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We study the existence and uniqueness of positive solution for the following 𝑝-Laplacian-Kirchhoff-Schrödinger-type equation:
{−(𝑎 + 𝑏 ∫

Ω
|∇𝑢|𝑝)𝑝𝑢 + 𝜆V(𝑥)|𝑢|𝑝−2𝑢 = ℎ𝑓(𝑢) − 𝜇𝑔(𝑢), in Ω, 𝑢 > 0, in Ω, 𝑢 = 0, on 𝜕Ω}, where Ω ⊂ 𝑅𝑁 (𝑁 ≥ 3), 𝜆, 𝜇 ≥ 0 are

parameters, V(𝑥), 𝑓(𝑢), 𝑔(𝑢) and ℎ are under some suitable assumptions. For the purpose of overcoming the difficulty caused by the
appearance of the Schrödinger term and general singularity, we use the variational method and some mathematical skills to obtain
the existence and uniqueness of the solution to this problem.

1. Introduction and Main Results

In this paper, we discuss the following problem:

{{{{
{{{{{

−(𝑎 + 𝑏∫
Ω
|∇𝑢|𝑝)𝑝𝑢 + 𝜆V (𝑥) |𝑢|𝑝−2 𝑢 = ℎ𝑓 (𝑢) − 𝜇𝑔 (𝑢) in Ω,

𝑢 > 0, in Ω,
𝑢 = 0, on 𝜕Ω,

(1)

where Ω ⊂ 𝑅𝑁 (𝑁 ≥ 3) is a smooth bounded domain
with boundary 𝜕Ω, 𝜆, 𝜇 ≥ 0 are parameters, Δ 𝑝𝑢 =
div(|∇𝑢|𝑝−2∇𝑢) is the 𝑝-Laplacian operator, and 𝑝 ≥ 2, 𝑎, 𝑏 ≥
0 with 𝑎 + 𝑏 > 0.

In recent years, a lot of scholars have studied the singular
Kirchhoff problem (for more details, we refer the reader
to [1–4]), the Schrödinger-Poisson system (we refer the
reader to [5–8]), and the Kirchhoff-Schrödinger-Poisson
system (we refer the reader to [9–12]). The authors use
various methods to obtain the properties of the solution,
which makes such problems very interesting. Inspired by the
above papers, later scholars begin to make some expand-
ing study about the above problems. For example, in [13],

Guo and Nie studied the existence and multiplicity of
nontrivial solutions for 𝑝-Laplacian Schrödinger-Kirchhoff-
type equations by variational methods. For a more complex
situation, we refer the reader to [14]. The related stud-
ies on the elliptic equations also can be found in [15–
26].

However, up to now, no paper has appeared in the
literature which discusses the existence and uniqueness of the
positive solution for the𝑝-Laplacian-Kirchhoff-Schrödinger-
type problem. This paper attempts to fill this gap in the
literature. Inspired by the above works, in this paper, we try to
study the existence and uniqueness of solution to the problem
(1) by using the variational method.
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Next, we will make some assumptions about V(𝑥), 𝑓(𝑢),
𝑔(𝑢) and ℎ.

(𝑓0) 𝑓 ∈ 𝐶((0,∞), 𝑅+) satisfies that there exists 𝜎 > 0,
such that 𝑓 is nonincreasing on (0, 𝜎], ∫𝜎

0
𝑓(𝑠)𝑑𝑠 < ∞, and

there exists 𝛼, 𝛾 ∈ (0, 1) such that

lim
𝑠→0+

𝑓 (𝑠) 𝑠𝛼 = +∞,

lim
𝑠→∞

𝑓 (𝑠)
𝑠𝛾 = 0.

(2)

(ℎ0) ℎ ∈ 𝐿𝑝∗/(𝑝∗−1−𝛾)(Ω) satisfies ℎ(𝑥) > 0, a.e. 𝑥 ∈ Ω.
(𝑔) 𝑔 ∈ 𝐶(𝑅+, 𝑅+) and there exists a constant 𝑐 > 0, such

that

𝑔 (𝑠) ≤ 𝑐 (𝑠𝑝−1 + 𝑠𝑝∗−1) , 𝑠 ∈ 𝑅+. (3)

(V1) V(𝑥) ∈ 𝐶(Ω, 𝑅), V(𝑥) > 0 and the minimum of V(𝑥)
can be achieved in Ω. In other words, there exists a constant
𝑐, such that 𝑐 = inf𝑥∈ΩV(𝑥).(ℎ1) ℎ is bounded inΩ satisfies ℎ(𝑥) > 0, a.e. 𝑥 ∈ Ω.

