ⇀ 𝑢 ∈ 𝐻1(R3), then we have ∫

R3
𝑏(𝑥)𝜓𝑢𝑛 (𝑥)𝑢2𝑛󳨀→ ∫

R3
𝑏(𝑥)𝜓𝑢(𝑥)𝑢2 and ∫

R3
𝑏(𝑥)𝜓𝑢𝑛(𝑥)𝑢𝑛𝜙 󳨀→

∫
R3
𝑏(𝑥)𝜓𝑢(𝑥)𝑢𝜙 for each 𝜙 ∈ 𝐻1(R3), as 𝑛 󳨀→ ∞,

where 𝜓𝑢(𝑥) = ∫R3(𝑏(𝑦)𝑢2(𝑦)/4𝜋|𝑥 − 𝑦|)𝑑𝑦.
(5) If 𝑢𝑛 ⇀ 𝑢 ∈ 𝐻1(R3), then we have 𝐼(𝑢𝑛) 󳨀→ 𝐼(𝑢) in𝐷1,2(R3) and ∫

R3
𝑏∞𝜙𝑢𝑛(𝑥)𝑢𝑛𝜙 󳨀→ ∫

R3
𝑏∞𝜙𝑢(𝑥)𝑢𝜙 for each

𝜙 ∈ 𝐻1(R3), as 𝑛 󳨀→ ∞, where 𝜙𝑢(𝑥) = ∫R3(𝑏∞𝑢2(𝑦)/4𝜋|𝑥 −𝑦|)𝑑𝑦.
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Proof. The conclusions (1)-(4) can be proved as in [34,
Proposition 2.1-2.2]. Hence we only focus on the proof of (5).
Since, by definition of 𝐼, for all 𝑢 ∈ 𝐷1,2(R3) we have

‖𝐼 (𝑢)‖𝐷1,2(R3) = 󵄩󵄩󵄩󵄩𝐽𝑢󵄩󵄩󵄩󵄩L(𝐷1,2(R3),R) (21)

then, in order to prove 𝐼(𝑢𝑛) 󳨀→ 𝐼(𝑢) in 𝐷1,2(R3), it suffices
to prove that

󵄩󵄩󵄩󵄩󵄩𝐽𝑢𝑛 − 𝐽𝑢󵄩󵄩󵄩󵄩󵄩L(𝐷1,2(R3),R)
󳨀→ 0, as 𝑛 󳨀→ ∞. (22)

Let 𝜀 > 0 be fixed arbitrarily. Then there exists a positive
number 𝑅𝜀 > 0 so large that |V|𝐿6(𝐵𝑐𝑅𝜀 ) < 𝜀 for V ∈ 𝐷1,2(R3),
where 𝐵𝑅𝜀 = {𝑥 ∈ R3 : |𝑥| ≤ 𝑅𝜀} and 𝐵𝑐𝑅𝜀 = R3 \ 𝐵𝑅𝜀 . Hence
we deduce that

󵄨󵄨󵄨󵄨󵄨𝐽𝑢𝑛 (V) − 𝐽𝑢 (V)󵄨󵄨󵄨󵄨󵄨 = ∫
R3
(𝑏∞ − 𝑏 (𝑥)) (𝑢2𝑛 − 𝑢2) V𝑑𝑥

= ∫
𝐵𝑅𝜀

(𝑏∞ − 𝑏 (𝑥)) (𝑢2𝑛 − 𝑢2) V𝑑𝑥
+ ∫

𝐵𝑐𝑅𝜀

(𝑏∞ − 𝑏 (𝑥)) (𝑢2𝑛 − 𝑢2) V𝑑𝑥
≤ 𝑐 |V|6 󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢󵄨󵄨󵄨󵄨𝐿12/5(𝐵𝑅𝜀 ) 󵄨󵄨󵄨󵄨𝑢𝑛 + 𝑢󵄨󵄨󵄨󵄨𝐿12/5(𝑅𝜀)
+ 𝑐 |V|𝐿6(𝐵𝑅𝜀 )𝑐 󵄨󵄨󵄨󵄨󵄨𝑢2𝑛 − 𝑢2󵄨󵄨󵄨󵄨󵄨6/5

≤ (𝑐𝜀 + 𝑐 󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢󵄨󵄨󵄨󵄨𝐿12/5(𝐵𝑅𝜀 ) 󵄨󵄨󵄨󵄨𝑢𝑛 + 𝑢󵄨󵄨󵄨󵄨𝐿12/5(𝑅𝜀)) ‖V‖𝐷1,2 .

(23)

Since 𝑢𝑛 󳨀→ 𝑢 in 𝐿𝑝𝑙𝑜𝑐(R3) (𝑝 ∈ (2, 6)), we know that (22)
holds.

