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The original Bessel differential equation that describes, among many others, cylindrical acoustic or vortical waves, is a particular
case of zero degree of the generalized Bessel differential equation that describes coupled acoustic-vortical waves. The solutions of
the generalized Bessel differential equation are obtained for all possible combinations of the two complex parameters, order and
degree, and finite complex variable, as Frobenius-Fuchs series around the regular singularity at the origin; the series converge in the
whole complex plane of the variable, except for the point-at-infinity, that is, the only other singularity of the differential equation.
The regular integral solutions of the first and second kinds lead, respectively, to the generalized Bessel and Neumann functions;
these reduce to the original Bessel and Neumann functions for zero degree and have alternative expressions for nonzero degree.

1. Introduction

The Bessel differential equation was first considered in
connexion with the oscillations of a heavy chain [1] and
vibrations of a circular membrane [2] and has had since [3] a
vast number of applications supported by an extensive theory
[4]. A substantial number of applications arise from the
separation of variables in the Laplace operator in cylindrical
and spherical coordinates that leads, respectively, to the cylin-
drical and spherical Bessel functions. The cases of specific
interest include two types of cylindrical waves: (i) sound
waves as compressible perturbations of a uniform flow; (ii)
vortical waves as incompressible perturbations of a uniform
flow with superimposed rigid body rotation. Whereas (i)
and (ii) separately lead to the original Bessel differential
equation, their coupling leads to a generalization. Thus, the
consideration of coupled acoustic-vortical waves as rotational
compressible perturbations of a uniformmean flowwith rigid
body rotation leads to the generalized Bessel equation that
differs from the original in having an extra term involving a
second parameter, namely, the degree 𝜇, in addition to the
order ].

The generalized Bessel differential equation of order ] and
degree 𝜇 may have other applications and deserves separate
study as it leads to generalizations of the Bessel andNeumann
functions. The generalized Bessel differential equation may
also be obtained, aside from any physical or engineering
motivations, by a purely mathematical argument, starting
from the original Bessel differential equation and replacing
the coefficients of the dependent variable and its derivative by
polynomials of the independent variable; in this case the ori-
gin remains a regular singularity of the differential equation
and the only other singularity is the point-at-infinity. Thus,
solutions exist as Frobenius-Fuchs series [5, 6] with recur-
rence formula for the coefficients reducing to two terms only
in the case of the generalized Bessel differential equations.

The generalized Bessel differential equation has singular-
ities only at the origin and infinity. Since the singularity at
the origin is regular, the Frobenius-Fuchs method leads to
solutions valid for finite values of the variable. The solutions
of the generalized Bessel differential equation around the
regular singularity at the origin has (i) indices that are
exponents of the leading power depending only on the order;
(ii) recurrence relation for the coefficients of the power series
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expansion depending also on the degree. From (i) follows
the familiar situation that generalized Bessel functions (Sec-
tion 2) specify the general integral for noninteger order, and
generalized Neumann functions (Section 3) are needed for
integer order. From (ii) it follows that the series expansion
for the generalized Bessel (Section 2.1) and Neumann (Sec-
tion 3.1) functions differ from the original series in having
finite products multiplying each term; these finite products
can be expressed as ratios of Gamma functions, whose
arguments become singular for zero degree. TheWronskians
are used to select pairs of linearly independent particular
integrals that lead to the general integral for noninteger
(Section 2.2) and integer (Section 3.2) order.

2. Generalized Bessel Differential Equation in
the Complex Plane

The origin is a regular singularity of the generalized Bessel
equation with the same indices (Section 2.1) as the original,
leading to generalized Bessel functions whose series expan-
sion differs from the original in the coefficients following
the leading term. A linear combination of (Section 2.1)
generalized Bessel functions of order±] and degree𝜇 supplies
the general integral (Section 2.2) of the generalized Bessel
equation if the order ] is not an integer. For ] = 𝑛 (i.e.
an integer), the generalized Bessel functions of order ±𝑛 are
linearly dependent for any degree 𝜇, their Wronskian is zero,
and generalized Neumann functions are needed (Section 3).

2.1. Generalized Bessel Functions of
Arbitrary Order and Degree

Definition 1. The generalized Bessel differential equation is
a linear second-order ordinary differential equation (1) in
the complex plane, whose order ] and degree 𝜇 are complex
numbers,

𝜇, ], 𝑧 ∈ C : 𝑧2𝑄󸀠󸀠 + 𝑧(1 − 𝜇2 𝑧2)𝑄󸀠 + (𝑧2 − ]2)𝑄
= 0.

(1)

Remark 2. The original Bessel differential equation corre-
sponds to zero degree 𝜇 = 0. The choice of 𝜇/2 rather than𝜇 in the coefficient of 𝑄󸀠 simplifies subsequent expressions
for the generalized Bessel and Neumann functions that are
solutions of (1), much as the choice of ]2 rather than ] in
the coefficient of 𝑄 simplifies the expressions for the original
Bessel and Neumann functions.

Theorem 3. A solution of the generalized Bessel differential
equation is the generalized Bessel function of order ] and
degree 𝜇 specified by the power series with infinite radius of
convergence

|𝑧| < ∞ : 𝐽𝜇] (𝑧)
= (𝑧2)

] ∞∑
𝑗=0

(−𝑧2/4)𝑗
𝑗!Γ (1 + 𝑗 + ])

𝑗−1∏
𝑙=0

[1 − 𝜇 (𝑙 + ]2)]
(2)

valid for all 𝜇.

