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The electromagnetic vector fields, which are scattered off a highly conductive spheroid that is embedded within an otherwise
lossless medium, are investigated in this contribution. A time-harmonic magnetic dipolar source, located nearby and operating
at low frequencies, serves as the excitation primary field, being arbitrarily orientated in the three-dimensional space. The main
idea is to obtain an analytical solution of this scattering problem, using the appropriate system of spheroidal coordinates, such
that a possibly fast numerical estimation of the scattered fields could be useful for real data inversion. To this end, incident and
scattered as well as total fields are written in a rigorous low-frequency manner in terms of positive integral powers of the real-
valued wave number of the exterior environment. Then, the Maxwell-type problem is converted to interconnected Laplace’s or
Poisson’s equations, complemented by the perfectly conducting boundary conditions on the spheroidal object and the necessary
radiation behavior at infinity. The static approximation and the three first dynamic contributors are sufficient for the present study,
while terms of higher orders are neglected at the low-frequency regime. Henceforth, the 3D scattering boundary value problems
are solved incrementally, whereas the determination of the unknown constant coefficients leads either to concrete expressions or to
infinite linear algebraic systems, which can be readily solved by implementing standard cut-off techniques. The nonaxisymmetric
scattered magnetic and electric fields follow and they are obtained in an analytical compact fashion via infinite series expansions
in spheroidal eigenfunctions. In order to demonstrate the efficiency of our analytical approach, the results are degenerated so as to
recover the spherical case, which validates this approach.

1. Introduction

The fundamental principles of classical electromagnetism [1],
initially introduced by the pioneer in the field James Clerk
Maxwell, represent the basic foundation of the low-frequency
scattering theory [2]. Many physical applications that are
associatedwith the response of receivers with arbitrary shape,
embedded within various media, when they are excited
by several primary sources, still stand in the frontline of
scientific research. Indeed, let us give emphasis to some of
them like two-phase composites, Earth’s subsurface probing
for mineral exploration, identification of cavities or other
underground detection such as UneXploded Ordnance and
buried objects, and scattering by chiral material in either
chiral or nonchiral environments. Obviously, the range of the
applied frequencies varies according to each case. However,

low-frequency interactions exhibit a particular interest for
numerous real-life problems that occur in physical areas,
which are related to the present contribution. By deciphering
the implicated fields to each case, information about main
parameters like orientations, sizes, shapes, and magnetic and
electric properties of the anomalies brings insight into the
field behavior. Nevertheless, this is not at all an easy task,
since the situation of an inversion scheme [3] cannot be
tackled in a robust-like manner, unless efficient models of
the field distribution and strong effective mathematical tools
[4] are available, since in practice the measurement and the
identification of the scatterer are needed simultaneously.

The large amount of vector data, the electromagnetic
and geometrical complexity of the different media involved,
the many configurations of sources and receivers, and the
uncertainty resulting from datasets containing both the
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contribution of the incident and scattered fields explain
the interest of solving forward and inverse electromagnetic
scattering problems, first at the modeling stage and later
at the inversion stage. Therefore, the already ample library
of scattering by simple shapes using analytical methods is
open to accept new and useful semianalytical and, why not,
analytical results. In the last decade, a lot of articles were
published in that direction and many references are available
in the literature. Collectively, we pertain to the low-frequency
scattering by a perfectly electrically conducting sphere in a
conductive environment, illuminated by an arbitrarily orien-
tated and settled magnetic dipole source field [5]. There, the
3D scattered electromagnetic fields have assumed a complete
analytical formalism in terms of closed-type solutions, while
a numerical implementation has validated almost perfectly
the results via a comparison with the exact Mie series
expansion [6]. However, this work was a first introduction
to scattering by metallic objects that reflect the complete
isotropy of the three-dimensional space. Moving to more
complicated geometries for the same physical consideration
such as spheroids [7] or ellipsoids [8], one can realize that the
orientation of the body, save the position or the size, plays
a crucial role not only to the mathematical treatment but
also to the computational elaboration of the corresponding
fields. Moreover, it is obvious that the more general the
shape becomes, the more difficulty is added to a possible
inversion, which, by the way, is the final goal when we
deal with real-life applications. It is to this end that the
utilization of elaborate numerical techniques is inevitable,
as it is demonstrated in [9] for the identification of an
orebody of approximately infinite conductivity, which is
buried in Earth, by using an equivalent perfectly conducting
triaxial model ellipsoid. High-contrast cases, where the target
has an extremely large conductivity with respect to the
surrounding host environment and hence is considered to be
impenetrable, motivated researchers to embark upon much
more complex patterns, such as the two-sphere case for two
closely adjacent metallic objects [10] or the circumstance
of a nonpenetrable, that is, perfect conductor, ring torus
[11], both articles presuming a conductive occupied medium.
These reports, each one containing a sufficient reference
list, are a small but representative sample of displaying the
inconvenience induced in performing analytical techniques
when incorporating with different geometrical models [12,
13]. As a matter of fact, the difficulty increases due to the
emergence of intricate eigenfunctions [14, 15], dealing with
the involved potentials.

This project is focused now on the adjustment of the low-
frequency diffusive scattering theory in solving the particular
problem of identifying impenetrable metallic bodies in a
lossless, that is, perfect dielectric, medium, aiming to follow
the similar successful path of other contributions to the
field. Bearing in mind the few, but with quite good results,
attempts of simulating the environment as lossless and
not conductive (e.g., see [16] for the case of two metallic
spheres almost touching and [17] for the toroidal case in
this direction), we realize the necessity of dealing with such
brute-force analytical models. Seeking for different body
structures in order to attain the representation of all kind of

anomalies in lossless media, as much effectively as possible,
the present paper deals with the spheroidal configuration.
Although research on quasi-static fields around spheroids is
vast, there are still elementary properties to be discovered;
thus the demand for comparable investigations stays on
continuously even nowadays. Consequently, here we extend
the research to a perfectly reflective spheroid, embedded in
a lossless ambient, where the appropriate and best fitting
system for the particular modeling purposes is the spheroidal
coordinate system [12, 13]. The prolate spheroidal geometry
is considered, since the oblate one is readily obtained via
a simple analytical transformation, while limiting cases are
also available. On the other hand, a time-harmonic magnetic
dipole source, acting as the primary source, operates at the
low-frequency regime and generates the three-dimensional
incident electromagnetic waves, which propagate towards the
scatterer. Then, the spheroidal-shaped body responds to the
excitation and generates the scattered magnetic and electric
fields, where their summation comprises the total fields.

The physical nature of the problem urges us to cope
with the following low-frequency technique, where the inci-
dent, the scattered, and the total electromagnetic fields are
expanded in terms of positive integral powers of (𝑖𝑘), where 𝑘
denotes the real wave number of the exterior medium at the
operation frequency. Here, we elaborate the 3D vector fields
at each order of (𝑖𝑘)𝑛 for every 𝑛 ∈ N, whereas our problem
is transformed into a sequence of coupled boundary value
scattering problems.Themodel ismathematically formulated
in terms of second-order Laplace’s and Poisson’s partial
differential equations, accompanied by the appropriate per-
fectly electrically conducting boundary conditions, that is,
cancellation of normalmagnetic and tangential electric fields,
reflecting the impenetrable character of the boundary of the
spheroid-type metallic targets. The Silver–Müller radiation
conditions at infinity are applied as well. We restrict our
analysis to the important terms of the expansions, confined
by the static Rayleigh term for 𝑛 = 0 and the dynamic terms
for 𝑛 = 1, 2, 3, since terms of higher orders, that is, 𝑛 ≥ 4, are
small contributors due to the low frequencies of which the
source operates and, consequently, they are neglected. The
analytical procedure sketched above leads either to closed
relationships or to infinite linear algebraic systems for the
determination of the unknown constant coefficients of the
implied potential functions, where the latter can be solved
approximately by enforcing usual cut-offmethods.The three-
dimensional scattered magnetic and electric fields for each𝑛 = 0, 1, 2, 3 admit closed-type forms via infinite series
expansions in view of spheroidal eigenfunctions [14, 15]. The
key to the validation of our approach is the degeneration of
the obtained formulae in order to recover the spherical case.

The rest of the paper itself is organized as follows. In
Section 2, a detailed physical interpretation and the theo-
retical basis via an analytical mathematical formulation are
sketched, which incorporate the general features, indepen-
dently of any geometry.Thereafter, a brief configuration of the
prolate spheroidal system and the eigenfunctions associated
with it is developed in Section 3, whereas the sought solution
is constructed step by step and the electromagnetic low-
frequency fields assume infinite series expansions in terms
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of prolate spheroidal eigenfunctions. Though the transfor-
mation of these geometrical and analytical attributes to the
oblate spheroidal case is presented, some interesting limiting
occasions are also discussed. Section 4 is devoted to the
validation of the aforementioned analytical method via a
proper reduction to the corresponding spherical problem that
illustrates the above results. Finally, a short conclusion and
discussion, containing an outline of our work and future
steps, follow in Section 5, while an updated reference list is
displayed immediately after.

2. Physical and Mathematical Interpretation

Suppose a solid spheroidal body, either prolate or oblate,
which by physical means has an approximate conductivity𝜎𝑏 → +∞ with respect to the surrounding homogeneous,
isotropic, and nonmagnetic lossless medium of conductivity𝜎 ≅ 0. The constructed body-medium system is assumed
to occupy the three-dimensional space 𝑉(R3), while the
interface that distinguishes the two regions is actually the
smooth surface 𝑆 of the perfectly electrically conducting
object. Hence, the area of electromagnetic scattering is spread
to the unbounded domain of dielectric permittivity 𝜀 and
magnetic permeability𝜇, approximated by the corresponding
one 𝜇0 of the vacuum, outside the spheroid, yielding exterior-
type problems. By definition of the given low circular fre-
quency 𝜔, the real-valued wave number of the medium is

𝑘 = 𝜔√𝜀𝜇, (1)

where (1) secures the conjecture of low frequencies. Har-
monic time-dependence is implied for the fields via multi-
plication of their spatial part by exp(−𝑖𝜔𝑡) (imaginary unit𝑖 = √−1); consequently they admit expressions as a function
of r = 𝑥1x̂1+𝑥2x̂2+𝑥3x̂3, which is expressed via the Cartesian
basis x̂𝜅, 𝜅 = 1, 2, 3 in Cartesian coordinates (𝑥1, 𝑥2, 𝑥3),
where this dependencewill be omitted henceforth for reasons
of writing convenience.

The impenetrable spheroid is excited by a primary vector
source field, for example, a magnetic dipole m for the
purposes of this project, having an arbitrary orientation that
yields

m = 3∑
𝑗=1

𝑚𝑗x̂𝑗, (2)

being located at r = r0.The fixed singular point r0 is excluded
from the domain 𝑉(R3) of scattering, since the region of
interest is at a reasonably long distance from the source.Thus,
we adopt the explicit definition Ω ≡ 𝑉(R3) − {r0} as for
the area of electromagnetic activity. According to the simple
notation R = r − r0 and 𝑅 = |r − r0|, the magnetic dipolar
source radiates the primary fields [2]

H𝑝 (r; r0) = 14𝜋 [(𝑘2 + 𝑖𝑘𝑅 − 1𝑅2)m

− (𝑘2 + 3𝑖𝑘𝑅 − 3𝑅2) R ⊗ R ⋅m𝑅2 ] 𝑒𝑖𝑘𝑅𝑅 for r ∈ Ω,
(3)

E𝑝 (r; r0) = [𝜔𝜇𝑘4𝜋 (1 + 𝑖𝑘𝑅) m × R𝑅 ] 𝑒𝑖𝑘𝑅𝑅
for r ∈ Ω,

(4)

where the symbol “⊗” denotes dyadic product. In terms
of Maclaurin’s series expansions of the exponent 𝑒𝑖𝑘𝑅 and
implying (1), we perform some extended algebraic calcula-
tions by collecting terms as integral powers of (𝑖𝑘) and we
retain the adequate number of them that correspond to the
static Rayleigh approximation and to the first three dynamic
factors. Therefore, the incident magnetic field (3) is rewritten
as

H𝑝 (r; r0)
= [H𝑝0 (r; r0) + H𝑝2 (r; r0)2 (𝑖𝑘)2 + H𝑝3 (r; r0)6 (𝑖𝑘)3]
+ I ((𝑖𝑘)4) for r ∈ Ω,