Next we prove the later conclusion. For any fixed 𝑅 > 0
large, we infer that for each 𝑥 ∈ R

󵄨󵄨󵄨󵄨󵄨𝜙𝑢𝑛 (𝑥) − 𝜙𝑢 (𝑥)󵄨󵄨󵄨󵄨󵄨 = ∫
R3
𝑏∞ 𝑢

2
𝑛 (𝑦) − 𝑢2 (𝑦)4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑦

= ∫
|𝑥−𝑦|≤1

𝑏∞ 𝑢
2
𝑛 (𝑦) − 𝑢2 (𝑦)4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑦

+ ∫
1≤|𝑥−𝑦|≤𝑅

𝑏∞ 𝑢
2
𝑛 (𝑦) − 𝑢2 (𝑦)4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑦

+ ∫
|𝑥−𝑦|≥𝑅

𝑏∞ 𝑢2𝑛 (𝑦) − 𝑢2 (𝑦)4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑦
≤ 𝑐 󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢󵄨󵄨󵄨󵄨𝐿4/3(𝐵1(𝑥)) 󵄨󵄨󵄨󵄨𝑢𝑛 + 𝑢󵄨󵄨󵄨󵄨𝐿4(𝐵1(𝑥))
⋅ (∫

|𝑥−𝑦|≤1

1󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨2𝑑𝑦) + 𝑐
󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢󵄨󵄨󵄨󵄨𝐿8/3(𝐵𝑅(𝑥)\𝐵1(𝑥))

⋅ 󵄨󵄨󵄨󵄨𝑢𝑛 + 𝑢󵄨󵄨󵄨󵄨𝐿8/3(𝐵𝑅(𝑥)\𝐵1(𝑥))(∫1≤|𝑥−𝑦|≤𝑅
1󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨4 𝑑𝑦)

+ 𝑐 󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢󵄨󵄨󵄨󵄨𝐿8/3(𝐵𝑐𝑅(𝑥)) 󵄨󵄨󵄨󵄨𝑢𝑛 + 𝑢󵄨󵄨󵄨󵄨𝐿8/3(𝐵𝑐𝑅(𝑥))
⋅ (∫

|𝑥−𝑦|≥𝑅

1󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨4𝑑𝑦)
(24)

and, hence, we deduce that 𝜙𝑢𝑛(𝑥) 󳨀→ 𝜙𝑢(𝑥) a.e., in 𝑥 ∈ R3

and |𝜙𝑢𝑛 − 𝜙𝑢|𝐿∞(𝐵𝑅0 ) 󳨀→ 0 for each 𝑅0 > 0, as 𝑛 󳨀→ ∞. A
direct computation shows that for 𝑅 > 0 large
󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R3 𝑏∞𝜙𝑢𝑛 (𝑥) 𝑢𝑛𝜙 − ∫R3 𝑏∞𝜙𝑢 (𝑥) 𝑢𝜙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R3 𝑏∞ (𝜙𝑢𝑛 − 𝜙𝑢) 𝑢𝑛𝜙 + 𝑏∞𝜙𝑢 (𝑥) (𝑢𝑛 − 𝑢) 𝜙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝐵𝑅 (𝜙𝑢𝑛 − 𝜙𝑢) 𝑢𝑛𝜙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 𝑐
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝐵𝑐𝑅 (𝜙𝑢𝑛 − 𝜙𝑢) 𝑢𝑛𝜙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑐 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝐵𝑅 𝜙𝑢 (𝑥) (𝑢𝑛 − 𝑢) 𝜙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑐 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝐵𝑐𝑅 𝜙𝑢 (𝑥) (𝑢𝑛 − 𝑢) 𝜙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐 󵄨󵄨󵄨󵄨󵄨𝜙𝑢𝑛 − 𝜙󵄨󵄨󵄨󵄨󵄨𝐿∞(𝐵𝑅) 󵄨󵄨󵄨󵄨𝜙󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2
+ 𝑐 󵄨󵄨󵄨󵄨󵄨𝜙𝑢𝑛 − 𝜙󵄨󵄨󵄨󵄨󵄨6 󵄨󵄨󵄨󵄨𝜙󵄨󵄨󵄨󵄨𝐿(12/5)(𝐵𝑐𝑅) 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨12/5
+ 𝑐 󵄨󵄨󵄨󵄨󵄨𝜙𝑢󵄨󵄨󵄨󵄨󵄨6 󵄨󵄨󵄨󵄨𝜙󵄨󵄨󵄨󵄨12/5 󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢󵄨󵄨󵄨󵄨𝐿12/5(𝐵𝑅)
+ 𝑐 󵄨󵄨󵄨󵄨󵄨𝜙𝑢󵄨󵄨󵄨󵄨󵄨𝐿6(𝐵𝑐𝑅) 󵄨󵄨󵄨󵄨𝜙󵄨󵄨󵄨󵄨𝐿12/5(𝐵𝑐𝑅) 󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢󵄨󵄨󵄨󵄨12/5

(25)

which proves ∫
R3
𝜙𝑢𝑛(𝑥)𝑢𝑛𝜙 󳨀→ ∫

R3
𝜙𝑢(𝑥)𝑢𝜙 for each 𝜙 ∈

𝐻1(R3), as 𝑛 󳨀→ ∞.