(𝑓1) There exists a constant 𝑘 ∈ (0, 𝜆𝑐/‖ℎ‖∞) such
that

𝑓 (𝑠) − 𝑓 (𝑡) ≤ 𝑘 (𝑠 − 𝑡)𝑝−1 , 𝜎 ≤ 𝑡 ≤ 𝑠, (4)

where ‖ ⋅ ‖∞ denotes the maximal value inΩ.
In this paper, we will make full use of the following

definitions.
First, we define the space 𝐸𝜆 = {𝑢 ∈ 𝑊1,𝑝0 (Ω) :

∫
Ω
𝜆V(𝑥)|𝑢|𝑝 < ∞} and the norm

‖𝑢‖𝑝𝐸𝜆 = ∫
Ω
𝑎 |∇𝑢|𝑝 + 𝜆V (𝑥) |𝑢|𝑝 . (5)

We denote the norm in 𝐿𝑝(Ω) by ‖𝑢‖𝑝 = (∫
Ω
|𝑢|𝑝)1/𝑝.

By (V1) and the Poincaré inequality, we can deduce that
the embedding 𝐸𝜆 → 𝑊1,𝑝0 is continuous.Thus, according to
the continuity of the embedding 𝐸𝜆 → 𝐿𝑠(Ω)(𝑝 ≤ 𝑠 ≤ 𝑝∗),
there are constants 𝑐𝑠 > 0 such that

‖𝑢‖𝑠 ≤ 𝑐𝑠 ‖𝑢‖𝐸𝜆 . (6)

We make further assumptions for convenience. We
assume 𝑓(𝑠) = 𝑔(𝑠) = 0 for all 𝑠 ∈ (−∞, 0). Since
lim𝑠→∞𝑓(𝑠)/𝑠𝛾 = 0 in (𝑓0), we know there exists 𝑐0 > 0, such
that

𝑓 (𝑠) ≤ 𝑐0𝑠𝛾, 𝑠 ∈ [𝜎/4,∞) , (7)

which implies

0 ≤ 𝐹 (𝑠) = ∫𝑠
0
𝑓 (𝑡) 𝑑𝑡 ≤ ∫𝑠

0
𝑐0𝑡𝛾𝑑𝑡 + ∫

𝜎

0
𝑓 (𝑡) 𝑑𝑡

= 𝑐0𝑠1+𝛾
1 + 𝛾 + 𝑐1, 𝑠 ∈ 𝑅.

(8)

Also, from the fact that ∫𝜎
0
𝑓(𝑠)𝑑𝑠 < ∞, we can get that

𝐹 is continuous on 𝑅. Thus for any 𝑢 ∈ 𝐸𝜆, by the conditions(ℎ0), (8), (𝑔), (6) and Hölder inequality, we have

∫
Ω
ℎ𝐹 (𝑢) ≤ 𝑐0

1 + 𝛾 ∫Ω ℎ |𝑢|
1+𝛾 𝑑𝑥 + 𝑐1 ∫

Ω
ℎ 𝑑𝑥

≤ 𝑐0
1 + 𝛾 ‖𝑢‖

1+𝛾

𝑝∗ ⋅ ‖ℎ‖𝑝∗/(𝑝∗−1−𝛾) + 𝑐1 ‖ℎ‖1
≤ 𝑐2
1 + 𝛾 ‖𝑢‖

1+𝛾
𝐸𝜆

⋅ ‖ℎ‖𝑝∗/(𝑝∗−1−𝛾) + 𝑐1 ‖ℎ‖1 ,

(9)

0 ≤ ∫
Ω
𝐺 (𝑢) ≤ 𝑐3 (‖𝑢‖𝑝𝑝 + ‖𝑢‖𝑝

∗

𝑝∗)

≤ 𝑐4 (‖𝑢‖𝑝𝐸𝜆 + ‖𝑢‖𝑝
∗

𝐸𝜆
) ,

(10)

where 𝐺(𝑠) = ∫𝑠
0
𝑔(𝑡)𝑑𝑡 for all 𝑠 ∈ 𝑅 and 𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4

are some positive constants. Next, we can define the energy
functional corresponding to problem (1):

𝐼 (𝑢) = 𝑎
𝑝 ∫
Ω
|∇𝑢|𝑝 𝑑𝑥 + 𝑏

2𝑝 (∫
Ω
|∇𝑢|𝑝 𝑑𝑥)2

+ 1
𝑝 ∫
Ω
𝜆V (𝑥) |𝑢|𝑝 + ∫

Ω
𝜇𝐺 (𝑢) − ∫

Ω
ℎ𝐹 (𝑢) .

(11)

By a simple computation, we can get

⟨𝐼 (𝑢) , ]⟩ = 𝑎∫
Ω
|∇𝑢|𝑝−2 ∇𝑢 ⋅ ∇]

+ 𝑏∫
Ω
|∇𝑢|𝑝 ∫

Ω
|∇𝑢|𝑝−2 ∇𝑢 ⋅ ∇]

+ ∫
Ω
𝜆V (𝑥) |𝑢|𝑝−2 𝑢 ⋅ ] − ∫

Ω
ℎ𝑓 (𝑢) ]

+ ∫
Ω
𝜇𝑔 (𝑢) ].