(5)

while the corresponding primary incident electric field (4)
renders

E𝑝 (r; r0) = [E𝑝1 (r; r0) (𝑖𝑘) + E𝑝3 (r; r0)6 (𝑖𝑘)3]
+ I ((𝑖𝑘)4) for r ∈ Ω,

(6)

where the input of the fields of order 𝑛 ≥ 4 is minor, since𝜔 and consequently 𝑘 are very small. On the other hand, the
surviving electromagnetic fields for all 𝑛 = 0, 1, 2, 3 enjoy
H𝑝0 (r; r0) = m4𝜋 ⋅ (3R ⊗ R𝑅2 − Ĩ) 1𝑅3 = m4𝜋 ⋅ (∇ ⊗ ∇ 1𝑅)

for r ∈ Ω,
(7)

H𝑝2 (r; r0) = −m4𝜋 ⋅ (R ⊗ R𝑅2 + Ĩ) 1𝑅
= m4𝜋 ⋅ (∇ 1𝑅 ⊗ R − Ĩ𝑅) for r ∈ Ω,

(8)

H𝑝3 (r; r0) = m4𝜋 ⋅ (−4Ĩ) for r ∈ Ω, (9)

as far as the magnetic components are concerned, while

E𝑝1 (r; r0) = m4𝜋√𝜇𝜀 × R𝑅3 = −m4𝜋√𝜇𝜀 × ∇ 1𝑅
for r ∈ Ω,

(10)

E𝑝3 (r; r0) = −m4𝜋√𝜇𝜀 × 3R𝑅 for r ∈ Ω, (11)

obtained for the electric elements, where H𝑝1 = E𝑝0 = E𝑝2 =
0, as it is indicated by the performed analysis. Expressions
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(7)–(11) are provided in view of the unit dyadic Ĩ = ∑3𝑗=1 x̂𝑗 ⊗
x̂𝑗, while the handy forms, depicted on the right-hand side of
(7), (8), and (10), are based on straightforward computations
with the aid of trivial differential identities and by virtue of

∇r 1𝑅 ≡ ∇ 1𝑅 = − R𝑅3 = −∇r0 1𝑅 for every r ∈ Ω, (12)

given that ∇ ⊗ r = Ĩ. They contain the fundamental quantity,
captured under the action of the gradient operator ∇ ≡∇r = ∑3𝑗=1 x̂𝑗(𝜕/𝜕𝑥𝑗) (note that the Laplacian is Δ ≡ Δ r =
∑3𝑗=1(𝜕2/𝜕𝑥2𝑗) = ∇ ⋅ ∇). Though these operators could also
be applied on r0, however for reasons of technical clarity we
distinguish this feature by introducing the above notation;
otherwise it will be instantly designated. In the aftermath,
the primary incident fields are perturbed by the solid object,
producing the corresponding scattered fieldsH𝑠 andE𝑠, while
the total fields emerge as the summation

H𝑡 (r) = H𝑝 (r; r0) +H𝑠 (r) ,
E𝑡 (r) = E𝑝 (r; r0) + E𝑠 (r) ,

for r ∈ Ω,
(13)

where, since the spheroidal metal body is nonpenetrable, the
wave propagation is not possible inside it. By definition of
the simple notation 𝑥 = 𝑝, 𝑠, 𝑡, corresponding to primary
(𝑝), scattered (𝑠), and total (𝑡) electromagnetic fields, all pairs(H𝑥,E𝑥) satisfy the well-known Maxwell’s equations [2]. Yet,
as for the scattering components that interest us in the sought
solution withinΩ, they become

∇ × E𝑠 (r) = 𝑖𝜔𝜇H𝑠 (r) ,
∇ ×H𝑠 (r) = (−𝑖𝜔𝜀 + 𝜎)E𝑠 (r) 𝜎→0≅ −𝑖𝜔𝜀E𝑠 (r) , (14)

which represent a deduced form for our particular circum-
stance and they are divergence-free; that is,

∇ ⋅H𝑠 (r) = ∇ ⋅ E𝑠 (r) = 0 for r ∈ Ω, (15)

implying their solenoidal attribute, such that (14) is readily
sufficed.

The low-frequency interaction high-contrast cases, as
dictated by the physics that we address here, are inherited to
the scattered fields and they are postulated by the series

H𝑠 (r) = +∞∑
𝑛=0

H𝑠𝑛 (r) (𝑖𝑘)𝑛𝑛! ,

E𝑠 (r) = +∞∑
𝑛=0

E𝑠𝑛 (r) (𝑖𝑘)𝑛𝑛! ,
for every r ∈ Ω,

(16)

where their written fashion is referenced in [2]. Substituting
expansions (16) into Maxwell’s equations (14), accompanied
by (15), we retrieve

∇ × E𝑠𝑛 (r) = 𝑛√𝜇𝜀H𝑠𝑛−1 (r) ,
∇ ×H𝑠𝑛 (r) = −𝑛√ 𝜀𝜇E𝑠𝑛−1 (r) ,

with 𝑛 ≥ 0, for r ∈ Ω,
(17)

∇ ⋅H𝑠𝑛 (r) = 0, ∇ ⋅ E𝑠𝑛 (r) = 0,
with 𝑛 ≥ 0, for r ∈ Ω, (18)

which stand for the low-frequency equivalent expressions.
However, for all the reasons described earlier, the behavior
of the incident fields (5) and (6) with (7)–(11) reflects exactly
the very same physical and mathematical treatment to the
scattered fields (16) with (17) and (18); that is, we hold the
corresponding nonvanishing terms, attaining fields up to
the third order, since the rest of them consist of a minor
correction. As a consequence, the scattered magnetic field
reads

H𝑠 (r) = [H𝑠0 (r) + H𝑠2 (r)2 (𝑖𝑘)2 + H𝑠3 (r)6 (𝑖𝑘)3]
+ I ((𝑖𝑘)4) for r ∈ Ω,

(19)

while scattered electric field is assumed to be

E𝑠 (r) = [E𝑠1 (r) (𝑖𝑘) + E𝑠3 (r)6 (𝑖𝑘)3] + I ((𝑖𝑘)4)
for r ∈ Ω,

(20)

considering H𝑠1 = E𝑠0 = E𝑠2 = 0, in the absence of the relative
incident components. Obviously, taking this into account, the
fundamental relations (17) and (18) are immediately fulfilled
by the surviving low-frequency fields H𝑠0, H

𝑠
2, H
𝑠
3, E
𝑠
1, and

E𝑠3 arising from (19) and (20) for 𝑛 = 0, 1, 2, 3, where their
evaluation specifies our final goal. Aiming to understand the
contribution of each low-frequency termwithin (19) and (20),
we reinforce (1) and we separate the real from the imaginary
part, concluding to

H𝑠 (r) = [H𝑠0 (r) − (𝜔√𝜀𝜇)22 H𝑠2 (r)]

+ [−(𝜔√𝜀𝜇)36 H𝑠3 (r)] 𝑖 + I ((𝑖𝑘)4)
for r ∈ Ω,

(21)

E𝑠 (r) = 𝜔√𝜀𝜇[E𝑠1 (r) − (𝜔√𝜀𝜇)26 E𝑠3 (r)] 𝑖
+ I ((𝑖𝑘)4) for r ∈ Ω,

(22)
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the electric field being purely imaginary, while the magnetic
field that is practically measured is a complex-valued func-
tion.

In order to proceed to the solution, we are obliged to
complete the aforementioned analysis by the exposition of
the related to the problem boundary and limiting conditions.
Under this aspect, the properly fitted perfectly electrically
conducting boundary conditions on the surface 𝑆 of the
spheroidal target are provided in terms of the corresponding
outward unit normal vector n̂ and involve the total fields via

n̂ ⋅H𝑡 (r) = 0, n̂ × E𝑡 (r) = 0, for every r ∈ 𝑆, (23)

which demand cancellation of the normal component of the
total magnetic field and of the tangential component of the
total electric field. The low-frequency analogy of (23) turns
out to be a combination of it with (16), whereas by virtue of
(13) we are led to

n̂ ⋅ [H𝑝𝑛 (r; r0) +H𝑠𝑛 (r)] = 0 for 𝑛 = 0, 2, 3,
n̂ × [E𝑝𝑛 (r; r0) + E𝑠𝑛 (r)] = 0 for 𝑛 = 1, 3 on 𝑆, (24)

while relations (24) refer only to the remaining electromag-
netic terms, since H𝑥1 = E𝑥0 = E𝑥2 = 0 for any 𝑥 = 𝑝, 𝑠, 𝑡.
Additionally, for the implicated functions, the Silver–Müller
radiation conditions at infinity for the scattered fields, those
being

lim
|r|→+∞

[r × ∇ × (H𝑠 (r)
E𝑠 (r)) + 𝑖𝑘 |r| (H𝑠 (r)

E𝑠 (r))] = 0

for every r ∈ Ω,
(25)

must be instantly satisfied, also for the low-frequency regime
through (16), giving

lim
|r|→+∞

[r × ∇ × (H𝑠𝑛 (r)
E𝑠𝑛 (r)) + 𝑛 |r| (H𝑠𝑛−1 (r)

E𝑠𝑛−1 (r))] = 0

with 𝑛 = 1, 2, 3 for every r ∈ Ω,
(26)

since, for 𝑛 = 0, it holds that E𝑠0 = 0 and lim|r|→+∞(r × ∇ ×
H𝑠0) = 0 as it is verified from (17). Exterior-type solutions,
like in our case, satisfy (25) automatically, as a consequence
of the appropriate construction of the potentials via the
corresponding eigenfunctions [14, 15].

During our analysis, it is supposed that the conductivity
of the spheroid approaches infinity. Nevertheless, herein we
should include a small discussion about the transition zone,
that is, how to treat materials with large, or even comparable
with respect to the exterior medium, but not infinite con-
ductivity. In this case, the problem becomes slightly more
complicated, since the body becomes penetrable; hence the
interior electromagnetic fields exist and contribute to the final
solution via the transmission conditions, which are applied
on the material’s surface instead of (23); see [2] for more
details. There, it is shown that conductive or even dielectric
particles can resonate with an incident electromagnetic wave
over a wide range of modes related to surface excitation.This

is due to the excess surface charge that causes the particles
of arbitrary composition obtaining metallic properties, a fact
especially important for spheres and spheroids. However,
this is a completely different situation from the present
investigation, concerning applications of importance in other
physical areas, for example, in optics.

In summary, we have to manipulate a little bit further
the partial differential equations (17) with (18) to obtain
easy-to-handle elliptic equations with partial derivatives and,
then, use the spheroidal coordinate geometry and analysis,
whereby the conditions (24) and (26) are applied, to reach the
final desired solution.