Remark 4. In the case of the original Bessel function the
degree is zero, 𝜇 = 0, and the last factor in (2) is omitted,
leading to the usual series expansion [7] that is alternating for
real variable 𝑧 and has fixed sign for imaginary variable. The
last factor that distinguishes the generalized Bessel function
for real positive ] > 0 is (i) positive for 𝜇 < 0 and does not
change the sign of the terms of the series; (ii) for real 𝜇 > 0 the
sign of the terms of the series is fixed for 𝜇(𝑙+]/2) > 1, and in
particular if 𝜇]/2 > 1 terms of the series have the same sign.
For example, if 𝜇 and ] are real such that 𝜇]/2 > 1 then the
series for the generalized Bessel function (2) has fixed sign for
real 𝑧 and alternating sign for imaginary 𝑧; this is the reverse
of the series for the original Bessel function when the last
factor in (2) is omitted.

Corollary 5. If the degree is not zero (3a) the last factor in the
coefficients (2) may be written in (3b)

𝜇 ̸= 0 : (3a)

𝑗−1∏
𝑙=0

[1 − 𝜇 (𝑙 + ]2)] = (−𝜇)𝑗
𝑗−1∏
𝑙=0

(𝑙 + ]2 − 1𝜇)

= (−𝜇)𝑗 Γ (j + ]/2 − 1/𝜇)
Γ (]/2 − 1/𝜇) ;

(3b)

substitution of (3b) in (2) leads to

𝜇 ̸= 0 : (4a)

𝐽𝜇] (𝑧)
= (𝑧/2)]Γ (]/2 − 1/𝜇)

∞∑
𝑗=0

(𝜇𝑧2/4)𝑗
𝑗!

Γ (𝑗 + ]/2 − 1/𝜇)
Γ (1 + 𝑗 + ]) . (4b)

This is an alternative expression (4b) for the generalized Bessel
function (2) when the degree is not zero (4a) and involves
powers of (𝜇𝑧2)/4 rather than (−𝑧2)/4, hence omitting the
alternating sign and inserting the factor 𝜇.
Proof of Theorem 3. The origin 𝑧 = 0 is a regular singularity,
and the only other singularity is at infinity; thus [8] the
solution as a Frobenius series [5, 9] by the Fuchs theorem
[6, 10] converges in the whole finite complex 𝑧-plane

|𝑧| < ∞ : 𝑄𝜎 (𝑧) = ∞∑
𝑗=0

𝑎𝑗 (𝜎) 𝑧𝑗+𝜎. (5)

Substituting (5) into (1) and equating the coefficients of equal
powers of 𝑧 lead to a two-term recurrence formula

[(𝜎 + 𝑗)2 − ]2] 𝑎𝑗 (𝜎)
= − [1 − 𝜇2 (𝜎 + 𝑗 − 2)] 𝑎𝑗−2 (𝜎) .

(6)

Setting (7a) leads to (7b); since 𝑎0 = 0 would lead to𝑎𝑗 = 0 in (6) and 𝑄 = 0 in (5), a nontrivial solution
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requires (7c) leading to the indicial equation (7d) with roots
(7e):

𝑗 = 0 : (7a)

(𝜎2 − ]2) 𝑎0 (𝜎) = 0; (7b)

𝑎0 (𝜎) ̸= 0; (7c)

𝜎2 = ]2; (7d)

𝜎± = ±]; (7e)

thus, the indices (7e) are specified by the order ] as in the
original Bessel equation, but the recurrence formula for the
coefficients (6),

𝑎2𝑗 = −1 − (𝜇/2) (𝜎 + 2𝑗 − 2)(2𝑗 + 𝜎)2 − ]2
𝑎2𝑗−2 (𝜎)

= − 1 − 𝜇 (𝑗 − 1 + 𝜎/2)
(2𝑗 + 𝜎 − ]) (2𝑗 + 𝜎 + ])𝑎2𝑗−2 (𝜎) ,

(8)

shows that they depend also on the degree𝜇. Applying 𝑗 times
(8) leads to the explicit coefficients

𝑎2𝑗 (]) = (−1)𝑗 𝑎0 (])
𝑗∏
𝑙=1

1 − 𝜇 (𝑙 − 1 + ]/2)4𝑙 (𝑙 + ])
= 𝑎0 (]) (−1/4)𝑗𝑗! Γ (1 + ])Γ (1 + 𝑗 + ])

𝑗∏
𝑙=1

[1 − 𝜇 (𝑙 − 1 + ]2)]
(9)

where Γ is theGamma function [11, 12]. For the original Bessel
functions, 𝜇 = 0, the last function is unity leading to the usual
expression [4], using for consistency (10a):

𝑎0 (]) = 2−]Γ (1 + ]) . (10a)

Thus, the generalized Bessel function of the first kind, order
], and degree 𝜇 is given by (5) and (10b),

𝑎2𝑗 (]) = 2−] (−1/4)𝑗𝑗!Γ (1 + 𝑗 + ])
𝑗−1∏
𝑙=0

[1 − 𝜇 (𝑙 + ]2)] , (10b)

leading to (2).

2.2.Wronskian, Linear Independence of Solutions, andGeneral
Integral. The generalized Bessel differential equation (1) is
satisfied by the generalized Bessel functions (2) of orders±] as follows from the indices (7e). If the functions 𝐽±]
are linearly independent, their linear combination specifies
the general integral of the generalized Bessel equation (1).
Next the Wronskian is calculated for two solutions of the
generalized Bessel differential equation (1), in particular for
the pair of solutions 𝐽±]. It follows that the Wronskian is zero
for ] = 𝑛 (i.e., an integer), implying that 𝐽𝜇±𝑛(𝑧) are linearly
dependent. The linear relation between 𝐽𝜇−𝑛(𝑧) and 𝐽𝜇𝑛 (𝑧) is
obtained for all integer values of 𝑛.