(12)

It is clear that 𝑢 with 𝑢(𝑥) > 0, a.e. 𝑥 ∈ Ω, 𝑢(𝑥) ∈ 𝐸𝜆 is
called a weak solution of the problem (1) if for any ] ∈ 𝐸𝜆 it
holds

⟨𝐼 (𝑢) , ]⟩ = 0. (13)

Finally, we will give the main results of the paper.

Theorem 1. If 𝑎, 𝑏 ≥ 0 with 𝑎 + 𝑏 > 0 and the assumptions
(𝑓0), (ℎ0), (𝑔) and (V1) hold, then the problem (1) possesses a
positive solution for any 𝜆, 𝜇 ∈ 𝑅+. Moreover, this solution is a
global minimizer of 𝐼.
Theorem 2. If 𝑎 > 0 and the assumptions (𝑓0), (𝑓1), (ℎ1), (𝑔)
and (V1) hold.Moreover, assume that 𝑔 is nondecreasing on𝑅+,
then the solution for problem (1) is unique for any 𝜆, 𝜇 ∈ 𝑅+.
Remark 3. The result obtained in the paper is an expanding
study of the Kirchhoff-Schrödinger-type equation (𝑝 = 2);
the difficulty is posed by the degenerate quasilinear elliptic
operator. We mainly use the variational method to solve the
problem.
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This paper is organized as follows. In Section 2, we will
give a preliminary. In Section 3, we will prove the main
results.

In this paper, 𝑐, 𝑐𝑖 denote various positive constants, which
may vary from line to line.

2. Preliminary

To prove the main results in this paper, we will employ the
following important lemma.

Lemma 4. If the assumptions (𝑓0), (ℎ0), (𝑔), and (V1) hold,
then 𝐼 attains the global minimum in 𝐸𝜆; that is, there exists𝑢0 ∈ 𝐸𝜆 such that 𝐼(𝑢0) = 𝑚 := inf𝐸𝜆𝐼, and𝑚 < 0.
Proof. For any 𝑢 ∈ 𝐸𝜆, by (5), (9)–(11), we can get

𝐼 (𝑢) = 𝑎
𝑝 ∫
Ω
|∇𝑢|𝑝 𝑑𝑥 + 𝑏

2𝑝 (∫
Ω
|∇𝑢|𝑝 𝑑𝑥)2

+ 1
𝑝 ∫
Ω
𝜆V (𝑥) |𝑢|𝑝 + ∫

Ω
𝜇𝐺 (𝑢) − ∫

Ω
ℎ𝐹 (𝑢)

≥ 𝑎
𝑝 ∫
Ω
|∇𝑢|𝑝 𝑑𝑥 + 1

𝑝 ∫
Ω
𝜆V (𝑥) |𝑢|𝑝

− 𝑐2
1 + 𝛾 ‖𝑢‖

1+𝛾
𝐸𝜆

⋅ ‖ℎ‖𝑝∗/(𝑝∗−1−𝛾) − 𝑐1 ‖ℎ‖1

= 1
𝑝 ‖𝑢‖𝑝𝐸𝜆 −

𝑐2 ‖ℎ‖𝑝∗/(𝑝∗−1−𝛾)
1 + 𝛾 ⋅ ‖𝑢‖1+𝛾𝐸𝜆 − 𝑐1 ‖ℎ‖1 .

(14)

Since𝑝 ≥ 2 and 𝛾 ∈ (0, 1), we can obtain that 𝐼 is coercive and
bounded from below on 𝐸𝜆. The definition that 𝑚 = inf𝐸𝜆𝐼
makes some sense.

Since lim𝑠→0+(𝑓(𝑠)/𝑠−𝛼) → ∞ in the condition (𝑓0), there
exists 𝜎1 > 0 such that

𝑓 (𝑠) ≥ 𝑠−𝛼,
𝐹 (𝑠) ≥ 𝑠1−𝛼

1 − 𝛼 ,
𝑠 ∈ (0, 𝜎1] .

(15)

Choosing a nonnegative function 𝜑 ∈ 𝐶∞0 (Ω)\{0} with
maxΩ𝜑 ≤ 𝜎1, then for any 𝑡 ∈ (0, 1], 𝑡𝜑 ∈ (0, 𝜎1], by (5), (10),
(11), (15), we have

𝐼 (𝑡𝜑) = 𝑎𝑡𝑝
𝑝 ∫
Ω

∇𝜑𝑝 𝑑𝑥 + 𝑏𝑡2𝑝
2𝑝 (∫

Ω

∇𝜑𝑝 𝑑𝑥)
2

+ 𝑡𝑝
𝑝 ∫
Ω
𝜆V (𝑥) 𝜑𝑝 + ∫

Ω
𝜇𝐺 (𝑡𝜑)

− ∫
Ω
ℎ𝐹 (𝑡𝜑)

≤ 𝑡𝑝
𝑝
𝜑𝑝𝐸𝜆 +

𝑏𝑡2𝑝
2𝑝 (∫

Ω

∇𝜑𝑝 𝑑𝑥)
2

+ 𝜇𝑐4 (𝜑𝑝𝐸𝜆 𝑡𝑝 + 𝜑𝑝
∗

𝐸𝜆
𝑡𝑝∗)

− 𝑡1−𝛼
1 − 𝛼 ∫

Ω
ℎ𝜑1−𝛼.