3. Spheroidal Low-Frequency
Electromagnetic Fields

We intend to derive closed analytical formulae for the main
nonvanishing scattered electromagnetic fieldsH𝑠0,H

𝑠
2,H
𝑠
3,E
𝑠
1,

and E𝑠3, since H
𝑠
1 = E𝑠0 = E𝑠2 = 0. To achieve that, we have

to recover from (17), provided (18), known partial differential
equations. To this direction, we apply 𝑐𝑢𝑟𝑙 on both sides of
Maxwell’s equations (17) and we utilize repeatedly the very
useful identity ∇ × ∇ × f = ∇(∇ ⋅ f) − Δf with f being any
vector, where, along with (18), we arrive at a set of boundary
value problems, which are coupled to one another, from the
static one at 𝑛 = 0 to all the rest of the dynamic ones at higher
orders up to 𝑛 = 3.Those are written explicitly as functions of
the scalar Φ𝑠0, Φ𝑠3 and the vector Χ𝑠2, Χ

𝑠
3 harmonic potentials,

ΔΦ𝑠0 (r) = ΔΦ𝑠3 (r) = 0,
ΔΧ𝑠2 (r) = ΔΧ𝑠3 (r) = 0,

for every r ∈ Ω,
(27)

providing independently

ΔH𝑠0 (r) = 0 󳨐⇒ H𝑠0 (r) = ∇Φ𝑠0 (r) ,
since ∇ ⋅H𝑠0 (r) = 0, ∇ ×H𝑠0 (r) = 0 for r ∈ Ω, (28)

while utilizing (28); then the right-hand side of what follows
is known; that is,

ΔH𝑠2 (r) = 2H𝑠0 (r) 󳨐⇒ H𝑠2 (r) = Χ𝑠2 (r) + rΦ𝑠0 (r)
with ∇ ⋅H𝑠2 (r) = 0 for r ∈ Ω, (29)

from which we may recover

E𝑠1 (r) = −12√𝜇𝜀 ∇ ×H𝑠2 (r) for r ∈ Ω (30)

which serves as the nonhomogeneous part of the equation
that follows; that is,

ΔE𝑠3 (r) = 6E𝑠1 (r) 󳨐⇒
E𝑠3 (r) = Χ𝑠3 (r) + 6 [− 14𝜋∭Ω

E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 𝑑Ω
󸀠] ,

with ∇ ⋅ E𝑠3 (r) = 0, r ∈ Ω.
(31)
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Moreover, we work similarly to the zeroth-order field to
obtain

ΔH𝑠3 (r) = 0 󳨐⇒ H𝑠3 (r) = ∇Φ𝑠3 (r) ,
since ∇ ⋅H𝑠3 (r) = 0, ∇ ×H𝑠3 (r) = 0 for r ∈ Ω, (32)

where we recall that the scattered fields H𝑠0, H
𝑠
2, H
𝑠
3, E
𝑠
1, and

E𝑠3 must be determined in the confined scattering region
of wave propagation Ω ≡ 𝑉(R3) − {r0}. Some extended
analysis reveals that, for 𝑛 = 0, which corresponds to
the Rayleigh approximation term, an uncoupled Laplace’s
equation is solved for themagnetic field, while there exists no
electric field, since the corresponding term for the incident
electric field is absent. On the contrary, the dynamic term
for 𝑛 = 1 reveals the existence of a vector harmonic electric
field with a zero-term magnetic field. As for the 𝑛 = 2
case, it involves a Poisson’s equation for the magnetic field,
coupled to the static term. Exploiting appropriately the 𝑛 =0 problem, we solve Poisson’s equation by introducing a
special form of a particular solution, which is actually the
outcome of the application of a standard vector identity,
using the fact that Δr = 0 and ∇ ⊗ r = Ĩ. The incident
electric field does not exist, inheriting the same attribute
to the scattered one. Finally, at 𝑛 = 3 both magnetic and
electric fields appear. As far as themagnetic field is concerned,
we simply solve an uncoupled Laplace’s equation. However,
this is not the case for the problem corresponding to the
electric field for which the solution is introduced in the form
of an integral representation in terms of the fundamental
solution of Laplace’s equation [14]. Problems (28)–(32) with
(27) are supplemented by the perfectly reflecting boundary
conditions (24) and the proper limiting behavior (26). It is
obvious that the low-frequencymagnetic terms of order 𝑛 ≥ 0
vary like 1/𝑅3−𝑛, while the corresponding electric ones vary
like 1/𝑅4−𝑛 as 𝑅 > 0 increases to infinity. Thus, implying𝑛 = 1 to obtain E𝑠1, integral within (31) is of order 1/𝑅, which
converges as 𝑅 → +∞.

3.1. The Prolate Spheroidal Coordinate System with Geometry
and Analysis. For the sake of completeness, we provide a
brief analysis of the spheroidal case and especially the prolate
spheroidal geometry, since the oblate one can be readily
recovered as it will be seen afterwards. Given a fixed positive
number 𝑐 > 0, which we consider to be the semifocal distance
of our system, we define the transformed prolate spheroidal
coordinates (𝜏, 𝜁, 𝜑) for every 1 ≤ 𝜏 ≡ cosh 𝜂 < +∞,−1 ≤ 𝜁 ≡
cos 𝜃 ≤ 1, and 0 ≤ 𝜑 < 2𝜋 (see Figure 1) as

𝑥1 = 𝑐𝜏𝜁,
𝑥2 = 𝑐√𝜏2 − 1√1 − 𝜁2 cos𝜑,
𝑥3 = 𝑐√𝜏2 − 1√1 − 𝜁2 sin𝜑

(33)

with position vector r = (𝑥1, 𝑥2, 𝑥3), where r0 = (𝑥10, 𝑥20,𝑥30) designate the prescribed source’s location. In the limit
as 𝜏 → 1+ the prolate spheroid degenerates to the standard
focal segment 𝐿0 = {(𝑡, 0, 0) : 𝑡 ∈ [−𝑐, 𝑐], 𝑐 > 0}, while as

x1

x2

x3

0

c
∗

Figure 1:The prolate spheroidal geometry and the three coordinate
surfaces, that is, prolate spheroids (𝜏 = const.), hyperboloids of two
sheets (𝜁 = const.), and meridian planes (𝜑 = const.) with 𝑐 being
the semifocal distance of the coordinate system.

𝜏 → +∞ it approaches a sphere located at infinity. A key
point in this analysis is the exploitation of the common 𝑥1-
axis of symmetry between the applicable coordinate system
and the spheroidal body under investigation. In fact, this is a
quite practical technique, which simplifies the mathematical
treatment, though it retains the generality unaltered and
we still cope with a genuine three-dimensional problem,
since the arbitrary orientation of the magnetic dipole, which
is implied by (2), defends the 3D configuration until the
final solution. Nevertheless, in the very special case where
the magnetic dipole is set on the axis of symmetry of the
proposed prolate geometry, that is, the 𝑥1-axis, which means
r0 = (𝑥10, 0, 0) and is orientated to the 𝑥1-direction, yielding
m = 𝑚1x̂1, then the problem under consideration turns into
being axisymmetric, since any kind of dependence from the
azimuthal angular 𝜑 ∈ [0, 2𝜋) is omitted. This restriction is
imposed in every field in addition to the vanishing of the
other two components of the magnetic dipole (𝑚2 = 𝑚3 = 0)
and of its position (𝑥20 = 𝑥30 = 0) to the analytical results.
However, the general nonaxisymmetric case that is examined
here is concerned with a source of arbitrary location and
orientation.

The main differential operators, in the prolate geometry,
excluding the tip for 𝜏 → 1+ and for every 𝜏 ∈ (1, +∞), 𝜁 ∈[−1, 1], and 𝜑 ∈ [0, 2𝜋), are furnished by

∇r ≡ ∇
= 1
𝑐√𝜏2 − 𝜁2 [√𝜏2 − 1𝜏̂

𝜕𝜕𝜏 − √1 − 𝜁2𝜁̂ 𝜕𝜕𝜁]
+ 1
𝑐√𝜏2 − 1√1 − 𝜁2 𝜑̂

𝜕𝜕𝜑 ,
(34)
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as for the gradient and

Δ r ≡ Δ = 1𝑐2 (𝜏2 − 𝜁2) { 𝜕𝜕𝜏 [(𝜏2 − 1) 𝜕𝜕𝜏 ]
+ 𝜕𝜕𝜁 [(1 − 𝜁2) 𝜕𝜕𝜁]} + 1𝑐2 (𝜏2 − 1) (1 − 𝜁2) 𝜕2𝜕𝜑2 ,

(35)

concerning the Laplacian. In (34), the outward unit normal
vector coincides with 𝜏̂ through

n̂ ≡ 𝜏̂ (𝜏, 𝜁, 𝜑) = 1√𝜏2 − 𝜁2 (𝜁√𝜏2 − 1x̂1
+ 𝜏√1 − 𝜁2 cos𝜑x̂2 + 𝜏√1 − 𝜁2 sin𝜑x̂3) ,

(36)

whereas the other two orthonormal vectors of the spheroidal
system assume the Cartesian basis formulae

𝜁̂ (𝜏, 𝜁, 𝜑) = 1√𝜏2 − 𝜁2 (−𝜏√1 − 𝜁2x̂1
+ 𝜁√𝜏2 − 1 cos𝜑x̂2 + 𝜁√𝜏2 − 1 sin𝜑x̂3) ,

(37)

𝜑̂ (𝜑) = − sin𝜑x̂2 + cos𝜑x̂3, (38)

while the unit dyadic in prolate spheroidal coordinates is Ĩ =
𝜏̂ ⊗ 𝜏̂ + 𝜁̂ ⊗ 𝜁̂ + 𝜑̂ ⊗ 𝜑̂.

Specifying the solid surface 𝑆 by 𝜏 = 𝜏𝑠 ≡ 𝑎1/𝑐, then
the prolate spheroidal body has major (in 𝑥1-direction) and
minor (situated on 𝑥2𝑥3-plane) axes 𝑎1 = 𝑐𝜏𝑠 and 𝑎2 = 𝑎3 =𝑐√𝜏2𝑠 − 1, respectively, while its eccentricity is 𝑒 = 1/𝜏𝑠. We
remark that the low-frequency approximations are secured
only when themain axes, as well as the semifocal distance, are
less than the wavelength 𝜆 = 2𝜋/𝑘 of the incident field, such
a demand being ensured via the inequality 2𝑐+𝑎1 +𝑎2 +𝑎3 ≪𝜆. In terms of spheroidal modes, the actual region of wave
propagation is

Ω ≡ 𝑉(R3) − {r0}
= {(𝜏, 𝜁, 𝜑) : 𝜏 ∈ [𝜏𝑠, +∞) , 𝜁 ∈ [−1, 1] , 𝜑
∈ [0, 2𝜋)} − {(𝜏0, 𝜁0, 𝜑0)} ,

(39)

where (𝜏0, 𝜁0, 𝜑0) corresponds to (𝑥10, 𝑥20, 𝑥30) by means
of (33), forming an exterior domain. Apparently, since the
spheroidal object is impenetrable, it lacks any field inside; that
is,

H𝑥 (r) = E𝑥 (r) = 0

for r ∈ {𝜏 ∈ (1, 𝜏𝑠) , 𝜁 ∈ [−1, 1] , 𝜑 ∈ [0, 2𝜋)} , with 𝑥 = 𝑝, 𝑠, 𝑡, (40)
while on 𝜏 = 𝜏𝑠 and as 𝜏 → +∞, the boundary conditions
(23) or (24) and the limiting behavior (25) or (26), respec-
tively, must be counted.

Proceeding to the analysis, we introduce the interior 𝑢𝑚/𝑞ℓ,in
(regular as 𝜏 → 1+) and the exterior 𝑢𝑚/𝑞ℓ,ex (regular as 𝜏 →

+∞) prolate spheroidal harmonic eigenfunctions of degreeℓ ≥ 0 and of order𝑚 = 0, 1, 2, . . . , ℓ, in terms of the associated
Legendre functions of the first 𝑃𝑚ℓ and of the second 𝑄𝑚ℓ
kind (for more information about these functions and their
properties, refer to [7, 14, 15], where a detailed appendix
contains such details) according to

𝑢𝑚/𝑞ℓ,in (r) = 𝑃𝑚ℓ (𝜏) 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑) ,
𝑢𝑚/𝑞ℓ,ex (r) = 𝑄𝑚ℓ (𝜏) 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑) ,

(41)

respectively, and for any 𝜏 ∈ [1, +∞), 𝜁 ∈ [−1, 1], and 𝜑 ∈[0, 2𝜋), which both are regular on the axis of symmetry. The
azimuthal angular dependence reads

𝑓𝑞𝑚 (𝜑) = {{{
cos𝑚𝜑, 𝑞 = 𝑒
sin𝑚𝜑, 𝑞 = 𝑜 󳨐⇒

𝑓𝑞󸀠𝑚 (𝜑) = {{{
−𝑚 sin𝑚𝜑, 𝑞 = 𝑒
𝑚 cos𝑚𝜑, 𝑞 = 𝑜

for every 𝜑 ∈ [0, 2𝜋) ,

(42)

where 𝑞 stands for the even (𝑞 = 𝑒) or the odd (𝑞 = 𝑜) part of
the eigenfunctions, while the prime denotes derivation with
respect to the argument here and thereafter. Consequently,
every harmonic function 𝑢 in prolate spheroidal geometry
belongs to the kernel space of Laplace’s operator (35), that is,Δ𝑢 = 0, and assumes

𝑢 (r) = +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

[𝐴𝑚/𝑞ℓ,in𝑢𝑚/𝑞ℓ,in (r) + 𝐴𝑚/𝑞ℓ,ex𝑢𝑚/𝑞ℓ,ex (r)]
for r ∈ {𝜏 ∈ [1, +∞) , 𝜁 ∈ [−1, 1] , 𝜑 ∈ [0, 2𝜋)} ,

(43)

where 𝐴𝑚/𝑞ℓ,in and 𝐴𝑚/𝑞ℓ,ex are arbitrary constants, which selec-
tively vanish once we deal with either an interior problem
(𝐴𝑚/𝑞ℓ,ex = 0) or an exterior one (𝐴𝑚/𝑞ℓ,in = 0), like in our case,
in order to obtain the mathematically accepted solution. On
the other hand, we join the internal product