Lemma 6. If 𝑄1, 𝑄2 are any two solutions of the generalized
Bessel differential equation,

𝑧2𝑄󸀠󸀠1 + 𝑧 (1 − 𝜇2 𝑧2)𝑄󸀠1 + (𝑧2 − ]2)𝑄1 = 0, (11a)

𝑧2𝑄󸀠󸀠2 + 𝑧 (1 − 𝜇2 𝑧2)𝑄󸀠2 + (𝑧2 − ]2)𝑄2 = 0, (11b)

their Wronskian is given by

𝑊(𝑧) = 𝑄1 (𝑧) 𝑄󸀠2 (𝑧) − 𝑄󸀠1 (𝑧) 𝑄2 (𝑧)
= 𝑊0 (𝜇, ])𝑧 exp (14𝜇𝑧2)

(12a)

where𝑊0(𝜇, ]): (i) is the residue of the Wronskian at its simple
pole at the origin,

lim
𝑧󳨀→0

𝑧𝑊 (𝑧) = 𝑊0 (𝜇, ]) ; (12b)

(ii) does not depend on the variable 𝑧 but may depend on the
order ] and degree 𝜇; (iii) depends on the choice of particular
integrals {𝑄1(𝑧), 𝑄2(𝑧)} in (11a) and (11b).
Proof. Multiplying the second equation (11b) by 𝑄1 and
multiplying the first equation (11a) by𝑄2 and subtracting lead
to

(𝑄1𝑄󸀠2 − 𝑄2𝑄󸀠1) 𝑧 (1 − 𝜇2 𝑧2) = −𝑧2 (𝑄1𝑄󸀠󸀠2 − 𝑄2𝑄󸀠󸀠1 )
= −𝑧2 (𝑄1𝑄󸀠2 − 𝑄2𝑄󸀠1)󸀠 .

(13)

Thus, the Wronskian (14a) satisfies a first-order differential
equation (14b),

𝑊(𝑄1, 𝑄2) ≡ (𝑄1𝑄󸀠2 − 𝑄2𝑄󸀠1) ̸= 0 : (14a)

𝑊󸀠𝑊 = 𝜇𝑧2 − 1𝑧 . (14b)

The solution of (14b) is (12a) where (12b) is an arbitrary
constant of integration𝑊0(𝜇, ]) that is independent of 𝑧.
Remark 7. The constant factor 𝑊0(𝜇, ]) in the Wronskian
(12a) depends on the particular choice of linearly indepen-
dent solutions.

Lemma 8. The generalized Bessel function of order ±] and
degree 𝜇 has Wronskian

𝑊(𝐽𝜇+] (𝑧) , 𝐽𝜇−] (𝑧)) = − 2𝜋𝑧 sin (]𝜋) exp (14𝜇𝑧2) . (15)

Proof. In the case of the generalized Bessel functions (2),

𝐽𝜇±] (𝑧) ∼ (𝑧/2)±]Γ (1 ± ]) [1 + O (𝑧2)] , (16a)

𝑑𝑑𝑧 [𝐽𝜇±] (𝑧)] ∼ ±]2 (𝑧/2)
±]−1

Γ (1 ± ]) [1 + O (𝑧2)] , (16b)
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the limit as 𝑧 󳨀→ 0 specifies the Wronskian

𝑊(0)
= lim
𝑧󳨀→0

{𝐽𝜇] (𝑧) 𝑑𝑑𝑧 [𝐽𝜇−] (𝑧)] − 𝐽𝜇−] (𝑧) 𝑑𝑑𝑧 [𝐽𝜇] (𝑧)]}
= −2]2 2𝑧 1Γ (1 + ]) Γ (1 − ]) = −2𝑧 1Γ (]) Γ (1 − ])
= − 2𝜋𝑧 sin (]𝜋)

(17a)

using the symmetry formula [13] for the Gamma function
in (17a). Comparison of (17a) with (12a) in the limit 𝑧 󳨀→0, or with (12b), shows that for the choice of particular
integrals (16a) of the generalized Bessel differential equation
the constant is given by

𝑊0 (𝜇, ]) = − 2𝜋 sin (]𝜋) (17b)

and thus depends only on the order ] but not on the degree𝜇. Substitution of (17b) in (12a) proves (15).

Theorem 9. The general integral of the generalized Bessel
equation (1) is a linear combination (18b) with arbitrary
constants 𝐶± of the functions of the first kind (2) for the indices
(7e) provided that the indices (18a) are not integers,

] ̸= 0, ±1, ±2, . . . = ±𝑛 : (18a)

𝑄 (𝑧) = 𝐶+𝐽𝜇] (𝑧) + 𝐶−𝐽𝜇−] (𝑧) . (18b)

Proof. The general integral (18b) holds provided that 𝐽𝜇±](𝑧)
are linearly independent. This is the case if their Wronskian
(15) is not zero. The Wronskian only vanishes for ] = 𝑛,
an integer, so the general integral (18b) holds (18a) only for
noninteger values of ].

The Frobenius-Fuchs method [14] suggests that the two
solutions may be linearly dependent and the general integral
(18b) fails if the difference of indices (7e) is an integer, that
is, if 𝜎+ − 𝜎− = 2] corresponds to [15] order ] either (i)
an integer (cylindrical Bessel functions) or (ii) an integer
plus-one-half (spherical Bessel functions). In the case (ii) of
order an integer plus-one-half, the two solutions in (18b) are
linearly independent because the Wronskian (15) is not zero
so the general integral (18b) holds. It remains to consider the
case (i) of order an integer in (1) when the functions 𝐽𝜇±𝑛must
be linearly dependent. This is confirmed by the following
relation.