It is very easy to verify that, whatever 𝜆 ∈ R is, the
function Φ𝜆 is bounded either from above or from below.
Hence, it is convenient to consider Φ𝜆 restricted to a natural
constraint, the Nehari manifold. We set

N𝜆 fl {𝑢 ∈ 𝐻1 (R3) \ {0} : Φ󸀠
𝜆 (𝑢) [𝑢] = 0} . (26)

Next lemma contains the statement of the main properties of
N𝜆.

Lemma 4. Assume that (𝐴1)-(𝐴3) hold. Then the following
conclusions hold.

(a)N𝜆 is a𝐶1 regularmanifold diffeomorphic to the sphere
of𝐻1(R3).

(b)Φ𝜆 is bounded from below onN𝜆 by a positive constant.
(c) 𝑢 is a free critical point ofΦ𝜆 if and only if u is a critical

point of Φ𝜆 constrained onN𝜆.

Proof. (a) Let 𝑢 ∈ 𝐻1(R3)\{0} be such that ‖𝑢‖ = 1.We claim
that there exists a unique 𝑡 ∈ (0,∞) such that 𝑡𝑢 ∈ N𝜆. Let𝑓(𝑡) = Φ𝜆(𝑡𝑢) for 𝑡 > 0. It is easy to verify, by (𝐴1)-(𝐴3),
that 𝑓(0) = 0, 𝑓(𝑡) > 0 for 𝑡 > 0 small and 𝑓(𝑡) < 0 for
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𝑡 large. Therefore, max𝑡>0 𝑓(𝑡) is achieved at a 𝑡 = 𝑡(𝑢) > 0
so that 𝑓(𝑡𝑢) = 0 and 𝑡(𝑢)𝑢 ∈ N𝜆. Assume that there exist𝑡1 > 𝑡2 > 0 such that 𝑡1𝑢, 𝑡2𝑢 ∈N𝜆. Then we see

(‖𝑤‖2 + ∫R3 𝜆𝑎 (𝑥) )𝑢2𝑡21 − ‖𝑤‖2 + ∫R3 𝜆𝑎 (𝑥) )𝑢2𝑡22 )

= (𝑡𝑝−31 − 𝑡𝑝−32 ) ∫
R3
(𝑞∞ + 𝑞 (𝑥)) |𝑢|𝑝+1 .

(27)

This is a contradiction. So, we prove that 𝑓(𝑡) admits a unique
positive solution 𝑡(𝑢) > 0 and 𝑡(𝑢)𝑢 ∈N𝜆.We infer from (16)
and (𝐴1)-(𝐴3) that
𝑐1 |𝑢|2𝑝+1
≤ (‖𝑢‖2 + ∫

R3
𝜆𝑎 (𝑥) 𝑢2 + ∫

R3
(𝑏∞ − 𝑏 (𝑥)) 𝜙𝑢𝑢2)

= ∫
R3
(𝑞∞ + 𝑞 (𝑥)) |𝑢|𝑝+1 ≤ 𝑐1 |𝑢|2𝑝+1 .

(28)

This implies that

‖𝑢‖ ≥ 𝑐 > 0. (29)

Let 𝐺𝜆(𝑢) fl Φ󸀠
𝜆(𝑢)[𝑢]. Then 𝐺𝜆 ∈ 𝐶1(𝐻1(R3),R) by the

regularity of Φ𝜆. Moreover, we infer from (29) that

𝐺󸀠𝜆 (𝑢) [𝑢]
= − (𝑝 − 1) ∫

R3
(|∇𝑢|2 + (𝑎∞ + 𝜆𝑎 (𝑥)) 𝑢2)

− (𝑝 − 3) ∫
R3
(𝑏∞ − 𝑏 (𝑥)) 𝜙𝑢𝑢2 ≤ − (𝑝 − 3) 𝐶

< 0.

(30)

(b) For all 𝑢 ∈N𝜆,

Φ𝜆 (𝑢)
= (12 − 1𝑝 + 1)∫R3 (|∇𝑢|2 + (𝑎∞ + 𝜆𝑎 (𝑥)) 𝑢2)

+ (14 − 1𝑝 + 1)∫R3 (𝑏∞ − 𝑏 (𝑥)) 𝜙𝑢𝑢2

≥ (12 − 1𝑝 + 1) ‖𝑢‖2 ≥ 𝑐 > 0.