(16)

Since 1 − 𝛼 ∈ (0, 1) and ℎ(𝑥) > 0, a.e. 𝑥 ∈ Ω in (ℎ0), 𝑝∗ >𝑝 ≥ 2, we can get that 𝐼(𝑡𝜑) < 0 for 𝑡 > 0 small enough. That
is𝑚 < 0.

On the basis of the definition of 𝑚, we can deduce that
there exists a sequence {𝑢𝑛} ⊂ 𝐸𝜆 such that lim𝑛→∞𝐼(𝑢𝑛) = 𝑚.
Since 𝐼 is coercive and𝑚 < 0, {𝑢𝑛} is bounded in 𝐸𝜆. Going if
necessary to a subsequence, still denoted by {𝑢𝑛}, there exists𝑢0 ∈ 𝐸𝜆 such that

{{{{
{{{{{

𝑢𝑛 ⇀ 𝑢0, weakly in 𝐸𝜆,
𝑢𝑛 → 𝑢0, strongly in 𝐿𝑠 (Ω) , (1 ≤ 𝑠 < 𝑝∗)
𝑢𝑛 (𝑥) → 𝑢0 (𝑥) a.e. in Ω,

(17)

as 𝑛 → ∞. It follows from (8) and Sobolev embedding
theorem that {𝐹(𝑢𝑛)} is bounded in 𝐿𝑝∗/(1+𝛾). Moreover,
from the continuity of 𝐹, we can get that 𝐹(𝑢𝑛(𝑥)) →
𝐹(𝑢𝑜(𝑥)), a.e. 𝑥 ∈ Ω. Thus, we obtain 𝐹(𝑢𝑛) ⇀ 𝐹(𝑢0) in𝐿𝑝∗/(1+𝛾)(Ω).

Since ℎ ∈ 𝐿𝑝∗/(𝑝∗−1−𝛾)(Ω), we have
lim
𝑛→∞

∫
Ω
ℎ𝐹 (𝑢𝑛) = ∫

Ω
ℎ𝐹 (𝑢0) . (18)

Moreover, by Fatou’s lemma, we have

lim inf
𝑛→∞

∫
Ω
𝐺 (𝑢𝑛) ≥ ∫

Ω
𝐺 (𝑢0) . (19)

According to the weakly lower semicontinuity of the
norm, (18) and (19), we have

𝑚 = lim inf
𝑛→∞

𝐼 (𝑢𝑛) = lim inf
𝑛→∞

{𝑎𝑝 ∫
Ω

∇𝑢𝑛𝑝

+ 𝑏
2𝑝 (∫

Ω

∇𝑢𝑛𝑝)
2 + 1

𝑝 ∫
Ω
𝜆V (𝑥) 𝑢𝑛𝑝

+ ∫
Ω
𝜇𝐺 (𝑢𝑛) − ∫

Ω
ℎ𝐹 (𝑢𝑛)} ≥ 1

𝑝
𝑢0𝑝𝐸𝜆

+ 𝑏
2𝑝 (∫

Ω

∇𝑢0𝑝)
2 + ∫
Ω
𝜇𝐺 (𝑢0) − ∫

Ω
ℎ𝐹 (𝑢𝑜)

= 𝐼 (𝑢0) ≥ 𝑚,

(20)

which yields 𝐼(𝑢0) = 𝑚. The proof is completed.

3. Proof of Main Results

Proof of Theorem 1. Since 𝑚 ≤ 𝐼(𝑢+0 ) ≤ 𝐼(𝑢0) = 𝑚, then
𝐼(𝑢+0 ) = 𝐼(𝑢0). Thus we may assume 𝑢0 ≥ 0. Owing to𝑚 < 0,
we know 𝑢0 ̸= 0. Next we will give the two-step proof.
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(i) Firstly, we shall prove 𝑢0(𝑥) > 0, a.e. 𝑥 ∈ Ω.
For any ] ∈ 𝐸𝜆 with ](𝑥) ≥ 0, a.e. 𝑥 ∈ Ω and 𝑡 > 0, we

have

0 ≤ 𝐼 (𝑢0 + 𝑡]) − 𝐼 (𝑢0)
𝑡

= 𝑎
𝑝𝑡 {∫Ω

∇ (𝑢0 + 𝑡])𝑝 − ∫
Ω

∇𝑢0𝑝}

+ 𝑏
2𝑝𝑡 {(∫Ω

∇ (𝑢0 + 𝑡])𝑝)
2 − (∫

Ω

∇𝑢0𝑝)
2}

+ 𝜆
𝑝𝑡 {∫Ω V (𝑥)

𝑢0 + 𝑡]𝑝 − V (𝑥) 𝑢0𝑝}

+ 𝜇
𝑡 {∫Ω 𝐺 (𝑢0 + 𝑡]) − 𝐺 (𝑢0)}

− 1
𝑡 {∫Ω ℎ𝐹 (𝑢0 + 𝑡]) − ℎ𝐹 (𝑢0)} .