Theorem 10. The generalized Bessel functions of integer order
and nonzero degree (19a) are related by (19b),

𝜇 ̸= 0 : (19a)

𝐽𝜇−𝑛 (𝑧) = 𝜇𝑛 Γ (𝑛/2 − 1/𝜇)Γ (−𝑛/2 − 1/𝜇)𝐽𝜇𝑛 (𝑧) . (19b)

Corollary 11. Using the recurrence formula for the Gamma
function,

Γ(𝑛2 − 1𝜇) = Γ(−𝑛2 − 1𝜇)
𝑛∏
𝑙=1

[𝑛2 − 1𝜇 − 𝑙] , (20)

the relation (19b) between generalized Bessel functions of order±𝑛 becomes

𝐽𝜇−𝑛 (𝑧) = (−1)𝑛 𝐽𝜇𝑛 (𝑧)
𝑛∏
𝑙=1

[1 − 𝜇 (𝑛2 − 𝑙)] . (21)

Remark 12. This result also holds for the original Bessel
function 𝜇 = 0 when the last factor in (21) is unity.

Proof of Theorem 9. If the order is a positive integer, ] = 𝑛, in
the second solution 𝐽𝜇−𝑛 the Gamma function Γ(1−𝑛+𝑗) = ∞
for 𝑗 = 0, 1, . . . , 𝑛 − 1 in the denominator of (4b) suppresses
the first 𝑛 terms, leading to (22b),

𝑘 = 𝑗 − 𝑛 : (22a)

Γ(−𝑛2 − 1𝜇) 𝐽𝜇−𝑛 (𝑧)

= (𝑧2)
−𝑛 ∞∑
𝑗=𝑛

(𝜇𝑧2/4)𝑗
𝑗! (𝑗 − 𝑛)!Γ (𝑗 − 𝑛2 − 1𝜇)

= (𝑧2)
−𝑛 ∞∑
𝑘=0

(𝜇𝑧2/4)𝑘+𝑛
𝑘! (𝑘 + 𝑛)! Γ (𝑘 + 𝑛2 − 1𝜇)

= 𝜇𝑛 (𝑧2)
𝑛 ∞∑
𝑘=0

(𝜇𝑧2/4)𝑘
𝑘! (𝑘 + 𝑛)!Γ (𝑘 + 𝑛2 − 1𝜇)

= 𝜇𝑛Γ(𝑛2 − 1𝜇) 𝐽𝜇𝑛 (𝑧)

(22b)

where the substitution (22a) was made.

3. Solutions of the Generalized Bessel
Equation for Any Order and Degree

It has been shown that, for any degree 𝜇 and integer order,
] = 𝑛, the general integral (18b) fails (18a), and the generalized
Bessel function 𝐽𝜇−𝑛 that is a regular integral of the first kind
of the generalized Bessel differential equation (1) must be
replaced by a generalized Neumann function 𝑌𝜇𝑛 that is a
regular integral of the second kind (Section 3.1) and hence is
linearly independent, leading by linear combination of 𝐽𝜇] (𝑧)
and 𝑌𝜇] (𝑧) to the general integral (Section 3.2).

3.1. Generalized Neumann Function of Arbitrary Degree and
Integer Order

Theorem 13. A solution of the generalized Bessel equation (1)
with arbitrary degree 𝜇 and integer order 𝑛 is the generalized
Neumann function

𝑌𝜇𝑛 (𝑧) = 2𝜋 log (𝑧2) 𝐽𝜇𝑛 (𝑧) + 𝑋𝜇𝑛 (𝑧) + 𝑍𝜇𝑛 (𝑧) (23)
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Consisting of the sum of (i) a constant 2/𝜋 multiplying the
generalized Bessel function (2) multiplied by a logarithmic
singularity; (ii) the preliminary function

𝑋𝜇𝑛 (𝑧) = − 1𝜋 (𝑧2)
−𝑛

⋅ 𝑛−1∑
𝑗=0

(𝑧2)
2𝑗 (𝑛 − 𝑗 − 1)!

𝑗!
{{{
𝑛−1∏
𝑙=𝑗

[1 − 𝜇 (𝑙 − 𝑛2)]
}}}
−1 (24)

that has a pole of order 𝑛 for 𝑛 = 2, 3, . . .; (iii) the
complementary function

𝑍𝜇𝑛 (𝑧) = − 1𝜋 (𝑧2)
𝑛

⋅ ∞∑
𝑗=0

(−𝑧2/4)𝑗
𝑗! (𝑗 + 𝑛)! {

𝑗−1∏
𝑙=0

[1 − 𝜇 (𝑙 + 𝑛2)]}

⋅ [𝜓 (1 + 𝑗) + 𝜓 (1 + 𝑗 + 𝑛) − 𝜓(𝑗 + 𝑛2 − 1𝜇)]

(25)

involving the digamma function𝜓 that has no singularities and
starts with the power 𝑛.
Remark 14. Substitution of (2), (24), and (25) into (23)
specifies explicitly the Neumann function of complex degree𝜇 and integer order 𝑛:

𝑌𝜇𝑛 (𝑧) = 2𝜋 (𝑧2)
𝑛

log (𝑧2)