(31)

Here we use the fact that 3 < 𝑝 < 5.
(c) If 𝑢 ̸= 0 is a critical point ofΦ𝜆, then we haveΦ󸀠

𝜆(𝑢) =0, 𝑢 ∈N𝜆. On the other hand, if 𝑢 is a critical point ofΦ𝜆(𝑢)
constrained onN𝜆, then there exists 𝑘 ∈ R such that

0 = Φ󸀠
𝜆 (𝑢) [𝑢] = 𝐺𝜆 (𝑢) = 𝑘𝐺󸀠𝜆 (𝑢) [𝑢] . (32)

One infers from (30) that 𝑘 = 0.
Next we consider the limit functional Φ∞ : 𝐻1(R3) 󳨀→

R, defined as

Φ∞ (𝑢) = 12 ∫R3 (|∇𝑢|2 + 𝑎∞𝑢2) +
14 ∫R3 𝑏∞𝜙𝑢 (𝑥) 𝑢2

− 1𝑝 + 1 ∫R3 𝑞∞ |𝑢|𝑝+1 .
(33)

And we consider the corresponding natural constraint

N∞ fl {𝑢 ∈ 𝐻1 (R3) \ {0} : Φ󸀠
∞ (𝑢) [𝑢] = 0} . (34)

Critical points of Φ∞ are solutions of the limit problem at
infinity

−Δ𝑢 + 𝑎∞𝑢 + 𝑏∞𝜙𝑢 (𝑥) 𝑢 = 𝑞∞ |𝑢|𝑝−1 𝑢, 𝑥 ∈ R
3,

−Δ𝜙𝑢 = 𝑏∞𝑢2, 𝑢 ∈ 𝐻1 (R3) ,
(35)

and, clearly, the conclusions of Lemma 4 hold true for Φ∞

and N∞. Moreover, for any 𝑢 ∈ 𝐻1(R3) \ {0}, it is easy to
see that there exists unique 𝑡(𝑢) > 0 such that 𝑡(𝑢)𝑢 ∈ N∞.
Set

𝑚∞ fl inf {Φ∞ (𝑢) , 𝑢 ∈N∞} . (36)

From [11, 12], we deduce that 𝑚∞ is achieved by a positive
radially symmetric function𝑤 satisfying (11). In what follows,
for any 𝑦 ∈ R3, we use the translation symbol 𝑤𝑦 fl 𝑤(⋅ − 𝑦).
Set

𝑚𝜆 fl inf {Φ𝜆 (𝑢) , 𝑢 ∈N𝜆} . (37)

Then the following relations of 𝑚𝜆 and𝑚∞ hold true.

Lemma 5. Suppose that (𝐴1)-(𝐴3) hold. Then for each 𝜆 ≥ 0
one has

0 < 𝑚𝜆 ≤ 𝑚∞. (38)

Proof. Let 𝜆 ≥ 0 be fixed. The first inequality of (38) is a
straight consequence of (31). In order to show the second
inequality we should construct a sequence {𝑢𝑛} ⊂ N𝜆 and
lim𝑛Φ𝜆(𝑢𝑛) = 𝑚∞. To accomplish this, we take {𝑦𝑛}, with𝑦𝑛 ∈ R3, |𝑦𝑛| 󳨀→ +∞, as 𝑛 󳨀→ +∞ and set 𝑢𝑛 =𝑡𝑛𝑤𝑦𝑛 , where 𝑤𝑦𝑛 = 𝑤(𝑥 − 𝑦𝑛) and 𝑡𝑛 = 𝑡𝜆(𝑤𝑦𝑛 ) >0 such that 𝑢𝑛 = 𝑡𝑛𝑤𝑦𝑛 ∈ N𝜆. Here we recall that 𝑤
is a radial solution of (35). A direct computation shows
that
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Φ𝜆 (𝑢𝑛) = 𝑡
2
𝑛2 [‖𝑤‖2 + ∫R3 𝜆𝑎 (𝑥) 𝑤2𝑦𝑛] +

𝑡4𝑛4 ∫R3 ∫R3
(𝑏∞ − 𝑏 (𝑥)) 𝑤2𝑦𝑛 (𝑥) (𝑏∞ − 𝑏 (𝑦))𝑤2𝑦𝑛 (𝑦)4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦 − 𝑞∞𝑡𝑝+1𝑛𝑝 + 1 󵄨󵄨󵄨󵄨󵄨𝑤𝑦𝑛 󵄨󵄨󵄨󵄨󵄨𝑝+1𝑝+1

− 𝑡𝑝+1𝑛𝑝 + 1 ∫R3 𝑞 (𝑥)
󵄨󵄨󵄨󵄨󵄨𝑤𝑦𝑛 󵄨󵄨󵄨󵄨󵄨𝑝+1

= 𝑡2𝑛2 [‖𝑤‖2 + ∫R3 𝜆𝑎 (𝑥 + 𝑦𝑛) 𝑤2] −
𝑡𝑝+1𝑛 𝑞∞𝑝 + 1 |𝑤|𝑝+1𝑝+1 − 𝑡𝑝+1𝑛𝑝 + 1 ∫R3 𝑞 (𝑥 + 𝑦𝑛) |𝑤|𝑝+1

+ 𝑡4𝑛4 ∫R3 ∫R3
(𝑏∞ − 𝑏 (𝑥 + 𝑦𝑛)) 𝑤2 (𝑥) (𝑏∞ − 𝑏 (𝑦 + 𝑦𝑛)) 𝑤2 (𝑦)4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦.

(39)

It is clear that

lim
𝑛󳨀→∞

∫
R3
𝑎 (𝑥 + 𝑦𝑛) 𝑤2 = 0,

lim
𝑛󳨀→∞

∫
R3
𝑞 (𝑥 + 𝑦𝑛) |𝑤|𝑝+1 = 0.