(21)

Letting 𝑡 → 0+, we can get

lim inf
𝑡→0+

∫
Ω

ℎ
𝑡 [𝐹 (𝑢0 + 𝑡]) − 𝐹 (𝑢0)]

≤ 𝑎∫
Ω

∇𝑢0𝑝−2 ∇𝑢0∇]

+ 𝑏∫
Ω

∇𝑢0𝑝 ∫
Ω

∇𝑢0𝑝−2 ∇𝑢0∇]

+ 𝜆∫
Ω
V (𝑥) 𝑢0𝑝−2 𝑢0] + 𝜇∫

Ω
𝑔 (𝑢0) ].

(22)

Thus, by Fatou’s lemma and Lemma 2.3 in [27], we can get

∫
Ω
ℎ𝑓 (𝑢0) ] ≤ 𝑎∫

Ω

∇𝑢0𝑝−2 ∇𝑢0∇]

+ 𝑏∫
Ω

∇𝑢0𝑝 ∫
Ω

∇𝑢0𝑝−2 ∇𝑢0∇]

+ 𝜆∫
Ω
V (𝑥) 𝑢0𝑝−2 𝑢0]

+ 𝜇∫
Ω
𝑔 (𝑢0) ].

(23)

Let 𝑒1 ∈ 𝐸𝜆 be the first eigenfunction of the operator −Δ𝑝
with the Dirichlet boundary and 𝑒1(𝑥) > 0 for all 𝑥 ∈ Ω.
Taking ] = 𝑒1 in (23), by (V1) and the condition (𝑔), we have

∫
Ω
ℎ𝑓 (𝑢0) 𝑒1 ≤ 𝑎∫

Ω

∇𝑢0𝑝−2 ∇𝑢0∇𝑒1
+ 𝑏∫
Ω

∇𝑢0𝑝 ∫
Ω

∇𝑢0𝑝−2 ∇𝑢0∇𝑒1
+ 𝜆∫
Ω
V (𝑥) 𝑢0𝑝−2 𝑢0𝑒1

+ 𝜇∫
Ω
𝑔 (𝑢0) 𝑒1

≤ 𝑎∫
Ω

∇𝑢0𝑝−2 ∇𝑢0∇𝑒1
+ 𝑏∫
Ω

∇𝑢0𝑝 ∫
Ω

∇𝑢0𝑝−2 ∇𝑢0∇𝑒1
+ 𝜆∫
Ω
V (𝑥) 𝑢0𝑝−2 𝑢0𝑒1

+ 𝜇𝑐∫
Ω
(𝑢𝑝−10 + 𝑢𝑝∗−10 ) 𝑒1 < ∞,

(24)

which implies 𝑢0(𝑥) > 0, a.e. 𝑥 ∈ Ω by the condition (ℎ0). If
not, there exists 𝐸 ⊂ Ω such that𝑚(𝐸) > 0 and 𝑢0(𝑥) = 0 for
all 𝑥 ∈ 𝐸. Then by Lemma 2.3 in [27], we can get

∫
Ω
ℎ𝑓 (𝑢0) 𝑒1 ≥ ∫

𝐸
ℎ𝑓 (𝑢0) 𝑒1 = ∞. (25)

It is a contradiction. So the claim 𝑢0(𝑥) > 0 is true.
(ii) 𝑢0 is exactly a solution of the problem (1); that is, 𝑢0

satisfies (13):

𝑎∫
Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇] + 𝑏∫
Ω

∇𝑢0𝑝 ∫
Ω

∇𝑢0𝑝−2 ∇𝑢0
⋅ ∇] + ∫

Ω
𝜆V (𝑥) 𝑢0𝑝−2 𝑢0 ⋅ ] − ∫

Ω
ℎ𝑓 (𝑢0) ]

+ ∫
Ω
𝜇𝑔 (𝑢0) ] = 0.

(26)

To obtain the conclusion, we define a function Ψ : 𝑅 →
𝑅,Ψ(𝑡) = 𝐼(𝑢0 + 𝑡𝑢0); that is,
Ψ (𝑡) = 𝑎 (1 + 𝑡)𝑝

𝑝 ∫
Ω

∇𝑢0𝑝

+ 𝑏 (1 + 𝑡)2𝑝
2𝑝 (∫

Ω

∇𝑢0𝑝)
2

+ (1 + 𝑡)𝑝
𝑝 ∫

Ω
𝜆V (𝑥) 𝑢0𝑝 + ∫

Ω
𝜇𝐺 (𝑢0 + 𝑡𝑢0)

− ∫
Ω
ℎ𝐹 (𝑢0 + 𝑡𝑢0) .