⋅ ∞∑
𝑗=0

(−𝑧2/4)𝑗
𝑗! (𝑛 + 𝑗)! {

𝑗−1∏
𝑙=0

[1 − 𝜇 (𝑙 + 𝑛2)]}

− 1𝜋 (𝑧2)
−𝑛 𝑛−1∑
𝑗=0

(𝑧2)
2𝑗

⋅ (𝑛 − 𝑗 − 1)!𝑗!
{{{
𝑛−1∏
𝑙=𝑗

[1 − 𝜇 (𝑙 − 𝑛2)]
}}}
−1

− 1𝜋 (𝑧2)
𝑛 ∞∑
𝑗=0

(−𝑧2/4)𝑗
𝑗! (𝑛 + 𝑗)! {

𝑗−1∏
𝑙=0

[1 − 𝜇 (𝑙 + 𝑛2)]}

⋅ [𝜓 (1 + 𝑗) + 𝜓 (1 + 𝑗 + 𝑛) − 𝜓(𝑗 + 𝑛2 − 1𝜇)]

(26)

For 𝜇 = 0 the terms in curly brackets reduce to unity, and the
original Neumann [16] function is regained.

Corollary 15. In the case of nonzero degree, 𝜇 ̸= 0, there
are alternate expressions for the three terms whose sum is
(23) the generalized Neumann function: (i) the logarithmic
factor multiplies the generalized Bessel function (2) that has
the alternate form (4b) for nonzero degree (4a); (ii) the

complementary function (25), using (3b) has the alternate form
(27b) for nonzero degree (27a),

𝜇 ̸= 0, (27a)

𝑍𝜇𝑛 (𝑧) = − 1𝜋 (𝑧/2)𝑛Γ (𝑛/2 − 1/𝜇)
⋅ ∞∑
𝑗=0

(𝜇𝑧2/4)𝑗
𝑗! (𝑛 + 𝑗)!Γ (𝑗 + 𝑛2 − 1𝜇)

⋅ [𝜓 (1 + 𝑗) + 𝜓 (1 + 𝑗 + 𝑛) − 𝜓(𝑗 + 𝑛2 − 1𝜇)] ;

(27b)

(iii) the preliminary function (24) that for nonzero degree (28a)
has the alternate form (28b),

𝜇 ̸= 0, (28a)

𝑋𝜇𝑛 (𝑧) = − 1𝜋 (𝑧2)
𝑛 (−𝜇𝑧2/4)−𝑛
Γ (𝑛/2 − 1/𝜇)

⋅ 𝑛−1∑
𝑗=0

(−𝜇𝑧24 )𝑗 (𝑛 − 𝑗 − 1)!𝑗! Γ (𝑗 − 𝑛2 − 1𝜇) .
(28b)

Proof of Theorem 13. The Frobenius-Fuchs method [17] indi-
cates how a linearly independent function of the second kind
can be obtained in the case of coincident indices or indices
differing by an integer. For ] = −𝑛 the terms of the series (2)
starting with 𝑗 = 𝑛 become infinite due to the zero in the
denominator. This can be avoided going back to solution (5)
for arbitrary index 𝜎 in (8)

𝑄𝜎 (𝑧)
= 𝑎0 (𝜎) 𝑧𝜎 ∞∑

𝑗=0

(−𝑧2)𝑗 𝑗∏
𝑙=1

1 − 𝜇 (𝑙 − 1 + 𝜎/2)(2𝑙 + 𝜎 − ]) (2𝑙 + 𝜎 + ]) .
(29)

Multiplying by 𝜎 + 𝑛 cancels, for ] = −𝑛, the zero in the
denominator 2𝑙 + 𝜎 + ] = 2𝑙 + 𝜎 − 𝑛 when 𝑙 = 𝑛, and the
limit 𝜎 󳨀→ −𝑛 can be taken with a finite result. This leads
to a constant multiple of the generalized Bessel function. The
substitution of (29) with a factor𝜎+𝑛 in the generalized Bessel
equation (1) leads to

𝑧2𝑄󸀠󸀠𝜎 + 𝑧(1 − 𝜇2 𝑧2)𝑄󸀠𝜎 + (𝑧2 − ]2)𝑄𝜎
= 𝑎0 (𝜎) (𝜎 − 𝑛) (𝜎 + 𝑛)2 ;

(30)

since the recurrence formula (8) ensures that all terms vanish
except the first, as 𝜎 󳨀→ ±𝑛 the r.h.s. (right-hand side) of
(30) vanishes, leading in both cases to the generalized Bessel
function or a constantmultiple.The r.h.s. of (30) also vanishes
taking the limit 𝜎 󳨀→ −𝑛 after differentiation with regard to𝜎, leading to the solution

𝑌𝜇𝑛 (𝑧) = 2𝜋 lim
𝜎󳨀→−𝑛

𝜕𝜕𝜎 [(𝜎 + 𝑛)𝑄𝜎 (𝑧)] ; (31)

this solution involves a logarithmic term arising from𝜕(𝑧𝜎)/𝜕𝜎 = 𝑧𝜎 log 𝑧 in (31) and thus is linearly independent
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of the generalized Bessel function (2). It is designated gen-
eralized Neumann function and the factor 2/𝜋 was inserted
for consistency with the usual definition [18] of the original
Neumann function for 𝜇 = 0. When substituting the series
(31) into (29) the first 𝑛 terms are separated to specify a
preliminary function

𝑋𝜇𝑛 (𝑧) = 2𝜋 lim
𝜎󳨀→−𝑛

𝜕𝜕𝜎
{{{
(𝜎 + 𝑛) 𝑎0 (𝜎)

⋅ 𝑛−1∑
𝑗=0

𝑧𝜎+2𝑗 (−1)𝑗 𝑗∏
𝑙=1

1 − 𝜇 (𝑙 − 1 + 𝜎/2)(2𝑙 + 𝜎 − 𝑛) (2𝑙 + 𝜎 + 𝑛)
}}}
.