(𝑃𝑚ℓ (𝜁) , 𝑃𝑚ℓ󸀠 (𝜁)) = ∫+1
−1

𝑃𝑚ℓ (𝜁) 𝑃𝑚ℓ󸀠 (𝜁) 𝑑𝜁
= 22ℓ + 1 (ℓ + 𝑚)!(ℓ − 𝑚)!𝛿ℓℓ󸀠

with ℓ, ℓ󸀠 ≥ 0,
(44)

needed in our project, 𝛿ℓℓ󸀠 being the Kronecker delta and𝑚 =0, 1, 2, . . . , ℓ, while the trigonometric functions for ℓ, ℓ󸀠 ≥ 0
and 𝑞, 𝑞󸀠 = 𝑒, 𝑜 are orthogonal with respect to

(𝑓𝑞𝑚 (𝜑) , 𝑓𝑞󸀠𝑚󸀠 (𝜑)) = ∫2𝜋
0
𝑓𝑞𝑚 (𝜑) 𝑓𝑞󸀠𝑚󸀠 (𝜑) 𝑑𝜑

= 2𝜋𝜀𝑚 𝛿𝑚𝑚󸀠𝛿𝑞𝑞󸀠
with (𝑚,𝑚󸀠) = 0, 1, 2, . . . , (ℓ, ℓ󸀠) ,

(45)
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where 𝛿𝑚𝑚󸀠 and 𝛿𝑞𝑞󸀠 are again the Kronecker deltas with 𝜀0 =1 and 𝜀𝑚 = 2 otherwise.
Furthermore, a very crucial piece of information for the

forthcoming analytical subsections incorporates the position
of the dipole at r0 with the very useful Green’s function
expansion for prolate geometry [14], so that in terms of (41)
and for any observation region (39), we obtain

1𝑅 ≡ 1󵄨󵄨󵄨󵄨r − r0
󵄨󵄨󵄨󵄨

=
{{{{{{{{{{{{{

+∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

𝜌𝑚/𝑞ℓ,in (r0) 𝑢𝑚/𝑞ℓ,ex (r) for r > r0

+∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

𝜌𝑚/𝑞ℓ,ex (r0) 𝑢𝑚/𝑞ℓ,in (r) for r < r0,
(46)

where at r = r0 = (𝜏0, 𝜁0, 𝜑0)we attain singularity and it holds
𝜌𝑚/𝑞ℓ,𝑦 (r0) = (2ℓ + 1)𝑐 [(ℓ − 𝑚)!(ℓ + 𝑚)!]

2 (−1)𝑚 𝜀𝑚𝑢𝑚/𝑞ℓ,𝑦 (r0)
with 𝑦 = in, ex,

(47)

which ends the well-known, but necessary, gathering of
preliminaries for the sequel.

Finally, for completeness, we invoke the exact expressions
of gradient action upon interior and exterior solid spheroidal
harmonics (41) via the surface ones for the shake of clarity.
This is feasible, since ∇𝑢𝑚/𝑞ℓ,in and ∇𝑢𝑚/𝑞ℓ,ex for ℓ ≥ 0, 𝑚 =0, 1, 2, . . . , ℓ, and 𝑞 = 𝑒, 𝑜 belong to the subspace produced
by the surface spheroidal harmonics. After cumbersome
analysis, profiting by recurrence relations for 𝑃𝑚ℓ and 𝑄𝑚ℓ ,
defined for different arguments, that is, for 𝜏 ≥ 1 and |𝜁| ≤ 1
[14, 15], we arrive at

∇𝑢𝑚/𝑞ℓ,in (r)
= 𝑓𝑞𝑚 (𝜑)(2ℓ + 1) { 𝑃𝑚ℓ (𝜁) 𝜏̂𝑐√𝜏2 − 𝜁2√𝜏2 − 1 [ℓ (ℓ − 𝑚 + 1)
⋅ 𝑃𝑚ℓ+1 (𝜏) − (ℓ + 1) (ℓ + 𝑚)𝑃𝑚ℓ−1 (𝜏)]
+ 𝑃𝑚ℓ (𝜏) 𝜁̂𝑐√𝜏2 − 𝜁2√1 − 𝜁2 [ℓ (ℓ − 𝑚 + 1) 𝑃𝑚ℓ+1 (𝜁)

− (ℓ + 1) (ℓ + 𝑚)𝑃𝑚ℓ−1 (𝜁)]} + 𝑓𝑞󸀠𝑚 (𝜑) 𝜑̂𝑐√𝜏2 − 1√1 − 𝜁2
⋅ 𝑃𝑚ℓ (𝜏) 𝑃𝑚ℓ (𝜁)

for ℓ ≥ 0, 𝑚 = 0, 1, 2, . . . , ℓ, 𝑞 = 𝑒, 𝑜,
(48)

as far as the gradient on the interior solid harmonics is
concerned, while

∇𝑢𝑚/𝑞ℓ,ex (r)
= 𝑓𝑞𝑚 (𝜑)(2ℓ + 1) { 𝑃𝑚ℓ (𝜁) 𝜏̂𝑐√𝜏2 − 𝜁2√𝜏2 − 1 [ℓ (ℓ − 𝑚 + 1)
⋅ 𝑄𝑚ℓ+1 (𝜏) − (ℓ + 1) (ℓ + 𝑚)𝑄𝑚ℓ−1 (𝜏) − 𝛿ℓ0]
+ 𝑄𝑚ℓ (𝜏) 𝜁̂𝑐√𝜏2 − 𝜁2√1 − 𝜁2 [ℓ (ℓ − 𝑚 + 1) 𝑃𝑚ℓ+1 (𝜁)

− (ℓ + 1) (ℓ + 𝑚) 𝑃𝑚ℓ−1 (𝜁)]} + 𝑓𝑞󸀠𝑚 (𝜑) 𝜑̂𝑐√𝜏2 − 1√1 − 𝜁2
⋅ 𝑄𝑚ℓ (𝜏) 𝑃𝑚ℓ (𝜁)

for ℓ ≥ 0, 𝑚 = 0, 1, 2, . . . , ℓ, 𝑞 = 𝑒, 𝑜,

(49)

regarding the gradient on the exterior solid harmonics. Both
(48) and (49) are defined for any 𝜏 ∈ (1, +∞), 𝜁 ∈ [−1, 1], and𝜑 ∈ [0, 2𝜋), while 𝛿ℓ0 = 1 only when ℓ = 𝑚 = 0; else it is zero.
It is obvious that expressions (48) and (49) are also applicable
at r = r0, if we make the replacement ∇ → ∇r0 , whereas then
the prime declares derivation with respect to 𝜑0.

Next, we perform long and tedious calculations in order
to pursuit an analytical form for the scattered fields. In what
follows, we present the basic and interesting steps of them
by starting from the magnetic modes to obtain H𝑠0, H

𝑠
2, and

H𝑠3 and proceed to the electric ones E𝑠1, E
𝑠
3, bearing in mind

the vanishing electromagnetic terms H𝑠1 = E𝑠0 = E𝑠2 = 0,
where H𝑠2 and E𝑠3 are the most cumbersome cases, which we
endeavor to retrieve in a handy form.

3.2. TheH𝑠0,H
𝑠
2, andH

𝑠
3 Magnetic Fields. Beginning with the

situation for the Rayleigh static term, the relative potential
boundary value problem that has to be solved embodies (27)
and (28) with the Neumann boundary condition (24) for 𝑛 =0, yielding

H𝑠0 (r) = ∇Φ𝑠0 (r) with ΔΦ𝑠0 (r) = 0 for r ∈ Ω, where 𝜏̂ (r𝑠) ⋅ [H𝑝0 (r𝑠) +H𝑠0 (r𝑠)] = 0 (50)

with r𝑠 = (𝜏𝑠, 𝜁, 𝜑), where 𝜏̂ is provided by (36) for 𝜏 =𝜏𝑠. The harmonic potential Φ𝑠0 is rendered via the exterior-
type part of (43); hence, by virtue of (50), we conclude
to

H𝑠0 (r) = +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

𝑎𝑚/𝑞ℓ,ex∇ [𝑄𝑚ℓ (𝜏) 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑)]
for every r ∈ Ω,

(51)
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where 𝑎𝑚/𝑞ℓ,ex for ℓ ≥ 0, 𝑚 = 0, 1, 2, . . . , ℓ, and 𝑞 =𝑒, 𝑜 denote the constant coefficients to be recovered from
boundary condition (50). Expansion (51) is compatible with
the acquired limiting behavior (26). In the first place, we
imply definition (34) upon (51) and we calculate the inner
product

𝜏̂ (𝜏𝑠, 𝜁, 𝜑) ⋅H𝑠0 (𝜏𝑠, 𝜁, 𝜑) = √𝜏2𝑠 − 1
𝑐√𝜏2𝑠 − 𝜁2

⋅ +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

𝑎𝑚/𝑞ℓ,ex [𝑄𝑚󸀠ℓ (𝜏𝑠) 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑)]
(52)

for every 𝜁 ∈ [−1, 1] and 𝜑 ∈ [0, 2𝜋). On the other hand,
the corresponding inner product with the incident field (7)
encounters a complexity, caused by the double action of the
gradient operator over Green’s function quantity. Aiming to
exceed this difficultness, we work as follows. Firstly, we take
the unit normal projection of (34), where the outcome is

𝜏̂ (𝜏𝑠, 𝜁, 𝜑) ⋅H𝑝0 (𝜏𝑠, 𝜁, 𝜑; r0)
= √𝜏2𝑠 − 1
𝑐√𝜏2𝑠 − 𝜁2 {

𝜕𝜕𝜏 [∇ 1󵄨󵄨󵄨󵄨r − r0
󵄨󵄨󵄨󵄨] ⋅

m4𝜋}
𝜏=𝜏𝑠

, (53)

since the dyadic∇⊗∇(1/𝑅) is symmetric, and we employ (12)
to rewrite (53) as

𝜏̂ (𝜏𝑠, 𝜁, 𝜑) ⋅H𝑝0 (𝜏𝑠, 𝜁, 𝜑; r0)
= − √𝜏2𝑠 − 1

𝑐√𝜏2𝑠 − 𝜁2 {
𝜕𝜕𝜏 [∇r0 1󵄨󵄨󵄨󵄨r − r0

󵄨󵄨󵄨󵄨] ⋅
m4𝜋}
𝜏=𝜏𝑠

, (54)

which, upon introduction of eigenexpansion (46) with (47)
for r = r𝑠 < r0, becomes

𝜏̂ (r𝑠) ⋅H𝑝0 (r𝑠; r0) = − √𝜏2𝑠 − 1
𝑐√𝜏2𝑠 − 𝜁2

⋅ +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

[m4𝜋 ⋅ ∇r0𝜌𝑚/𝑞ℓ,ex (r0)] 𝑃𝑚󸀠ℓ (𝜏𝑠) 𝑃𝑚ℓ (𝜁)
⋅ 𝑓𝑞𝑚 (𝜑) ,

(55)

where 𝜌𝑚/𝑞ℓ,ex (r0) that has to do with the source is defined in
(47) and r𝑠 = (𝜏𝑠, 𝜁, 𝜑), while 𝜁 ∈ [−1, 1] and 𝜑 ∈ [0, 2𝜋).
Apparently, the gradient ∇r0𝜌𝑚/𝑞ℓ,ex (r0) is a known quantity
and m satisfies (2). Combining (52) and (55), condition (50)
reveals that

√𝜏2𝑠 − 1
𝑐√𝜏2𝑠 − 𝜁2
⋅ ∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

[𝑎𝑚/𝑞ℓ,ex𝑄𝑚󸀠ℓ (𝜏𝑠) − (m4𝜋 ⋅ ∇r0𝜌𝑚/𝑞ℓ,ex (r0)) 𝑃𝑚󸀠ℓ (𝜏𝑠)]
⋅ 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑) = 0

(56)

at any 𝜁 ∈ [−1, 1] and 𝜑 ∈ [0, 2𝜋). Orthogonality arguments
based on (44) and (45) lead to the obvious and compact result

𝑎𝑚/𝑞ℓ,ex = (m4𝜋 ⋅ ∇r0𝜌𝑚/𝑞ℓ,ex (r0)) 𝑃𝑚󸀠ℓ (𝜏𝑠)𝑄𝑚󸀠ℓ (𝜏𝑠)
for ℓ ≥ 0, 𝑚 = 0, 1, 2, . . . , ℓ, 𝑞 = 𝑒, 𝑜

(57)

at the singularity point r0 = (𝜏0, 𝜁0, 𝜑0). Substituting relation-
ship (57) into (51), we reach the sought solution, that is,

H𝑠0 (r) = m4𝜋𝑐 ⋅
+∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

(2ℓ + 1) [(ℓ − 𝑚)!(ℓ + 𝑚)!]
2

⋅ (−1)𝑚 𝜀𝑚 𝑃𝑚
󸀠

ℓ (𝜏𝑠)𝑄𝑚󸀠ℓ (𝜏𝑠) [∇r0𝑢
𝑚/𝑞
ℓ,ex (r0) ⊗ ∇𝑢𝑚/𝑞ℓ,ex (r)]

(58)

for every r ∈ Ω, whereas 𝑢𝑚/𝑞ℓ,ex and 𝑢𝑚/𝑞ℓ,ex (r0) are provided
via the right-hand side formulae of (41), while ∇𝑢𝑚/𝑞ℓ,ex arises
from (49), the same thing for ∇r0𝑢𝑚/𝑞ℓ,ex (r0), by a simple switch
of arguments, all written for ℓ ≥ 0, 𝑚 = 0, 1, 2, . . . , ℓ, and𝑞 = 𝑒, 𝑜.