(27)

From the above discussion, we know Ψ(𝑡) attains its
minimum at 𝑡 = 0. By Lemma 2.4 in [27], we can get that
Ψ(𝑡) is differentiable at 𝑡 = 0 and Ψ(0) = 0; that is,

𝑎∫
Ω

∇𝑢0𝑝 + 𝑏 (∫
Ω

∇𝑢0𝑝)
2 + ∫
Ω
𝜆V (𝑥) 𝑢0𝑝

+ ∫
Ω
𝜇𝑔 (𝑢0) 𝑢0 − ∫

Ω
ℎ𝑓 (𝑢0) 𝑢0 = 0.

(28)

For each 𝜐 ∈ 𝐸𝜆 and 𝜀 > 0, we define 𝜐𝜀 = 𝑢0 + 𝜀𝜐 and
Ω+ = {𝑥 ∈ Ω : 𝑢0 + 𝜀𝜐 ≥ 0} ,
Ω− = {𝑥 ∈ Ω : 𝑢0 + 𝜀𝜐 < 0} . (29)

Then 𝜐−𝜀 |Ω+ = 0 and 𝜐−𝜀 |Ω− = 𝑢0 + 𝜀𝜐.
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Inserting 𝜐+𝜀 into (23) and using (28), we can get that

0 ≤ 𝑎∫
Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝜐+𝜀 + 𝑏∫
Ω

∇𝑢0𝑝

⋅ ∫
Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝜐+𝜀 + 𝜆∫
Ω
V (𝑥) 𝑢0𝑝−2 𝑢0𝜐+𝜀

+ 𝜇∫
Ω
𝑔 (𝑢0) 𝜐+𝜀 − ∫

Ω
ℎ𝑓 (𝑢0) 𝜐+𝜀

= 𝑎∫
Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝜐𝜀 + 𝑏∫
Ω

∇𝑢0𝑝

⋅ ∫
Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝜐𝜀 + 𝜆∫
Ω
V (𝑥) 𝑢0𝑝−2 𝑢0𝜐𝜀

+ 𝜇∫
Ω
𝑔 (𝑢0) 𝜐𝜀 − ∫

Ω
ℎ𝑓 (𝑢0) 𝜐𝜀

− {𝑎∫
Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝜐−𝜀

+ 𝑏∫
Ω

∇𝑢0𝑝 ∫
Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝜐−𝜀

+ 𝜆∫
Ω
V (𝑥) 𝑢0𝑝−2 𝑢0𝜐−𝜀 + 𝜇∫

Ω
𝑔 (𝑢0) 𝜐−𝜀

− ∫
Ω
ℎ𝑓 (𝑢0) 𝜐−𝜀 } = 𝜀 {𝑎∫

Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝜐

+ 𝑏∫
Ω

∇𝑢0𝑝 ∫
Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝜐

+ 𝜆∫
Ω
V (𝑥) 𝑢0𝑝−2 𝑢0𝜐 + 𝜇∫

Ω
𝑔 (𝑢0) 𝜐

− ∫
Ω
ℎ𝑓 (𝑢0) 𝜐} − {𝑎∫

Ω−

∇𝑢0𝑝−2 ∇𝑢0

⋅ ∇ (𝑢0 + 𝜀𝜐) + 𝑏∫
Ω

∇𝑢0𝑝 ∫
Ω−

∇𝑢0𝑝−2 ∇𝑢0

⋅ ∇ (𝑢0 + 𝜀𝜐) + 𝜆∫
Ω−

V (𝑥) 𝑢0𝑝−2 𝑢0 (𝑢0 + 𝜀𝜐)

+ 𝜇∫
Ω−

𝑔 (𝑢0) (𝑢0 + 𝜀𝜐) − ∫
Ω−

ℎ𝑓 (𝑢0) (𝑢0 + 𝜀𝜐)}

≤ 𝜀 {(𝑎 + 𝑏∫
Ω

∇𝑢0𝑝)∫
Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝜐

+ 𝜆∫
Ω
V (𝑥) 𝑢0𝑝−2 𝑢0𝜐 + 𝜇∫

Ω
𝑔 (𝑢0) 𝜐

− ∫
Ω
ℎ𝑓 (𝑢0) 𝜐}

− 𝜀 {(𝑎 + 𝑏∫
Ω

∇𝑢0𝑝)∫
Ω−

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝜐

+ 𝜆∫
Ω−

V (𝑥) 𝑢0𝑝−2 𝑢0𝜐 + 𝜇∫
Ω−

𝑔 (𝑢0) 𝜐} ,

(30)

which implies that

(𝑎 + 𝑏∫
Ω

∇𝑢0𝑝)∫
Ω−

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝜐

+ 𝜆∫
Ω−

V (𝑥) 𝑢0𝑝−2 𝑢0𝜐 + 𝜇∫
Ω−

𝑔 (𝑢0) 𝜐

≤ (𝑎 + 𝑏∫
Ω

∇𝑢0𝑝)∫
Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝜐

+ 𝜆∫
Ω
V (𝑥) 𝑢0𝑝−2 𝑢0𝜐 + 𝜇∫

Ω
𝑔 (𝑢0) 𝜐

− ∫
Ω
ℎ𝑓 (𝑢0) 𝜐.