(40)

We claim that

lim
𝑛󳨀→∞

∫
R3
∫
R3

𝑏 (𝑥 + 𝑦𝑛) 𝑤2 (𝑥) 𝑏 (𝑦 + 𝑦𝑛)𝑤2 (𝑦)󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦
= 0.

(41)

In fact, we infer from Hardy-Littlewood-Sobolev inequality
(17) that for 𝑅 > 0 large

∫
R3
∫
R3

𝑏 (𝑥 + 𝑦𝑛) 𝑤2 (𝑥) 𝑏 (𝑦 + 𝑦𝑛) 𝑤2 (𝑦)󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦
≤ 𝑐 (∫

R3
𝑏6/5 (𝑥 + 𝑦𝑛)𝑤12/5 (𝑥) 𝑑𝑥)

≤ 𝑐 |𝑤|6 ∫
𝐵𝑅

𝑏2 (𝑥 + 𝑦𝑛) 𝑑𝑥 + 𝑐 |𝑏|2 |𝑤|𝐿6(𝐵𝑐𝑅)
(42)

and, from condition (𝐴2), we know that the claim holds. On
the other hand, we infer from (40)-(41) and 𝑡𝑛𝑤𝑦𝑛 ∈N𝜆 that

‖𝑤‖2 + 𝑡2𝑛 ∫
R3
𝑏∞𝜙𝑤𝑤2 + 𝑜 (𝑡2𝑛)

= 𝑡𝑝−1𝑛 𝑞∞ |𝑤|𝑝+1𝑝+1 + 𝑜 (𝑡𝑝−1𝑛 ) .
(43)

Thus, we get 𝜎0 ≤ 𝑡𝑛 ≤ 𝜎1 for 𝜎0, 𝜎1 > 0. Moreover, we deduce
from 𝑤 ∈N∞ that

( 1𝑡2𝑛 − 1) ‖𝑤‖
2 = (𝑡𝑝−3𝑛 − 1) |𝑤|𝑝+1𝑝+1 + 𝑜 (1) . (44)

Since 𝑝 ∈ (3, 5), we infer that 𝑡𝑛 󳨀→ 1 as 𝑛 󳨀→ ∞. Finally, we
let 𝑛 󳨀→ ∞ in (39) and obtain

𝑡𝑛 󳨀→ 1,
Φ𝜆 (𝑢𝑛) 󳨀→ 𝑚∞. (45)

This finishes the proof.

By applying the well-known concentration-compactness
principle [39] and maximum principle [40], we have the
following splitting lemma results. For the details of the proof,
one can refer to [23, Lemma 4.1 and Corollary 4.2]

Lemma 6. If the strict inequality
𝑚𝜆 < 𝑚∞ (46)

holds, then 𝑚𝜆 is achieved by a positive function. Further-
more, all the minimizing sequences are relatively compact.

Next we consider the special case 𝜆 = 0.
Lemma 7. Assume that (𝐴1)-(𝐴3) and 𝜆 = 0 hold. Then (10)
has a ground state positive solution.

Proof. Note that

Φ0 (𝑢) = 12 ‖𝑢‖2 + 14 ∫R3 (𝑏∞ − 𝑏 (𝑥)) 𝜙𝑢 (𝑥) 𝑢2
− 1𝑝 + 1 ∫R3 (𝑞∞ + 𝑞 (𝑥)) |𝑢|𝑝+1 ,

(47)

and

Φ∞ (𝑢) = 12 ‖𝑢‖2 + 14 ∫R3 𝑏∞𝜙𝑢 (𝑥) 𝑢2
− 1𝑝 + 1 ∫R3 𝑞∞ |𝑢|𝑝+1 ,

(48)

where𝜙𝑢(𝑥) = ∫R3((𝑏∞−𝑏(𝑦))𝑢2(𝑦)/4𝜋|𝑥−𝑦|)𝑑𝑦and𝜙𝑢(𝑥) =∫
R3
(𝑏∞𝑢2(𝑦)/4𝜋|𝑥 − 𝑦|)𝑑𝑦. Therefore, we have that

𝑚0 ≤ 𝑚∞. (49)

From (36) we know that Φ∞(𝑤) = 𝑚∞. Similar to the proof
of Lemma 4 (a), we infer that 𝑔(𝑡) = Φ0(𝑡𝑤) has unique
maximum 𝑡0 > 0 such that 𝑡0𝑤 ∈ N0. Then we infer the
following from condition (𝐴2).
Φ0 (𝑡0𝑤) = 𝑡

2
02 ‖𝑤‖2 −

𝑡𝑝+10𝑝 + 1 ∫R3 (𝑞∞ + 𝑞 (𝑥)) |𝑢|𝑝+1 +
𝑡404

⋅ ∫
R3
∫
R3

(𝑏∞ − 𝑏 (𝑥)) 𝑤2 (𝑥) (𝑏∞ − 𝑏 (𝑦))𝑤2 (𝑦)
4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦

< Φ∞ (𝑡0𝑤)

(50)
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Moreover, since 𝑤 ∈ N∞ is the unique maximum point of𝑔∞(𝑡) = Φ∞(𝑡𝑤) for 𝑡 > 0, it follows thatΦ∞(𝑡0𝑤) ≤ Φ∞(𝑤).
Combining the above arguments, we infer that

𝑚0 ≤ Φ0 (𝑡0𝑤) < Φ∞ (𝑡0𝑤) ≤ Φ∞ (𝑤) = 𝑚∞. (51)

From Lemma 6, we know that the conclusion holds.