(32)

If the derivative 𝜕/𝜕𝜎 is not applied to (𝜎 + 𝑛) this factor
remains and leads to zero in the limit 𝜎 󳨀→ −𝑛; thus the only
nonzero terms arise differentiating 𝜕(𝜎 + 𝑛)/𝜕𝜎 = 1, that is,
suppressing the factor (𝜎 + 𝑛) and taking the limit 𝜎 󳨀→ −𝑛
in the remaining terms leading to

𝑋𝜇𝑛 (𝑧) = 2𝜋𝑎0 (−𝑛)
𝑛−1∑
𝑗=0

𝑧2𝑗−𝑛 (−1)𝑗

⋅ 𝑗∏
𝑙=1

1 − 𝜇 (𝑙 − 1 − 𝑛/2)4𝑙 (𝑙 − 𝑛) = 2𝜋𝑎0 (−𝑛)

⋅ 𝑧−𝑛𝑛−1∑
𝑗=0

(𝑧/2)2𝑗𝑗! 1(𝑛 − 1) . . . (𝑛 − 𝑗)
𝑗−1∏
𝑙=0

[1
− 𝜇 (𝑙 − 𝑛2)]

(33)

Choosing the leading coefficient,

𝑎0 (−𝑛) = − (𝑛 − 1)!2𝑛−1{𝑛−1∏
𝑙=0

[1 − 𝜇 (𝑙 − 𝑛2)]}
−1

, (34)

and substituting in (33) specifies the preliminary function
(24). The first two factors in (34) were chosen in agreement
with the preliminary function for the original Neumann
function; the factor in curly brackets is relevant for 𝜇 ̸= 0 and
affects only the generalized Neumann function. The second
part of the generalized Neumann function (31) involves the
remaining terms of the series (29) statingwith 𝑗 = 𝑛 forwhich
the factor in curved brackets cancels the same factor in the
denominator:

𝜋2 [𝑌𝜇𝑛 (𝑧) − 𝑋𝜇𝑛 (𝑧)] = lim
𝜎󳨀→−𝑛

𝜕𝜕𝜎
{{{
(𝜎 + 𝑛) 𝑎0 (𝜎)

⋅ 𝑧𝜎 ∞∑
𝑗=𝑛

(−𝑧2)𝑗 𝑗∏
𝑙=1

1 − 𝜇 (𝑙 − 1 + 𝜎/2)(2𝑙 + 𝜎 − ]) (2𝑙 + 𝜎 + ])
}}}
.

(35)

The leading coefficient is chosen (36) to suppress the first 𝑛
factors in the last product in (35),

𝑎0 (𝜎) = 2−2𝑛2−𝜎 (−1)𝑛𝜎 + 𝑛
𝑛∏
𝑙=1

(2𝑙 + 𝜎 − ]) (2𝑙 + 𝜎 + ])1 − 𝜇 (𝑙 − 1 + 𝜎/2) , (36)

simplifying (35) to (37c),

𝑘 = 𝑗 − 𝑛, (37a)

𝛽 = 𝑙 − 𝑛 : (37b)

𝜋2 [𝑌𝜇𝑛 (𝑧) − 𝑋𝜇𝑛 (𝑧)] = lim
𝜎󳨀→−𝑛

𝜕𝜕𝜎
{{{
(−1)𝑛 2−2𝑛 (𝑧2)

𝜎

⋅ ∞∑
𝑗=𝑛

(−𝑧2)𝑗 𝑗∏
𝑙=𝑛+1

1 − 𝜇 (𝑙 − 1 + 𝜎/2)(2𝑙 + 𝜎 + 𝑛) (2𝑙 + 𝜎 − 𝑛)
}}}

= lim
𝜎󳨀→−𝑛

𝜕𝜕𝜎
{{{
(𝑧2)
2𝑛 (𝑧2)

𝜎

⋅ ∞∑
𝑘=0

(−𝑧2)𝑘 𝑘∏
𝛽=1

1 − 𝜇 (𝛽 + 𝑛 − 1 + 𝜎/2)
(2𝛽 + 𝜎 + 3𝑛) (2𝛽 + 𝜎 + 𝑛)

}}}

(37c)

where (37a) and (37b) were used. The differentiation with
regard to 𝜎 of (𝑧/2)𝜎 inserts the factor log(𝑧/2) multiplying
the generalized Bessel function of the first kind (2),

𝜋2 [𝑌𝜇𝑛 (𝑧) − 𝑋𝜇𝑛 (𝑧)] = log (𝑧2) 𝐽𝜇𝑛 (𝑧) + 𝜋2𝑍𝜇𝑛 (𝑧) , (38)

and the remaining term is a complementary function. The
complementary function corresponds to differentiation with
regard to 𝜎 after the factor (𝑧/2)𝜎 in (37a), (37b), and (37c)
and replacing the dummy summation indices (𝑘, 𝛽) by (𝑗, 𝑙)
leads to

𝑍𝜇𝑛 (𝑧) = 2𝜋 (𝑧2)
𝑛

⋅ ∞∑
𝑗=0

(−1)𝑗 𝑧2𝑗 { lim
𝜎󳨀→−𝑛

[ 𝑗∏
𝑙=1

1 − 𝜇 (𝑙 + 𝑛 − 1 + 𝜎/2)(2𝑙 + 3𝑛 + 𝜎) (2𝑙 + 𝜎 + 𝑛)
𝑗∑
𝛼=1

(− 12𝛼 + 𝜎 + 3𝑛 − 12𝛼 + 𝜎 + 𝑛 + 12𝛼 + 𝜎 + 2𝑛 − 2 − 2/𝜇)]}
(39)

and then (25) follows where 𝜓 is the digamma function [8,
13]. Thus, the generalized Neumann function of order 𝑛 and
degree 𝜇 is given by (38)≡(23).