(31)

Next we define Λ 𝑛 = {𝑥 ∈ Ω : 𝑢0(𝑥) > 0, 𝜐(𝑥) >
−∞, 𝑢0(𝑥) + 𝜐(𝑥)/𝑛 < 0} for all 𝑛. By simple computation,
we can deduce that {Λ 𝑛} is a nonincreasing sequence of
measurable sets and lim𝑛→∞Λ 𝑛 = ⋂∞𝑛=1 Λ 𝑛 = 0. Thus we
have

lim
𝑛→∞

𝑚(Λ 𝑛) = 𝑚( lim
𝑛→∞

Λ 𝑛) = 0. (32)

Let 𝜀 = 1/𝑛; then Ω− ⊂ {𝑥 ∈ Ω : 𝑢0(𝑥) ≤ 0} ∪ {𝑥 ∈ Ω :
𝜐(𝑥) = −∞} ∪ Λ 𝑛 and 𝑚(Ω−) = 𝑚(Λ 𝑛) → 0 as 𝑛 → ∞.
Selecting 𝜀 = 1/𝑛 → 0 in (31), we have

0 ≤ (𝑎 + 𝑏∫
Ω

∇𝑢0𝑝)∫
Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝜐

+ 𝜆∫
Ω
V (𝑥) 𝑢0𝑝−2 𝑢0𝜐 + 𝜇∫

Ω
𝑔 (𝑢0) 𝜐

− ∫
Ω
ℎ𝑓 (𝑢0) 𝜐.

(33)

According to the arbitrariness of 𝜐 ∈ 𝐸𝜆, this inequality
also holds for −𝜐. Combining (33), we can get that, for any
𝜐 ∈ 𝐸𝜆,

(𝑎 + 𝑏∫
Ω

∇𝑢0𝑝)∫
Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝜐

+ 𝜆∫
Ω
V (𝑥) 𝑢0𝑝−2 𝑢0𝜐 + 𝜇∫

Ω
𝑔 (𝑢0) 𝜐

− ∫
Ω
ℎ𝑓 (𝑢0) 𝜐 = 0.

(34)

Thus, 𝑢0 is exactly a weak solution of the problem (1). By
Lemma 4, we know 𝐼(𝑢0) = inf𝐸𝜆𝐼. Therefore, 𝑢0 is exactly
a global minimizer solution.

Proof of Theorem 2. Assume that 𝑢1 is also a solution of
problem (1). Letting ] = 𝑢0 − 𝑢1, according to the definition
of the weak solution and (26), we can get

0 = (𝑎 + 𝑏∫
Ω

∇𝑢0𝑝)∫
Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇ (𝑢0 − 𝑢1)

+ ∫
Ω
𝜆V (𝑥) 𝑢0𝑝−2 𝑢0 (𝑢0 − 𝑢1)
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+ ∫
Ω
𝜇𝑔 (𝑢0) (𝑢0 − 𝑢1)

− ∫
Ω
ℎ𝑓 (𝑢0) (𝑢0 − 𝑢1) ,

(35)

0 = (𝑎 + 𝑏∫
Ω

∇𝑢1𝑝)∫
Ω

∇𝑢1𝑝−2 ∇𝑢1 ⋅ ∇ (𝑢0 − 𝑢1)

+ ∫
Ω
𝜆V (𝑥) 𝑢1𝑝−2 𝑢1 (𝑢0 − 𝑢1)

+ ∫
Ω
𝜇𝑔 (𝑢1) (𝑢0 − 𝑢1)

− ∫
Ω
ℎ𝑓 (𝑢1) (𝑢0 − 𝑢1) ,

(36)

which implies

∫
Ω
ℎ (𝑢0 − 𝑢1) [𝑓 (𝑢0) − 𝑓 (𝑢1)] = 𝑎∫

Ω
(∇𝑢0 − ∇𝑢1)

⋅ (∇𝑢0𝑝−2 ∇𝑢0 − ∇𝑢1𝑝−2 ∇𝑢1) 𝑑𝑥
+ 𝑏∫
Ω
∇ (𝑢0 − 𝑢1) {∇𝑢0 ∇𝑢0𝑝−2 ∫

Ω

∇𝑢0𝑝

− ∇𝑢1 ∇𝑢1𝑝−2 ∫
Ω

∇𝑢1𝑝} + ∫
Ω
𝜆V (𝑥) (𝑢0 − 𝑢1)

⋅ {𝑢0 𝑢0𝑝−2 − 𝑢1 𝑢1𝑝−2} + ∫
Ω
𝜇 (𝑢0 − 𝑢1)

⋅ [𝑔 (𝑢0) − 𝑔 (𝑢1)] .