3. Proof of Theorem 1

In this section we shall give the proof of Theorem 1. This can
be accomplished by the following Lemma.

Lemma 8. Assume that (𝐴1)-(𝐴3) hold. Then for each 𝜆 ∈
R+, we have 𝑚𝜆 < 𝑚∞.

Proof. We first observe that, by Lemma 7, we know that𝑚0 < 𝑚∞. So, we consider the case 𝜆 > 0 in the sequel.
For fixed 𝜆 > 0, we choose 𝑡𝑛 such that 𝑢𝑛 = 𝑡𝑛𝑤𝑦𝑛 ∈ N𝜆,
where 𝑦𝑛 and 𝑡𝑛 are chosen as in the proof of Lemma 5.
Moreover, as in (45), we infer that 0 < 𝜎0 ≤ 𝑡𝑛 ≤ 𝜎1.
Similar to (51), we know that Φ∞(𝑡𝑛𝑤) ≤ 𝑚∞. Thus, we infer
that

𝑚𝜆 ≤ Φ𝜆 (𝑢𝑛) = Φ𝜆 (𝑡𝑛𝑤𝑦𝑛) = 𝑡
2
𝑛2 [‖𝑤‖ + 𝜆∫R3 𝑎 (𝑥 + 𝑦𝑛) 𝑤2] −

𝑡𝑝+1𝑛𝑝 + 1 ∫R3 (𝑞∞ + 𝑞 (𝑥 + 𝑦𝑛)) |𝑤|𝑝+1 +
𝑡4𝑛4

⋅ ∫
R3
∫
R3

(𝑏∞ − 𝑏 (𝑥 + 𝑦𝑛)) 𝑤2 (𝑥) (𝑏∞ − 𝑏 (𝑦 + 𝑦𝑛))𝑤2 (𝑦)4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦 = Φ∞ (𝑡𝑛𝑤) + 𝑡
2
𝑛2 [𝜆∫R3 𝑎 (𝑥 + 𝑦𝑛) 𝑤2 +

𝑡2𝑛2
⋅ ∫

R3
∫
R3

𝑏 (𝑥 + 𝑦𝑛) 𝑤2 (𝑥) 𝑏 (𝑦 + 𝑦𝑛)𝑤2 (𝑦)4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦 − 𝑡2𝑛 ∫
R3
𝑏 (𝑥 + 𝑦𝑛) 𝜙𝑤𝑤2 − 2𝑡

𝑝−1
𝑛𝑝 + 1 ∫R3 𝑞 (𝑥 + 𝑦𝑛) |𝑤|𝑝+1] ≤ 𝑚∞

+ 𝑡2𝑛2 [𝜆∫R3 𝑎 (𝑥 + 𝑦𝑛) 𝑤2 +
𝑡2𝑛2 ∫R3 ∫R3

𝑏 (𝑥 + 𝑦𝑛) 𝑤2 (𝑥) 𝑏 (𝑦 + 𝑦𝑛) 𝑤2 (𝑦)4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦 − 𝑡2𝑛 ∫
R3
𝑏 (𝑥 + 𝑦𝑛) 𝜙𝑤𝑤2 − 2𝑡

𝑝−1
𝑛𝑝 + 1

⋅ ∫
R3
𝑞 (𝑥 + 𝑦𝑛) |𝑤|𝑝+1] .

(52)

Since 𝑏 ∈ 𝐿∞(R3), we prove the conclusion if we show that,
for large 𝑛,

𝜆∫
R3
𝑎 (𝑥 + 𝑦𝑛) 𝑤2
+ 𝑐∫

R3
𝑏 (𝑥 + 𝑦𝑛) 𝑤2 (𝑥) 𝜑𝑤 (𝑥) 𝑑𝑥

− 𝑐∫
R3
𝑏 (𝑥 + 𝑦𝑛) 𝜙𝑤𝑤2

− 𝑐∫
R3
𝑞 (𝑥 + 𝑦𝑛) |𝑤|𝑝+1 < 0,

(53)

where𝜑𝑤(𝑥) = ∫R3(𝑏(𝑦+𝑦𝑛)𝑤2(𝑦)/4𝜋|𝑥−𝑦|)𝑑𝑦.This is equal
to proving that, for large 𝑛,