In the sequel, we treat the magnetic field-case for 𝑛 =2, which exhibits a particular difficulty, mainly due to the
coupling with the static term, indicated by (29). However,
secondarily speaking, sinceH𝑠0 is a pure vector field, needing
a set of three separate boundary conditions to be determined,
then, beyond the application of the scalar condition in the
first part of (24) at 𝑛 = 2, it is indirectly associated with the
total electric field E𝑡1 on the boundary through the second
part of (24) by implying (10) and (30). All the above are
mathematically summarized as follows:

H𝑠2 (r) = Χ𝑠2 (r) + rΦ𝑠0 (r)
with ΔΧ𝑠2 (r) = 0, ΔΦ𝑠0 (r) = 0 for r ∈ Ω, (59)

where, provided H𝑝2 directly from (8) and given (46) with
(47),

𝜏̂ (r) ⋅ [H𝑝2 (r) +H𝑠2 (r)] = 0,
𝜏̂ (r) × [m2𝜋 × ∇ 1𝑅 + ∇ ×H𝑠2 (r)] = 0,

when r = r𝑠 = (𝜏𝑠, 𝜁, 𝜑) ,
(60)

which completes the boundary value problem that has to be
solved for this situation, by the imposition of the divergence-
free property ofH𝑠2 that must be always valid via

∇ ⋅H𝑠2 (r) = 0 󳨐⇒
∇ ⋅ Χ𝑠2 (r) + (3 + r ⋅ ∇)Φ𝑠0 (r) = 0,

for every r ∈ Ω.
(61)
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Inserting, now, (57) into (51) and combining it with the fact
thatH𝑠0 = ∇Φ𝑠0, then the zeroth-order potential is known and
admits

Φ𝑠0 (r) = +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

(m4𝜋 ⋅ ∇r0𝜌𝑚/𝑞ℓ,ex (r0))

⋅ 𝑃𝑚
󸀠

ℓ (𝜏𝑠)𝑄𝑚󸀠ℓ (𝜏𝑠) [𝑄
𝑚
ℓ (𝜏) 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑)] for r ∈ Ω,

(62)

whereas 𝜌𝑚/𝑞ℓ,ex (r0) for ℓ ≥ 0, 𝑚 = 0, 1, 2, . . . , ℓ, and 𝑞 = 𝑒, 𝑜
follow from (47). On the other hand, the vector harmonic
function Χ𝑠2 keeps the exterior-type solution fashion, leading
to

Χ𝑠2 (r) = +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

b𝑚/𝑞ℓ,ex [𝑄𝑚ℓ (𝜏) 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑)]
for every r ∈ Ω,

(63)

where (63)meets the radiation criteria imposed by (26), while

b𝑚/𝑞ℓ,ex =
3∑
𝑗=1

𝑏𝑚/𝑞ℓ,𝑗 x̂𝑗 = 𝑏𝑚/𝑞ℓ,1 x̂1 + 𝑏𝑚/𝑞ℓ,2 x̂2 + 𝑏𝑚/𝑞ℓ,3 x̂3 = (𝜏2

− 𝜁2)−1/2 {(𝑏𝑚/𝑞ℓ,1 𝜁√𝜏2 − 1 + 𝑏𝑚/𝑞ℓ,2 𝜏√1 − 𝜁2 cos𝜑
+ 𝑏𝑚/𝑞ℓ,3 𝜏√1 − 𝜁2 sin𝜑) 𝜏̂ + (−𝑏𝑚/𝑞ℓ,1 𝜏√1 − 𝜁2

+ 𝑏𝑚/𝑞ℓ,2 𝜁√𝜏2 − 1 cos𝜑 + 𝑏𝑚/𝑞ℓ,3 𝜁√𝜏2 − 1 sin𝜑) 𝜁̂}
+ (−𝑏𝑚/𝑞ℓ,2 sin𝜑 + 𝑏𝑚/𝑞ℓ,3 cos𝜑) 𝜑̂

for ℓ ≥ 0, 𝑚 = 0, 1, 2, . . . , ℓ, 𝑞 = 𝑒, 𝑜

(64)

denote the vector character of the unknown constant coef-
ficients b𝑚/𝑞ℓ,ex , while, willing to be consistent with (64) and
work within the frame of purely prolate spheroidal geometry,
we are obliged to write the spheroidal representation of the
position vector, entering (59) as

r = 3∑
𝑗=1

𝑥𝑗x̂𝑗 = 𝑐√𝜏2 − 𝜁2 (𝜏√𝜏2 − 1𝜏̂ − 𝜁√1 − 𝜁2𝜁̂)
for every 𝜏 ∈ (1, +∞) , 𝜁 ∈ [−1, 1] .

(65)

The field problem under consideration has an additional
physical difficulty, which is inherited from the corresponding
mathematical complexity. Thus, in what follows, we give
emphasis on the main steps due to the large number of
calculations to perform. To this end, we handle (60) in such
a manner so as to obtain three separate sets of boundary
conditions, one from the 𝜏-component and two from rela-

tions, which correspond to the 𝜁, 𝜑-components. This is
accomplished by operating 𝜏̂ from (36) into (60) and tackling
with (46) for 𝜏 = 𝜏𝑠 < 𝜏0. Once done, we reach cumbersomely
the following three relations for the coefficients, satisfying

+∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

[
[
3∑
𝑗=1

𝑓𝑚/𝑞,𝜅ℓ,𝑗 (𝜏𝑠, 𝜁, 𝜑) 𝑏𝑚/𝑞ℓ,𝑗 − 𝑔𝑚/𝑞,𝜅ℓ (𝜏𝑠, 𝜁, 𝜑; r0)]]
= 0 for any 𝜅 = 1, 2, 3,

(66)

counting for the aforementioned three sets of boundary
relations, where 𝜁 ∈ [−1, 1], 𝜑 ∈ [0, 2𝜋), and r0 = (𝜏0, 𝜁0, 𝜑0).
Omitting dependence on (𝜏𝑠, 𝜁, 𝜑) and (𝜏𝑠, 𝜁, 𝜑 ; r0) for rea-
sons of writing clarity, the leading functions of the unknown
constant coefficients and those comprising the constant terms
of (66) are furnished initially for 𝜅 = 1 by the formulae

𝑓𝑚/𝑞,1ℓ,1 = 𝑐√𝜏2𝑠 − 1𝑄𝑚ℓ (𝜏𝑠) 𝜁𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑) ,
𝑓𝑚/𝑞,1ℓ,2 = 𝑐𝜏𝑠𝑄𝑚ℓ (𝜏𝑠)√1 − 𝜁2𝑃𝑚ℓ (𝜁) cos𝜑𝑓𝑞𝑚 (𝜑) ,
𝑓𝑚/𝑞,1ℓ,3 = 𝑐𝜏𝑠𝑄𝑚ℓ (𝜏𝑠)√1 − 𝜁2𝑃𝑚ℓ (𝜁) sin𝜑𝑓𝑞𝑚 (𝜑) ,
𝑔𝑚/𝑞,1ℓ = {𝜌𝑚/𝑞ℓ,ex (r0) m4𝜋

⋅ [−√𝜏2𝑠 − 1𝑃𝑚󸀠ℓ (𝜏𝑠) (r (𝜏𝑠, 𝜁, 𝜑) − r0)
+ 𝑐√𝜏2𝑠 − 𝜁2𝑃𝑚ℓ (𝜏𝑠) 𝜏̂] − 𝑐2𝑀𝑚/𝑞ℓ,ex (r0)

⋅ 𝜏𝑠√𝜏2𝑠 − 1[ 𝑄
𝑚
ℓ (𝜏𝑠)𝑄𝑚󸀠ℓ (𝜏𝑠)]𝑃

𝑚󸀠

ℓ (𝜏𝑠)}𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑) ,

(67)

while for 𝜅 = 2 it is readily obtained
𝑓𝑚/𝑞,2ℓ,1 = 𝑐√𝜏2𝑠 − 1 (𝑄𝑚ℓ (𝜏𝑠) 𝜁√1 − 𝜁2𝑃𝑚󸀠ℓ (𝜁)

− 𝜏𝑠𝑄𝑚󸀠ℓ (𝜏𝑠)√1 − 𝜁2𝑃𝑚ℓ (𝜁)) 𝑓𝑞𝑚 (𝜑) ,
𝑓𝑚/𝑞,2ℓ,2 = 𝑐 (𝜏𝑠𝑄𝑚ℓ (𝜏𝑠) (1 − 𝜁2) 𝑃𝑚󸀠ℓ (𝜁)

+ (𝜏2𝑠 − 1)𝑄𝑚󸀠ℓ (𝜏𝑠) 𝜁𝑃𝑚ℓ (𝜁)) cos𝜑𝑓𝑞𝑚 (𝜑) ,
𝑓𝑚/𝑞,2ℓ,3 = 𝑐 (𝜏𝑠𝑄𝑚ℓ (𝜏𝑠) (1 − 𝜁2) 𝑃𝑚󸀠ℓ (𝜁)

+ (𝜏2𝑠 − 1)𝑄𝑚󸀠ℓ (𝜏𝑠) 𝜁𝑃𝑚ℓ (𝜁)) sin𝜑𝑓𝑞𝑚 (𝜑) ,
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𝑔𝑚/𝑞,2ℓ = −𝑐2𝑀𝑚/𝑞ℓ,ex (r0)√𝜏2𝑠 − 1𝑃𝑚󸀠ℓ (𝜏𝑠)
⋅ √1 − 𝜁2 {𝜏𝑠 [ 𝑄𝑚ℓ (𝜏𝑠)𝑄𝑚󸀠ℓ (𝜏𝑠)] 𝑃

𝑚󸀠

ℓ (𝜁) − 𝜁𝑃𝑚ℓ (𝜁)}
⋅ 𝑓𝑞𝑚 (𝜑) − 2𝑐2 (𝜏2𝑠 − 𝜁2) [𝜏̂ ×M𝑚/𝑞ℓ,ex (r0) ⋅ 𝜁̂] 𝑃𝑚ℓ (𝜏𝑠)
⋅ 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑) .

(68)

Finally, the 𝜅 = 3 case is structured by the functions

𝑓𝑚/𝑞,3ℓ,1 = 𝑐√𝜏2𝑠 − 1𝑄𝑚ℓ (𝜏𝑠) 𝜁𝑃𝑚ℓ (𝜁) 𝑓𝑞󸀠𝑚 (𝜑) ,
𝑓𝑚/𝑞,3ℓ,2 = 𝑐√1 − 𝜁2𝑃𝑚ℓ (𝜁) (𝜏𝑠𝑄𝑚ℓ (𝜏𝑠) cos𝜑𝑓𝑞󸀠𝑚 (𝜑)

+ (𝜏2𝑠 − 1)𝑄𝑚󸀠ℓ (𝜏𝑠) sin𝜑𝑓𝑞𝑚 (𝜑)) ,
𝑓𝑚/𝑞,3ℓ,3 = 𝑐√1 − 𝜁2𝑃𝑚ℓ (𝜁) (𝜏𝑠𝑄𝑚ℓ (𝜏𝑠) sin𝜑𝑓𝑞󸀠𝑚 (𝜑)

− (𝜏2𝑠 − 1)𝑄𝑚󸀠ℓ (𝜏𝑠) cos𝜑𝑓𝑞𝑚 (𝜑)) ,
𝑔𝑚/𝑞,3ℓ = −𝑐2𝑀𝑚/𝑞ℓ,ex (r0) 𝜏𝑠√𝜏2𝑠 − 1[ 𝑄

𝑚
ℓ (𝜏𝑠)𝑄𝑚󸀠ℓ (𝜏𝑠)]𝑃

𝑚󸀠

ℓ (𝜏𝑠)
⋅ 𝑃𝑚ℓ (𝜁) 𝑓𝑞󸀠𝑚 (𝜑) + 2𝑐√𝜏2𝑠 − 𝜁2 [𝜏̂ ×M𝑚/𝑞ℓ,ex (r0) ⋅ 𝜑̂]
⋅ √𝜏2𝑠 − 1𝑃𝑚ℓ (𝜏𝑠)√1 − 𝜁2𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑) .

(69)

All notations, (67)–(69), are valid for any 𝜏𝑠 ̸= 𝜏0, 𝜁 ∈ [−1, 1],𝜑 ∈ [0, 2𝜋), and r0 = (𝜏0, 𝜁0, 𝜑0), while the unit normal
vectors 𝜏̂ ≡ 𝜏̂(𝜏𝑠, 𝜁, 𝜑), 𝜁̂ ≡ 𝜁̂(𝜏𝑠, 𝜁, 𝜑), and 𝜑̂ ≡ 𝜑̂(𝜑) are
defined in (36)–(38), the ad hoc function 𝜌𝑚/𝑞ℓ,ex (r0) comes
from (47), the dipole sourcem is met by (2), and the position
vector r(𝜏𝑠, 𝜁, 𝜑) is taken from (65), while by definition

𝑀𝑚/𝑞ℓ,ex (r0) = m4𝜋 ⋅ ∇r0𝜌𝑚/𝑞ℓ,ex (r0) ,
M𝑚/𝑞ℓ,ex (r0) = m4𝜋 × ∇r0𝜌𝑚/𝑞ℓ,ex (r0) ,

with r0 = (𝜏0, 𝜁0, 𝜑0)
(70)

for ℓ ≥ 0, 𝑚 = 0, 1, 2, . . . , ℓ, and 𝑞 = 𝑒, 𝑜. Notice that
derivations are with respect to the argument. Certainly, rela-
tionships (66) accompanied by definitions (67)–(69) are very

complicated to accept elaboration with respect to recurrence
relations, since in the end a numerical implementation for
the resulting systems is inevitable. However, in order to
achieve a compact and easy-to-handle analytical formation
of these conditions, we expand the already known functions
(67)–(69) in terms of the priori orthonormal basis 𝑃𝑚󸀠ℓ󸀠 𝑓𝑞󸀠𝑚󸀠 forℓ󸀠 ≥ 0,𝑚󸀠 = 0, 1, 2, . . . , ℓ󸀠, and 𝑞󸀠 = 𝑒, 𝑜 via
𝑓𝑚/𝑞,𝜅ℓ,𝑗 (𝜏𝑠, 𝜁, 𝜑)

= +∞∑
ℓ󸀠=0

ℓ󸀠∑
𝑚󸀠=0

∑
𝑞󸀠=𝑒,𝑜

𝜆(𝑚,𝑚󸀠)/(𝑞,𝑞󸀠),𝜅
(ℓ,ℓ󸀠),𝑗

(𝜏𝑠) 𝑃𝑚󸀠ℓ󸀠 (𝜁) 𝑓𝑞󸀠𝑚󸀠 (𝜑)
with 𝜅, 𝑗 = 1, 2, 3,

𝑔𝑚/𝑞,𝜅ℓ (𝜏𝑠, 𝜁, 𝜑; r0)
= +∞∑
ℓ󸀠=0

ℓ󸀠∑
𝑚󸀠=0

∑
𝑞󸀠=𝑒,𝑜

𝜇(𝑚,𝑚󸀠)/(𝑞,𝑞󸀠),𝜅
(ℓ,ℓ󸀠)

(𝜏𝑠; r0) 𝑃𝑚󸀠ℓ󸀠 (𝜁) 𝑓𝑞󸀠𝑚󸀠 (𝜑)
with 𝜅 = 1, 2, 3

(71)

and for every ℓ ≥ 0,𝑚 = 0, 1, 2, . . . , ℓ, and 𝑞 = 𝑒, 𝑜, where, by
virtue of the orthogonality properties (44) and (45), we end
up with the easily amenable integral representations

𝜆(𝑚,𝑚󸀠)/(𝑞,𝑞󸀠),𝜅
(ℓ,ℓ󸀠),𝑗

(𝜏𝑠) = 2ℓ󸀠 + 14𝜋
(ℓ󸀠 − 𝑚󸀠)!
(ℓ󸀠 + 𝑚󸀠)!

⋅ 𝜀𝑚󸀠 ∫+1
−1

∫2𝜋
0
𝑓𝑚/𝑞,𝜅ℓ,𝑗 (𝜏𝑠, 𝜁, 𝜑) 𝑃𝑚󸀠ℓ󸀠 (𝜁) 𝑓𝑞󸀠𝑚󸀠 (𝜑) 𝑑𝜑 𝑑𝜁,

𝜇(𝑚,𝑚󸀠)/(𝑞,𝑞󸀠),𝜅
(ℓ,ℓ󸀠)

(𝜏𝑠; r0) = 2ℓ󸀠 + 14𝜋
(ℓ󸀠 − 𝑚󸀠)!
(ℓ󸀠 + 𝑚󸀠)!

⋅ 𝜀𝑚󸀠 ∫+1
−1

∫2𝜋
0
𝑔𝑚/𝑞,𝜅ℓ (𝜏𝑠, 𝜁, 𝜑; r0) 𝑃𝑚󸀠ℓ󸀠 (𝜁)

⋅ 𝑓𝑞󸀠
𝑚󸀠
(𝜑) 𝑑𝜑 𝑑𝜁

(72)

for every (ℓ, ℓ󸀠) ≥ 0, (𝑚,𝑚󸀠) = 0, 1, 2, . . . , (ℓ, ℓ󸀠), and (𝑞, 𝑞󸀠) =𝑒, 𝑜 with 𝜅, 𝑗 = 1, 2, 3. The last step includes supersession of
expressions (71), provided (72), into (66) and processing of a
handy orthogonal argumentation based on (44) and (45), so
as to conclude to

+∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

[
[
3∑
𝑗=1

(𝜆(𝑚,𝑚󸀠)/(𝑞,𝑞󸀠),𝜅
(ℓ,ℓ󸀠),𝑗

(𝜏𝑠) 𝑏𝑚/𝑞ℓ,𝑗 ) − 𝜇(𝑚,𝑚󸀠)/(𝑞,𝑞󸀠),𝜅(ℓ,ℓ󸀠)
(𝜏𝑠; r0)]]

= 0 for r0 = (𝜏0, 𝜁0, 𝜑0) , (73)

while 𝜅 = 1, 2, 3, as well as ℓ󸀠 ≥ 0, 𝑚󸀠 = 0, 1, 2, . . . , ℓ󸀠,
and 𝑞󸀠 = 𝑒, 𝑜, offer all existing combinations regarding

(73). In doing so, we achieved conveying the arisen difficulty
from the boundary conditions (66) to the simple calculation
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of integrals (72), which just incorporate trigonometric and
associated Legendre functions, so as to become a matter
of performing trivial integrations or applying a standard
computational code. Thereafter, (73) represents systems of
linear algebraic equations, which can be solved via usual cut-
off techniques by the imposition of an indispensable common
upper limit for both the degree indexes; let us assume ℓ = ℓ󸀠 =0, 1, 2, . . . , 𝐿, in order to obtain quadrature forms, such as

A𝐿 (𝜏𝑠) x𝐿 = z𝐿 (𝜏𝑠; r0) 󳨐⇒
x𝐿 = A

−1
𝐿 (𝜏𝑠) z𝐿 (𝜏𝑠; r0)

for r0 = (𝜏0, 𝜁0, 𝜑0) ,
(74)

where for 𝑚 = 𝑚󸀠 = 0, 1, 2, . . . , ℓ and 𝑞 = 𝑞󸀠 = 𝑒, 𝑜, as well as𝜅, 𝑗 = 1, 2, 3, we have

A𝐿 (𝜏𝑠) = [[[[
[

d
... c

⋅ ⋅ ⋅ 𝜆(𝑚,𝑚)/(𝑞,𝑞),𝜅
(ℓ,ℓ),𝑗

(𝜏𝑠) ⋅ ⋅ ⋅
c

... d

]]]]
]
,

x𝐿 = [[[[
[

...
𝑏𝑚/𝑞ℓ,𝑗...

]]]]
]
,

z𝐿 (𝜏𝑠; r0) = [[[[
[

...
𝜇(𝑚,𝑚)/(𝑞,𝑞),𝜅
(ℓ,ℓ),𝑗

(𝜏𝑠; r0)...
]]]]
]
,

(75)

which denote the 3(𝐿 + 1) × 𝑚 × 𝑞 squared-type invertible
matrix of the coefficients of the unknowns, the vector of the
unknown coefficients, and the vector of the known constants,
respectively. The vector x𝐿 specifies the system’s solution
through (74), being able to evaluate the unknown constant
coefficients b𝑚/𝑞ℓ,ex = 𝑏𝑚/𝑞ℓ,1 x̂1 + 𝑏𝑚/𝑞ℓ,2 x̂2 + 𝑏𝑚/𝑞ℓ,3 x̂3 for every valueℓ=0, 1, 2, . . . , 𝐿, 𝑚 = 0, 1, 2, . . . , ℓ, and 𝑞 = 𝑒, 𝑜 up to a
certain level, where the desired accuracy is achieved.Thus, by
substitution of (62) and (63) into (59), we reach the analytical
form of the scattered magnetic field for this occasion, that is,

H𝑠2 (r) = +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

{[b𝑚/𝑞ℓ,ex + r(m4𝜋 ⋅ ∇r0𝜌𝑚/𝑞ℓ,ex (r0)) 𝑃𝑚󸀠ℓ (𝜏𝑠)𝑄𝑚󸀠ℓ (𝜏𝑠)]𝑄
𝑚
ℓ (𝜏) 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑)} (76)

for r ∈ Ω, satisfying (61), wherein, upon solution (74), the
prolate spheroidal modes, indicated by (64) and (65), can be
readily embodied.