(37)

Next, we will make some estimates for the equation.
(i)

∫
Ω
∇ (𝑢0 − 𝑢1) {∇𝑢0 ∇𝑢0𝑝−2 ∫

Ω

∇𝑢0𝑝

− ∇𝑢1 ∇𝑢1𝑝−2 ∫
Ω

∇𝑢1𝑝} ≥ 0.
(38)

In fact, we estimate as follows.

∫
Ω
∇ (𝑢0 − 𝑢1) {∇𝑢0 ∇𝑢0𝑝−2 ∫

Ω

∇𝑢0𝑝

− ∇𝑢1 ∇𝑢1𝑝−2 ∫
Ω

∇𝑢1𝑝} = (∫
Ω

∇𝑢0𝑝)
2

− ∫
Ω

∇𝑢0𝑝−2 ∇𝑢0 ⋅ ∇𝑢1 ∫
Ω

∇𝑢0𝑝 + (∫
Ω

∇𝑢1𝑝)
2

− ∫
Ω

∇𝑢1𝑝 ∫
Ω

∇𝑢1𝑝−2 ∇𝑢0 ⋅ ∇𝑢1 ≥ (∫
Ω

∇𝑢0𝑝)
2

− ∫
Ω

∇𝑢0𝑝−1 ∇𝑢1 ∫
Ω

∇𝑢0𝑝 + (∫
Ω

∇𝑢1𝑝)
2

− ∫
Ω

∇𝑢1𝑝 ∫
Ω

∇𝑢1𝑝−1 ∇𝑢0

≥ max {∫
Ω

∇𝑢0𝑝 , ∫
Ω

∇𝑢1𝑝}

⋅ (∫
Ω
(∇𝑢0 − ∇𝑢1) (∇𝑢0𝑝−1 − ∇𝑢1𝑝−1)) ≥ 0.

(39)

(ii)

∫
Ω
V (𝑥) (𝑢0 − 𝑢1) {𝑢0 𝑢0𝑝−2 − 𝑢1 𝑢1𝑝−2}

≥ ∫
Ω
V (𝑥) 𝑢0 − 𝑢1𝑝 .

(40)

(iii)

∫
Ω
(∇𝑢0 − ∇𝑢1) (∇𝑢0𝑝−2 ∇𝑢0 − ∇𝑢1𝑝−2 ∇𝑢1)

= ∫
Ω

∇𝑢0𝑝−2 (∇𝑢02 − ∇𝑢0 ⋅ ∇𝑢1)

− ∫
Ω

∇𝑢1𝑝−2 (∇𝑢0 ⋅ ∇𝑢1 − ∇𝑢12)

≥ ∫
Ω

∇𝑢0𝑝−2 (∇𝑢02 − ∇𝑢0 ⋅ ∇𝑢1)

− ∫
Ω

∇𝑢1𝑝−2 (∇𝑢0 ⋅ ∇𝑢1 − ∇𝑢12)

= ∫
Ω
(∇𝑢0 − ∇𝑢1) (∇𝑢0𝑝−1 − ∇𝑢1𝑝−1) ≥ 0.

(41)

(iv) Since 𝑔 is nondecreasing on 𝑅+, we have
∫
Ω
[𝑔 (𝑢0) − 𝑔 (𝑢1)] (𝑢0 − 𝑢1) ≥ 0. (42)

(v)Next, we estimate the left side of (37), according to the
conditions (𝑓0) and (𝑓1), we can prove that

𝑓 (𝑠) − 𝑓 (𝑡) ≤ 𝑘 (𝑠 − 𝑡)𝑝−1 , 0 < 𝑡 ≤ 𝑠 < ∞. (43)

Thus by a simple deduction and (ℎ1), (𝑓1), one has
∫
Ω
ℎ [𝑓 (𝑢0) − 𝑓 (𝑢1)] (𝑢0 − 𝑢1) ≤ 𝑘∫

Ω
ℎ (𝑢0 − 𝑢1)𝑝

≤ 𝑘 ‖ℎ (𝑥)‖∞ ∫
Ω

𝑢0 − 𝑢1𝑝 .
(44)

It follows from (37), (38), (40)–(42), and (44) andwe have

(𝜆𝑐 − 𝑘 ‖ℎ‖∞) ∫
Ω

𝑢0 − 𝑢1𝑝 ≤ 0, (45)

where 𝑐 = inf𝑥∈Ω V(𝑥). Since 𝑘 ∈ (0, 𝜆𝑐/‖ℎ‖∞) in the
condition (𝑓1), we can get that ∫

Ω
|𝑢0 − 𝑢1|𝑝 = 0, that is, 𝑢0 =𝑢1. Therefore, the solution of the problem (1) is unique.
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