3.2. Generalized Integral for Arbitrary Degree and Integer
Order. Using the Wronskian it is proven that the general-
ized Neumann function is linearly independent from the
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generalized Bessel function, and thus their linear combina-
tion specifies the general integral of the generalized Bessel
equation (1) in the case missing from (18a) and (18b), namely,
integer order, ] = 𝑛, and arbitrary degree.

Lemma 16. The Wronskian of the generalized Bessel and
Neumann functions of complex degree 𝜇 and integer order 𝑛
is

𝑊(𝐽𝜇𝑛 (𝑧) , 𝑌𝜇𝑛 (𝑧)) = 2𝜋𝑧𝐴 (𝜇, 𝑛) exp (14𝜇𝑧2) (40)

where 𝐴(𝜇, 𝑛) is given by

1𝐴 (𝜇, 𝑛) ≡
𝑛−1∏
𝑙=0

[1 − 𝜇 (𝑙 − 𝑛2)]

= (−𝜇)𝑛 𝑛−1∏
𝑙=0

(𝑙 − 𝑛2 − 1𝜇)

= (−𝜇)𝑛 Γ (n/2 − 1/𝜇)Γ (−𝑛/2 − 1/𝜇) .

(41)

Remark 17. Coefficient (41) appears in relation (19b) between
the generalized Bessel functions of any degree 𝜇 and integer
order 𝑛:

𝑛 ∈ N : 𝐽𝜇−𝑛 (𝑧) = (−1)𝑛 𝐴 (𝜇, 𝑛) 𝐽𝜇𝑛 (𝑧) . (42)

Remark 18. In the case of the original Bessel functions of zero
degree coefficient (41) is unity (43a) simplifying (42) to the
known [4, 11] relation (43b) between Bessel coefficients,

𝐴 (0, 𝑛) = 1 : (43a)

𝐽−𝑛 (𝑧) = (−1)𝑛 𝐽𝑛 (𝑧) . (43b)

Proof of Lemma 16. The generalized Neumann function (26)
has leading term as 𝑧 󳨀→ 0,
𝑌𝜇𝑛 (𝑧) = −𝐴 (𝜇, 𝑛) (𝑛 − 1)!𝜋 (𝑧2)

−𝑛 [1 + O (𝑧2)] , (44a)

𝑑𝑑𝑧 [𝑌𝜇𝑛 (𝑧)] = 𝐴 (𝜇, 𝑛) 𝑛!2𝜋 (𝑧2)
−𝑛−1 [1 + O (𝑧2)] , (44b)

involving the constant coefficient (41); this leads to the
Wronskian (45a) with the generalized Bessel function (16a)
and (16b) and also of integer order:

𝑊(𝐽𝜇𝑛 (𝑧) , 𝑌𝜇𝑛 (𝑧)) = 2𝜋𝑧𝐴 (𝜇, 𝑛) [1 + O (𝑧2)] ; (45a)

𝑊0 (𝜇, 𝑛) = 2𝜋𝐴 (𝜇, 𝑛) , (45b)

and the Wronskian (45a) agrees with (12a) for (45b), specify-
ing the exact Wronskian (40).

Theorem 19. The general integral of the generalized Bessel
equation (1) is (46b) with 𝐶1 and 𝐶2 arbitrary constants,

𝑛 = 0, ±1, ±2, . . . : (46a)

𝑄 (𝑧) = 𝐶1𝐽𝜇𝑛 (𝑧) + 𝐶2𝑌𝜇𝑛 (𝑧) , (46b)

for integer order (46a) and arbitrary degree 𝜇.

Proof. Both the generalized Bessel (2) and Neumann (26)
functions satisfy the generalized Bessel equation (1) for
arbitrary degree and integer order (46a); their Wronskian
is nonzero so they are linearly independent and their linear
combination (46b) specifies the general integral.

4. Conclusions

The generalized Bessel differential equation appears for
coupled acoustic-vortical wave problems, which would have
satisfied the original Bessel differential equation in the
decoupled acoustic or vortical case. The generalized Bessel
differential equation (1) with order ] and degree 𝜇 reduces
to the original Bessel differential equation for zero degree 𝜇.
The origin is a regular singularity and the other singularity
is at infinity, so the Frobenius-Fuchs method specifies power
series solutions valid in the finite complex plane. The indices
are specified by the order but the recurrence formula for the
coefficients depends also on the degree. Thus, the general
integral of the generalized Bessel differential equation is a
linear combination of generalized Bessel functions 𝐽𝜇±] if the
order is not an integer; the generalized Bessel functions of
integer order 𝐽𝜇±𝑛 are linearly dependent, as shown by an
explicit relation between them. It follows that the general
integral of the generalized Bessel differential equation for
integer order and arbitrary degree requires the introduction
of a generalized Neumann function. The generalized Bessel
and Neumann functions have expressions that reduce to the
original Bessel and Neumann functions for zero degree and
also alternate expressions valid only for nonzero degree. The
Bessel differential equation can be generalized further (see
the Appendix) but in that case the coefficients on the power
series solutions would no longer satisfy double recurrence
formulas; the latter would be replaced by triple or higher
order recurrence formulas.