𝐴1 = 𝜆∫
R3\𝐵𝜏|𝑦𝑛|

𝑎 (𝑥 + 𝑦𝑛) 𝑤2

+ 𝑐∫
R3\𝐵𝜏|𝑦𝑛|

𝑏 (𝑥 + 𝑦𝑛) 𝑤2 (𝑥) 𝜑𝑤 (𝑥) 𝑑𝑥
− 𝑐∫

R3\𝐵𝜏|𝑦𝑛|

𝑏 (𝑥 + 𝑦𝑛) 𝜙𝑤𝑤2

− 𝑐∫
R3\𝐵𝜏|𝑦𝑛|

𝑞 (𝑥 + 𝑦𝑛) |𝑤|𝑝+1

< −𝜆∫
𝐵𝜏|𝑦𝑛 |

𝑎 (𝑥 + 𝑦𝑛) 𝑤2

− 𝑐∫
𝐵𝜏|𝑦𝑛 |

𝑏 (𝑥 + 𝑦𝑛) 𝑤2 (𝑥) 𝜑𝑤 (𝑥) 𝑑𝑥
+ 𝑐∫

𝐵𝜏|𝑦𝑛 |

𝑏 (𝑥 + 𝑦𝑛) 𝜙𝑤𝑤2

+ 𝑐∫
𝐵𝜏|𝑦𝑛 |

𝑞 (𝑥 + 𝑦𝑛) |𝑤|𝑝+1 = 𝐴2.
(54)

A direct computation shows that for 𝑅 > 0 large

𝜑𝑤 (𝑥) = ∫
|𝑥−𝑦|≤1

𝑏 (𝑦 + 𝑦𝑛) 𝑤2 (𝑦)4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑦

+ ∫
1≤|𝑥−𝑦|≤𝑅

𝑏 (𝑦 + 𝑦𝑛) 𝑤2 (𝑦)4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑦

+ ∫
|𝑥−𝑦|≥𝑅

𝑏 (𝑥 + 𝑦𝑛) 𝑤2 (𝑦)4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑦

≤ 𝑐 |𝑤|24 (∫
|𝑥−𝑦|≤1

1󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑑𝑦)
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+ 𝑐 |𝑤|28/3 (∫
1≤|𝑥−𝑦|≤𝑅

1󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑑𝑦)
1/4

+ 𝑐 |𝑤|28/3 (∫
|𝑥−𝑦|≥𝑅

1󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑑𝑦)
1/4 ≤ 𝑐.

(55)

Nowwe are ready to give the estimate of the term𝐴1 .We infer
from condition (𝐴2), (11), and (55) that

𝐴1 ≤ ∫
R3\𝐵𝜏|𝑦𝑛|

𝜆𝑎 (𝑥 + 𝑦𝑛)𝑤2

+ 𝑐∫
R3\𝐵𝜏|𝑦𝑛 |

𝑏 (𝑥 + 𝑦𝑛) 𝜑𝑤𝑤2

≤ 𝑐((∫
R3\𝐵𝜏|𝑦𝑛|

󵄨󵄨󵄨󵄨𝑎 (𝑥 + 𝑦𝑛)󵄨󵄨󵄨󵄨3/2)
2/3

+ ∫
R3\𝐵𝜏|𝑦𝑛|

󵄨󵄨󵄨󵄨𝑏 (𝑥 + 𝑦𝑛)󵄨󵄨󵄨󵄨3/2)[∫
R3\𝐵𝜏|𝑦𝑛|

|𝑤|6]1/3

≤ 𝑐𝑒−2𝑐∗𝜏|𝑦𝑛|

(56)

holds for 𝑛 large.
Next we give the estimate for the second part 𝐴2. We

first consider that the case 𝑎(𝑥) decays faster than 𝑏(𝑥). By
condition (1) ofTheorem 1, we know that, for all𝑀 > 0, there
exists 𝑛0 ≥ 1 such that, for all 𝑛 ≥ 𝑛0 and for all 𝑥 ∈ 𝐵𝜏|𝑦𝑛|,

𝑀𝑒−2𝜏𝑐∗|𝑦𝑛| ≤ 𝑞 (𝑥 + 𝑦𝑛) ≤ 𝑐𝑒−(2𝜏(1−𝜏)/(1+2𝜏))𝑐∗|𝑦𝑛|,
𝑎 (𝑥 + 𝑦𝑛) ≤ 𝑐 (1 − 𝜏)−(1+𝜏) 󵄨󵄨󵄨󵄨𝑦𝑛󵄨󵄨󵄨󵄨−(1+𝜏) 𝑒−2𝜏𝑐∗|𝑦𝑛|
𝑏 (𝑥 + 𝑦𝑛) ≥ 𝑐𝑒−(2𝜏(1−𝜏)/(1+2𝜏))𝑐∗|𝑦𝑛|.

(57)

Moreover, by [41, Lemmas 2.3 and 2.6], we know that

𝜙𝑤 (𝑥) = ∫
R3

𝑏∞𝑤2 (𝑦)4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑑𝑦 ∼
1|𝑥| , as |𝑥| 󳨀→ ∞. (58)

Since |𝑥 + 𝑦𝑛| ≥ (1 − 𝜏)|𝑦𝑛| 󳨀→ ∞ as 𝑛 󳨀→ ∞, we infer from
(58) and (𝐴2) that
𝜑𝑤 (𝑥) = ∫

R3

𝑏 (𝑥 + 𝑦𝑛) 𝑤2 (𝑦)4𝜋 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 𝑑𝑦 ∼ 𝑜 (𝜙𝑤)
as 𝑛 󳨀→ ∞.