The simplest case of this project concerns the third-
order scattered magnetic field at 𝑛 = 3 due to the constant

character of the corresponding incident field (9). Similarly to
the Rayleigh approximation, here we are obliged to solve the
potential boundary value problem (32) with the Neumann
boundary condition (24) for 𝑛 = 3, that is,

H𝑠3 (r) = ∇Φ𝑠3 (r) with ΔΦ𝑠3 (r) = 0 for r ∈ Ω, where 𝜏̂ (r𝑠) ⋅ [H𝑝3 (r𝑠) +H𝑠3 (r𝑠)] = 0, (77)

by means of r𝑠 = (𝜏𝑠, 𝜁, 𝜑), where 𝜏̂ is given through (36) for𝜏 = 𝜏𝑠. In order to comply with the demand of well-behaved
solutions at infinity via (26), we again choose

H𝑠3 (r) = +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

𝑐𝑚/𝑞ℓ,ex ∇ [𝑄𝑚ℓ (𝜏) 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑)]
for every r ∈ Ω,

(78)

whereas 𝑐𝑚/𝑞ℓ,ex for ℓ ≥ 0, 𝑚 = 0, 1, 2, . . . , ℓ, and 𝑞 = 𝑒, 𝑜
stand for the constant coefficients to be determined from (77).
Consequently, invoking the source (9) and projectingm from
(2), then, accordingly to (78), the convenient relation (49) is
applied to (77) in order to receive

{{{{{
−𝑐0/𝑒0,ex + ∞∑

ℓ=1

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

𝑐𝑚/𝑞ℓ,ex 𝑓𝑞𝑚 (𝜑)(2ℓ + 1) [ℓ (ℓ − 𝑚 + 1)𝑄𝑚ℓ+1 (𝜏𝑠) − (ℓ + 1) (ℓ + 𝑚)𝑄𝑚ℓ−1 (𝜏𝑠)] 𝑃𝑚ℓ (𝜁) − 𝑐√𝜏2𝑠 − 1𝜋 (𝑚1𝜁√𝜏2𝑠 − 1

+ 𝑚2𝜏𝑠√1 − 𝜁2 cos𝜑 + 𝑚3𝜏𝑠√1 − 𝜁2 sin𝜑)}}}}}
= 0

(79)
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for every 𝜁 ∈ [−1, 1] and 𝜑 ∈ [0, 2𝜋). Since within (79) we can
write 1 = 𝑃00 (𝜁), 𝜁 = 𝑃01 (𝜁), and √1 − 𝜁2 = 𝑃11 (𝜁), obviously
standard orthogonality arguments in terms of (44) and (45)
yield

𝑐0/𝑒0,ex = 0, 𝑐𝑚/𝑞ℓ,ex = 0,
for every ℓ ≥ 2, 𝑚 = 0, 1, 2, . . . , ℓ, 𝑞 = 𝑒, 𝑜, (80)

while the remainder ones read

𝑐0/𝑒1,ex = 𝑐𝑚1𝜋 1𝑄󸀠1 (𝜏𝑠) ,

𝑐1/𝑒1,ex = 𝑐𝑚2𝜋 𝜏𝑠
√𝜏2𝑠 − 1𝑄1󸀠1 (𝜏𝑠) ,

𝑐1/𝑜1,ex = 𝑐𝑚3𝜋 𝜏𝑠
√𝜏2𝑠 − 1𝑄1󸀠1 (𝜏𝑠) ,

(81)

once we enforce the useful identity

(2ℓ + 1) (𝜏2𝑠 − 1)𝑄𝑚󸀠ℓ (𝜏𝑠)
= ℓ (ℓ − 𝑚 + 1)𝑄𝑚ℓ+1 (𝜏𝑠)
− (ℓ + 1) (ℓ + 𝑚)𝑄𝑚ℓ−1 (𝜏𝑠) ,

(82)

prime denoting derivation with respect to 𝜏𝑠. Inserting (80)
and (81) into (78), we get

H𝑠3 (r) = m𝜋
⋅ { √𝜏2 − 1√𝜏2 − 𝜁2 [

𝜕f (𝜏)𝜕𝜏 𝜁 + 𝜕g (𝜏, 𝜑)𝜕𝜏 √1 − 𝜁2] ⊗ 𝜏̂
+ 1√𝜏2 − 𝜁2 [−f (𝜏)√1 − 𝜁2 + g (𝜏, 𝜑) 𝜁] ⊗ 𝜁̂
+ 1√𝜏2 − 1

𝜕g (𝜏, 𝜑)𝜕𝜑 ⊗ 𝜑̂} for r ∈ Ω,

(83)

which introduces a compact dyadic formation, bearing in
mind that

f (𝜏) = x̂1
𝑄1 (𝜏)𝑄󸀠1 (𝜏𝑠) ,

g (𝜏, 𝜑) = (x̂2 cos𝜑 + x̂3 sin𝜑) 𝜏𝑠
√𝜏2𝑠 − 1

𝑄11 (𝜏)𝑄1󸀠1 (𝜏𝑠)
(84)

are conveniently chosen functions for every 𝜏 ∈ [𝜏𝑠, +∞) and𝜑 ∈ [0, 2𝜋).
3.3. The E𝑠1 and E𝑠3 Electric Fields. The first nonvanishing
electric term appears as 𝑛 = 1 at the low-frequency
regime and it is interconnected with H𝑠2 via (30). Hence, we
incorporate the latter with the already known field (76) and
with aid of a simple differential identity we obtain

E𝑠1 (r) = −12√𝜇𝜀
+∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

{∇𝑢𝑚/𝑞ℓ,ex (r) × [b𝑚/𝑞ℓ,ex + r(m4𝜋 ⋅ ∇r0𝜌𝑚/𝑞ℓ,ex (r0)) 𝑃𝑚󸀠ℓ (𝜏𝑠)𝑄𝑚󸀠ℓ (𝜏𝑠)]} for r ∈ Ω, (85)

since∇×b𝑚/𝑞ℓ,ex = 0 and∇×r = 0, where 𝑢𝑚/𝑞ℓ,ex is the right-hand
side expression of (41), while ∇𝑢𝑚/𝑞ℓ,ex is taken from (49), the
singular quantity 𝜌𝑚/𝑞ℓ,ex (r0) follows from (47), and, finally, the
constant coefficients b𝑚/𝑞ℓ,ex are provided via the 𝑛 = 2magnetic
situation, all written in view of ℓ ≥ 0, 𝑚 = 0, 1, 2, . . . , ℓ, and𝑞 = 𝑒, 𝑜.

Our final task is the calculation of the exact low-frequency
problem at 𝑛 = 3, where here the main difficulty is due
to the integral implication with the electric field (85) of the
offered solution; see (31) for instance. Henceforth, we deal
with a boundary value problem, being the outcome of the
combination of (31) and of the second part of (24) for 𝑛 = 3,
that is,

E𝑠3 (r) = Χ𝑠3 (r) − 32𝜋∭Ω
E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 𝑑Ω

󸀠

with ΔΧ𝑠3 (r) = 0, where 𝜏̂ (r𝑠) × [E𝑝3 (r𝑠) + E𝑠3 (r𝑠)] = 0

(86)

for every r ∈ Ω and on r𝑠 = (𝜏𝑠, 𝜁, 𝜑) with 𝜁 ∈ [−1, 1]
and 𝜑 ∈ [0, 2𝜋), while we recall the corresponding incident
electric field (11). Field (86) is solenoidal, which is secured
via

∇ ⋅ Χ𝑠3 (r) + ∇ ⋅ [− 32𝜋∭Ω
E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 𝑑Ω

󸀠] = 0 󳨐⇒

∇ ⋅ Χ𝑠3 (r) − 32𝜋∭Ω∇
1󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 ⋅ E

𝑠
1 (r󸀠) 𝑑Ω󸀠 = 0,

(87)

since ∇ ⋅ E𝑠1(r󸀠) = 0, whereas (12) can also be employed.
Obviously E𝑠3 is a vector field, retaining three components,
which require three scalar boundary conditions. However,
we notice that (86) offers two of them, forcing us to retrieve
the third one by the application of the restriction condi-
tion (87) on the surface of the metallic prolate spheroid,
meaning
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∇ ⋅ [Χ𝑠3 (r) − 32𝜋∭Ω
E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 𝑑Ω

󸀠] = 0
for r𝑠 = (𝜏𝑠, 𝜁, 𝜑) ,

(88)

which completes the well-posed analysis. In order for it to
be compatible with the radiation condition (26) for E𝑠3, we
expand Χ𝑠3 as usual, being an exterior potential,

Χ𝑠3 (r) = +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

d𝑚/𝑞ℓ,ex [𝑄𝑚ℓ (𝜏) 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑)]
for every r ∈ Ω,

(89)

where, similarly to (64), we have

d𝑚/𝑞ℓ,ex =
3∑
𝑗=1

𝑑𝑚/𝑞ℓ,𝑗 x̂𝑗 = 𝑑𝑚/𝑞ℓ,1 x̂1 + 𝑑𝑚/𝑞ℓ,2 x̂2 + 𝑑𝑚/𝑞ℓ,3 x̂3 = (𝜏2

− 𝜁2)−1/2 {(𝑑𝑚/𝑞ℓ,1 𝜁√𝜏2 − 1 + 𝑑𝑚/𝑞ℓ,2 𝜏√1 − 𝜁2 cos𝜑
+ 𝑑𝑚/𝑞ℓ,3 𝜏√1 − 𝜁2 sin𝜑) 𝜏̂ + (−𝑑𝑚/𝑞ℓ,1 𝜏√1 − 𝜁2
+ 𝑑𝑚/𝑞ℓ,2 𝜁√𝜏2 − 1 cos𝜑 + 𝑑𝑚/𝑞ℓ,3 𝜁√𝜏2 − 1 sin𝜑) 𝜁̂}
+ (−𝑑𝑚/𝑞ℓ,2 sin𝜑 + 𝑑𝑚/𝑞ℓ,3 cos𝜑) 𝜑̂

for ℓ ≥ 0, 𝑚 = 0, 1, 2, . . . , ℓ, 𝑞 = 𝑒, 𝑜.

(90)

In the prolate spheroidal geometry, we utilize the infinitesi-
mal elementary volume

𝑑Ω󸀠 = 𝑐3 (𝜏󸀠2 − 𝜁󸀠2) 𝑑𝜏󸀠𝑑𝜁󸀠𝑑𝜑󸀠
for 𝜏󸀠 ∈ [𝜏𝑠, +∞) , 𝜁󸀠 ∈ [−1, 1] , 𝜑󸀠 ∈ [0, 2𝜋) , (91)

to rewrite the particular integral solution that appears into
(86) for any r ̸= r0 as

− 32𝜋∭Ω
E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 𝑑Ω

󸀠 = −3𝑐32𝜋
⋅ ∫2𝜋
0
∫+1
−1

∫+∞
𝜏𝑠

E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 (𝜏
󸀠2 − 𝜁󸀠2) 𝑑𝜏󸀠𝑑𝜁󸀠𝑑𝜑󸀠

= −3𝑐32𝜋 {lim
𝑒→0

∫2𝜋
0
∫+1
−1

∫𝜏0−𝑒
𝜏𝑠

E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 (𝜏
󸀠2 − 𝜁󸀠2) 𝑑𝜏󸀠𝑑𝜁󸀠𝑑𝜑󸀠

+ lim
𝑒→0

∫2𝜋
0
∫+1
−1

∫𝜏0+𝑒
𝜏0−𝑒

E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 (𝜏
󸀠2 − 𝜁󸀠2) 𝑑𝜏󸀠𝑑𝜁󸀠𝑑𝜑󸀠

+ lim
𝑒→0

∫2𝜋
0
∫+1
−1

∫+∞
𝜏0+𝑒

E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 (𝜏
󸀠2 − 𝜁󸀠2) 𝑑𝜏󸀠𝑑𝜁󸀠𝑑𝜑󸀠}

for r ∈ Ω

(92)

and r󸀠 = (𝜏󸀠, 𝜁󸀠, 𝜑󸀠), whereas we have implied a specific
technique to bound the singular point, by introducing a very

small positive number 0 < 𝑒 ≪ 1, while for reasons of
simplicity and without loss of the generality, we assume that(𝜁󸀠, 𝜑󸀠) ̸= (𝜁0, 𝜑0) by definition.The first and the third integral
of (92) are analytic, since they exclude the singular point;
hence therein we can use collectively (46) to represent the
different areas, by applying the lower branch for 𝜏󸀠 < 𝜏0 − 𝑒
and the upper one for 𝜏󸀠 > 𝜏0 + 𝑒, respectively. This action
conducts to

− 3𝑐32𝜋 lim
𝑒→0

∫2𝜋
0
∫+1
−1

∫𝜏0−𝑒
𝜏𝑠

E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 (𝜏
󸀠2 − 𝜁󸀠2) 𝑑𝜏󸀠𝑑𝜁󸀠𝑑𝜑󸀠

= +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

s𝑚/𝑞ℓ,in 𝑢𝑚/𝑞ℓ,in (r) for r ∈ Ω,

− 3𝑐32𝜋 lim
𝑒→0

∫2𝜋
0
∫+1
−1

∫+∞
𝜏0+𝑒

E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 (𝜏
󸀠2 − 𝜁󸀠2) 𝑑𝜏󸀠𝑑𝜁󸀠𝑑𝜑󸀠

= +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

s𝑚/𝑞ℓ,ex𝑢𝑚/𝑞ℓ,ex (r) for r ∈ Ω,

(93)

which are harmonic, where the leading constants for ℓ ≥ 0,𝑚 = 0, 1, 2, . . . , ℓ, and 𝑞 = 𝑒, 𝑜,
s𝑚/𝑞ℓ,in = −3𝑐32𝜋 lim