The present paper is, as far as the authors know, the
first concerning the generalized Bessel differential equation
(1), and its regular integral solutions of the first and second
kind in the finite complex plane that specify, respectively,
the generalized Bessel and Neumann functions. There is a
vast literature on the original Bessel differential equation and
its solutions in terms of the original Bessel and Neumann
functions: (i) starting with the first developments [1–3, 16];
(ii) detailed in several monographs [4, 7, 9–11, 13–15, 17,
18]; (iii) continuing with research papers up to the present
time on various properties [19–26]. Several generalizations
of the original Bessel function have been proposed, usually
[26, 27] based on extensions of (2) without the last factor;
these generalized Bessel functions are not derived from an
explicit differential equation and are not associated with
Neumann functions. The present approach is different in
that it starts from a generalized Bessel differential equation
(1) and leads to generalized Bessel (2) and Neumann (26)
functions. The vast literature [1–26, 28] on the original
Bessel differential equation and related Bessel and Neumann
functions includes many properties that could potentially be
extended to the generalized Bessel differential equation and
generalized Bessel and Neumann functions and may be the
subject of future work.
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Appendix

Further Generalizations of the Bessel
Differential Equation

The original Bessel differential equation

𝑧2𝑄󸀠󸀠 + 𝑧𝑄󸀠 + (𝑧2 − ]2)𝑄 = 0. (A.1)

can be generalized replacing the coefficients of 𝑄󸀠 and 𝑄 by
polynomials of the independent variable,

𝑧2𝑄󸀠󸀠 + 𝑧(1 + 𝑁∑
𝑛=1

𝛼𝑛𝑧𝑛)𝑄󸀠

+ (𝑧2 − ]2 + 𝛽1𝑧 + 𝑀∑
𝑚=3

𝛽𝑚𝑧𝑚)𝑄 = 0,
(A.2)

where (𝛼1, . . . , 𝛼𝑁) and (𝛽1, 𝛽3, . . . , 𝛽𝑀) are constants. The
origin 𝑧 = 0 remains a regular singularity of the differential
equation (A.2) and the only other singularity is the point-
at-infinity. Thus, there exists a solution as a Frobenius-Fuchs
series (5), with coefficients satisfying the recurrence formula:

[(𝜎 + 𝑗)2 − ]2] 𝑎𝑗 (𝜎)
= − [𝛼1 (𝜎 + 𝑗 − 1) + 𝛽1] 𝑎𝑗−1 (𝜎)
− [1 + 𝛼2 (𝜎 + 𝑗 − 2)] 𝑎𝑗−2 (𝜎)
− 𝑁∑
𝑛=3

(𝜎 + 𝑗 − 𝑛) 𝛼𝑛𝑎𝑗−𝑛 (𝜎) − 𝑀∑
𝑚=3

𝛽𝑚𝑎𝑗−𝑚 (𝜎)
(A.3)

In order to have a two-term recurrence formula, involving
only 𝑎𝑗(𝜎) and 𝑎𝑗−2(𝜎) that can be solved explicitly, all
coefficients must vanish (A.4a),

𝛼1 = 𝛼3 = . . . = 𝛼𝑁 = 0 = 𝛽1 = 𝛽3 = . . . = 𝛽𝑀, (A.4a)

𝛼2 = −𝜇2 , (A.4b)

except (A.4b). Substitution of (A.4a) and (A.4b) into (A.2)
leads to the generalized Bessel differential equation (1).

Note that the more general differential equation (A.2) still
has the indices (7a)–(7e). Also, the recurrence formula (A.3)
with three terms could be solved using continued fractions.
For example, relaxing conditions (A.4a) to

𝛼3 = . . . = 𝛼𝑁 = 0 = 𝛽3 = . . . = 𝛽𝑀, (A.5)

the differential equation (A.2) becomes

𝛼 ≡ 𝛼1,
𝛽 ≡ 𝛽1,
𝛼2 = −𝜇2 ,

𝑧2𝑄󸀠󸀠 + 𝑧(1 + 𝛼𝑧 − 𝜇2 𝑧2)𝑄󸀠 + (𝑧2 − ]2 + 𝛽𝑧) 𝑄
= 0,

(A.6)

which reduces to the generalized Bessel equation (1) for 𝛼 =0 = 𝛽. If 𝛼 ̸= 0 or 𝛽 ̸= 0 the solution of (A.6) is still a
Frobenius-Fuchs series (5) with recurrence formula for the
coefficients,

[(𝜎 + 𝑗)2 − ]2] 𝑎𝑗 (𝜎)
= − [𝛼 (𝜎 + 𝑗 − 1) + 𝛽] 𝑎𝑗−1 (𝜎)
− [1 − 𝜇2 (𝜎 + 𝑗 − 2)] 𝑎𝑗−2 (𝜎)

(A.7)

that can be solved [28] as the finite descending continued
fraction,

𝑎𝑗 (𝜎)𝑎𝑗−1 (𝜎) = −
𝛽 + 𝛼 (𝜎 + 𝑗 − 1)
(𝜎 + 𝑗)2 − ]2

− 1 − (𝜇/2) (𝜎 + 𝑗 − 2)
(𝜎 + 𝑗)2 − ]2

⋅ 1𝑎𝑗−1 (𝜎) /𝑎𝑗−2 (𝜎) ,
(A.8)

with (𝑎0, 𝑎1) that are arbitrary constants as the starting values
to calculate 𝑎2, 𝛼3, . . .. The method of continued fractions
would no longer apply if the recurrence formula for the
coefficients would have more than 3 terms.
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