(59)

Thus, we infer that, for 𝑛 sufficiently large and for all 𝑥 ∈𝐵𝜏|𝑦𝑛|,
𝑐𝑏 (𝑥 + 𝑦𝑛) 𝜙𝑤𝑞 (𝑥 + 𝑦𝑛) − 𝑐𝑏 (𝑥 + 𝑦𝑛) 𝜑𝑤𝑞 (𝑥 + 𝑦𝑛) − 𝜆𝑎 (𝑥 + 𝑦𝑛)𝑞 (𝑥 + 𝑦𝑛) > 0. (60)

Hence we deduce that the inequality

𝐴2 ≥ ∫
𝐵𝜏|𝑦𝑛|

𝑞 (𝑥 + 𝑦𝑛) 𝑤2 [𝑐𝑏 (𝑥 + 𝑦𝑛) 𝜙𝑤𝑞 (𝑥 + 𝑦𝑛) + 𝑐𝑤𝑝−1

− 𝑐𝑏 (𝑥 + 𝑦𝑛) 𝜑𝑤𝑞 (𝑥 + 𝑦𝑛) − 𝜆𝑎 (𝑥 + 𝑦𝑛)𝑞 (𝑥 + 𝑦𝑛) ] > 𝑐∫𝐵𝜏|𝑦𝑛| 𝑞 (𝑥
+ 𝑦𝑛) 𝑤𝑝+1 > 𝑐𝑀𝑒−2𝜏𝑐∗|𝑦𝑛| ∫

𝐵1

𝑤𝑝+1 > 𝑐𝑀𝑒−2𝜏𝑐∗|𝑦𝑛|
(61)

holds for 𝑛 sufficiently large. Thus, by the arbitrariness of𝑀,
we can conclude that 𝐴1 < 𝐴2, as desired.

Finally, we consider the remaining case in Theorem 1. By
(2) of Theorem 1, for all 𝜀 > 0 and𝑀 > 0, there exists 𝑛0 ≥ 1
such that, for all 𝑛 ≥ 𝑛0 and for all 𝑥 ∈ 𝐵𝜏|𝑦𝑛|,

𝑀𝑒−2𝜏𝑐∗|𝑦𝑛| ≤ 𝑞 (𝑥 + 𝑦𝑛) ,
𝑎 (𝑥 + 𝑦𝑛) ≤ 𝑐𝑒−(𝑝−1)𝜏𝑐∗|𝑦𝑛|,

(62)

where 𝑝 ∈ (3, 5). Thus we get that, for 𝑛 sufficiently large and
for all 𝑥 ∈ 𝐵𝜏|𝑦𝑛|,

𝑐𝑤𝑝−1 − 𝜆𝑎 (𝑥 + 𝑦𝑛)𝑞 (𝑥 + 𝑦𝑛) > 𝑐2𝑤𝑝−1. (63)

Hence, we infer from (59) that

𝐴2

≥ 𝑐∫
𝐵𝜏|𝑦𝑛 |

(𝑏 (𝑥 + 𝑦𝑛) 𝑤2 (𝜙𝑤 − 𝜑𝑤))

+ ∫
𝐵𝜏|𝑦𝑛|

(𝑞 (𝑥 + 𝑦𝑛) 𝑤2 (𝑐𝑤𝑝−1 − 𝜆𝑎 (𝑥 + 𝑦𝑛)𝑞 (𝑥 + 𝑦𝑛) ))
> 𝑐2 ∫𝐵𝜏|𝑦𝑛 | 𝑞 (𝑥 + 𝑦𝑛) 𝑤

𝑝+1 > 𝑐2𝑀𝑒−2𝜏𝑐
∗|𝑦𝑛| ∫

𝐵1

𝑤𝑝+1

> 𝑐2𝑀𝑒−2𝜏𝑐
∗|𝑦𝑛|.

(64)

Hence, by the arbitrariness of𝑀, we can conclude that 𝐴1 <𝐴2. This finishes the proof.

Proof of Theorem 1. By Lemmas 6 and 8, we know that the
conclusions of Theorem 1 hold.

4. Conclusion

In this paper, the authors prove the existence of positive
ground state solutions for the nonautonomous Schrödinger-
Poisson system. In condition (1) ofTheorem 1, we know that if𝑎(𝑥) decays faster than 𝑏(𝑥), we find the existence of positive
ground state solution of (10). In condition (2) of Theorem 1,
we only need the decay condition for 𝑎(𝑥)(whatever the decay
speed of 𝑏(𝑥) to 0 as |𝑥| 󳨀→ ∞) to prove the existence of
positive solution. This is different phenomenon compared to
the previous paper [34].
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