𝑒→0
∫2𝜋
0
∫+1
−1

∫𝜏0−𝑒
𝜏𝑠

(𝜏󸀠2 − 𝜁󸀠2) 𝜌𝑚/𝑞ℓ,ex (r󸀠)
⋅ E𝑠1 (r󸀠) 𝑑𝜏󸀠𝑑𝜁󸀠𝑑𝜑󸀠,

(94)

s𝑚/𝑞ℓ,ex = −3𝑐32𝜋 lim
𝑒→0

∫2𝜋
0
∫+1
−1

∫+∞
𝜏0+𝑒

(𝜏󸀠2 − 𝜁󸀠2) 𝜌𝑚/𝑞ℓ,in (r󸀠)
⋅ E𝑠1 (r󸀠) 𝑑𝜏󸀠𝑑𝜁󸀠𝑑𝜑󸀠,

(95)

respectively, are written by virtue of (47) at the relative
integration interval on r󸀠 = (𝜏󸀠, 𝜁󸀠, 𝜑󸀠). On the other hand,
this is not the issue with the second integral, which contains
the singularity and implying (91), it provides us with the
particular solution in (31) via

Δ{− 32𝜋 lim𝑒→0∫
2𝜋

0
∫+1
−1

∫𝜏0+𝑒
𝜏0−𝑒

E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 𝑑Ω
󸀠}

= 6lim
𝑒→0

∫2𝜋
0
∫+1
−1

∫𝜏0+𝑒
𝜏0−𝑒

𝛿 (r − r󸀠)E𝑠1 (r󸀠) 𝑑Ω󸀠
= 6E𝑠1 (r) for r ∈ Ω

(96)

in terms of the Dirac function 𝛿(r − r󸀠) in Laplace’s funda-
mental solution [14]. Yet, this term is treated differently, by
expanding it with respect to the orthonormal basis 𝑃𝑚ℓ 𝑓𝑞𝑚,
− 3𝑐32𝜋 lim

𝜀→0
∫2𝜋
0
∫+1
−1

∫𝜏0+𝜀
𝜏0−𝜀

E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 (𝜏
󸀠2 − 𝜁󸀠2) 𝑑𝜏󸀠𝑑𝜁󸀠𝑑𝜑󸀠

= +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

S𝑚/𝑞ℓ (𝜏) 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑)
(97)
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for r ∈ Ω, where, taking into account (91) and the inner
products (44) and (45), we have

S𝑚/𝑞ℓ (𝜏) = −3 (2ℓ + 1)8𝜋2 (ℓ − 𝑚)!(ℓ + 𝑚)!
⋅ 𝜀𝑚 ∫+1
−1

∫2𝜋
0
{lim
𝑒→0

∫2𝜋
0

∫+1
−1

∫𝜏0+𝑒
𝜏0−𝑒

E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 𝑑Ω
󸀠}

⋅ 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑) 𝑑𝜑 𝑑𝜁

(98)

for 𝜏 ≥ 𝜏𝑠. Gathering all information in between (92) and
(98), integral (92) is rewritten as

− 32𝜋∭Ω
E𝑠1 (r󸀠)󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨 𝑑Ω

󸀠

= +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

[s𝑚/𝑞ℓ,in 𝑃𝑚ℓ (𝜏) + s𝑚/𝑞ℓ,ex𝑄𝑚ℓ (𝜏) + S𝑚/𝑞ℓ (𝜏)]
⋅ 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑)

(99)

for every r ∈ Ω, which combined with (89) yields the
scattered field (86). Under the aim of expanding the incident
field (11) in the same manner, we incorporate (46) and (47)
for r𝑠 < r0, which is in fact the surface of the body, whereas
E𝑝3 is activated and since R = r − r0, then

E𝑝3 (r; r0)
= +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

I𝑚/𝑞ℓ,ex (𝜏, 𝜁, 𝜑; r0) 𝑃𝑚ℓ (𝜏) 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑)
for r < r0,

(100)

where

I𝑚/𝑞ℓ,ex (𝜏, 𝜁, 𝜑; r0) = − 34𝜋√𝜇𝜀m
× [r (𝜏, 𝜁, 𝜑) − r0] 𝜌𝑚/𝑞ℓ,ex (r0)

with r0 = (𝜏0, 𝜁0, 𝜑0)
(101)

at r ∈ Ω. We are ready to precede fitting of the above analysis
to (86) and (88), which are the boundary conditions to be
satisfied. From this point forward, we deal with the problem
in a very similar way to that for obtainingH𝑠2, since it possess
the same complexity. Hence, putting all the mathematical
tools together, (86) and (88) with (89)–(101) merge to

+∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

[
[
3∑
𝑗=1

𝑓𝑚/𝑞,𝜅ℓ,𝑗 (𝜏𝑠, 𝜁, 𝜑) 𝑑𝑚/𝑞ℓ,𝑗 − 𝑔𝑚/𝑞,𝜅ℓ (𝜏𝑠, 𝜁, 𝜑; r0)]]
= 0 for any 𝜅 = 1, 2, 3,

(102)

where, for r0 = (𝜌0, 𝜃0, 𝜑0), the 𝜅 = 1 case, originated from
reinforcement (88), constitutes

𝑓𝑚/𝑞,1ℓ,1 = 1𝑐 (𝜏2𝑠 − 𝜁2) [(𝜏
2
𝑠 − 1)𝑄𝑚󸀠ℓ (𝜏𝑠) 𝜁𝑃𝑚ℓ (𝜁)

+ 𝜏𝑠𝑄𝑚ℓ (𝜏𝑠) (1 − 𝜁2) 𝑃𝑚󸀠ℓ (𝜁)] 𝑓𝑞𝑚 (𝜑) ,

𝑓𝑚/𝑞,1ℓ,2 = [[
[
√𝜏2𝑠 − 1√1 − 𝜁2𝑐 (𝜏2𝑠 − 𝜁2) (𝜏𝑠𝑄𝑚󸀠ℓ (𝜏𝑠) 𝑃𝑚ℓ (𝜁)

− 𝑄𝑚ℓ (𝜏𝑠) 𝜁𝑃𝑚󸀠ℓ (𝜁)) cos𝜑𝑓𝑞𝑚 (𝜑)

− 1
𝑐√𝜏2𝑠 − 1√1 − 𝜁2𝑄

𝑚
ℓ (𝜏𝑠) 𝑃𝑚ℓ (𝜁) sin𝜑𝑓𝑞󸀠𝑚 (𝜑)]]

]
,

𝑓𝑚/𝑞,1ℓ,3 = [[
[
√𝜏2𝑠 − 1√1 − 𝜁2𝑐 (𝜏2𝑠 − 𝜁2) (𝜏𝑠𝑄𝑚󸀠ℓ (𝜏𝑠) 𝑃𝑚ℓ (𝜁)

− 𝑄𝑚ℓ (𝜏𝑠) 𝜁𝑃𝑚󸀠ℓ (𝜁)) sin𝜑𝑓𝑞𝑚 (𝜑)

+ 1
𝑐√𝜏2𝑠 − 1√1 − 𝜁2𝑄

𝑚
ℓ (𝜏𝑠) 𝑃𝑚ℓ (𝜁) cos𝜑𝑓𝑞󸀠𝑚 (𝜑)]]

]
,

𝑔𝑚/𝑞,1ℓ = −√𝜏2𝑠 − 1 (𝑐√𝜏2𝑠 − 𝜁2)−1 𝜏̂ ⋅ {S𝑚/𝑞󸀠ℓ (𝜏𝑠)

− [S𝑚/𝑞ℓ (𝜏𝑠)𝑃𝑚ℓ (𝜏𝑠) ]𝑃
𝑚󸀠

ℓ (𝜏𝑠)}𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑) − {s𝑚/𝑞ℓ,in

+ [S𝑚/𝑞ℓ (𝜏𝑠)𝑃𝑚ℓ (𝜏𝑠) ]} ⋅ ∇𝑢𝑚/𝑞ℓ,in (𝜏𝑠, 𝜁, 𝜑) + s𝑚/𝑞ℓ,ex

⋅ ∇𝑢𝑚/𝑞ℓ,ex (𝜏𝑠, 𝜁, 𝜑) .

(103)

Bearing inmind, now, the two components of condition (77),
then for 𝜅 = 2 we are led to the relations

𝑓𝑚/𝑞,2ℓ,1 = 0,
𝑓𝑚/𝑞,2ℓ,2 = −𝑄𝑚ℓ (𝜏) 𝑃𝑚ℓ (𝜁) sin𝜑𝑓𝑞𝑚 (𝜑) ,
𝑓𝑚/𝑞,2ℓ,3 = 𝑄𝑚ℓ (𝜏) 𝑃𝑚ℓ (𝜁) cos𝜑𝑓𝑞𝑚 (𝜑) ,
𝑔𝑚/𝑞,2ℓ = 𝜏̂ × [(s𝑚/𝑞ℓ,in + I𝑚/𝑞ℓ,ex (𝜏𝑠, 𝜁, 𝜑; r0)) 𝑃𝑚ℓ (𝜏𝑠)

+ s𝑚/𝑞ℓ,ex𝑄𝑚ℓ (𝜏𝑠) + S𝑚/𝑞ℓ (𝜏𝑠)] ⋅ 𝜁̂𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑) = 0

(104)
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with the 𝜅 = 3 case being set by the relations
𝑓𝑚/𝑞,3ℓ,1 = 𝜏𝑠𝑄𝑚ℓ (𝜏𝑠)√1 − 𝜁2𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑) ,
𝑓𝑚/𝑞,3ℓ,2 = −√𝜏2𝑠 − 1𝑄𝑚ℓ (𝜏𝑠) 𝜁𝑃𝑚ℓ (𝜁) cos𝜑𝑓𝑞𝑚 (𝜑) ,
𝑓𝑚/𝑞,3ℓ,3 = −√𝜏2𝑠 − 1𝑄𝑚ℓ (𝜏𝑠) 𝜁𝑃𝑚ℓ (𝜁) sin𝜑𝑓𝑞𝑚 (𝜑) ,
𝑔𝑚/𝑞,3ℓ = √𝜏2𝑠 − 𝜁2𝜏̂

× [(s𝑚/𝑞ℓ,in + I𝑚/𝑞ℓ,ex (𝜏𝑠, 𝜁, 𝜑; r0)) 𝑃𝑚ℓ (𝜏𝑠)
+ s𝑚/𝑞ℓ,ex𝑄𝑚ℓ (𝜏𝑠) + S𝑚/𝑞ℓ (𝜏𝑠)] ⋅ 𝜑̂𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑) .

(105)

Expressions (103)–(105) act for 𝜏𝑠 ̸= 𝜏0, 𝜁 ∈ [−1, 1], 𝜑 ∈[0, 2𝜋), and r0 = (𝜏0, 𝜁0, 𝜑0), where the vectors 𝜏̂ ≡ 𝜏̂(𝜏𝑠, 𝜁, 𝜑),
𝜁̂ ≡ 𝜁̂(𝜏𝑠, 𝜁, 𝜑), and 𝜑̂ ≡ 𝜑̂(𝜑) are with (36)–(38), the dipole
sourcem is given in (2),∇𝑢𝑚/𝑞ℓ,in (𝜏𝑠, 𝜁, 𝜑) and∇𝑢𝑚/𝑞ℓ,ex (𝜏𝑠, 𝜁, 𝜑) forℓ ≥ 0, 𝑚 = 0, 1, 2, . . . , ℓ, and 𝑞 = 𝑒, 𝑜 assume (48) and (49),
respectively, derivations are with respect to the argument,
and notations (94), (95), (98), and (101) have been implied.
Those are expanded through the orthonormal basis 𝑃𝑚󸀠ℓ󸀠 𝑓𝑞󸀠𝑚󸀠
for ℓ󸀠 ≥ 0,𝑚󸀠 = 0, 1, 2, . . . , ℓ󸀠, and 𝑞󸀠 = 𝑒, 𝑜 so that

𝑓𝑚/𝑞,𝜅ℓ,𝑗 (𝜏𝑠, 𝜁, 𝜑)
= +∞∑
ℓ󸀠=0

ℓ󸀠∑
𝑚󸀠=0

∑
𝑞󸀠=𝑒,𝑜

𝜆(𝑚,𝑚󸀠)/(𝑞,𝑞󸀠),𝜅(ℓ,ℓ󸀠),𝑗 (𝜏𝑠) 𝑃𝑚󸀠ℓ󸀠 (𝜁) 𝑓𝑞󸀠𝑚󸀠 (𝜑)
with 𝜅, 𝑗 = 1, 2, 3,

𝑔𝑚/𝑞,𝜅ℓ (𝜏𝑠, 𝜁, 𝜑; r0)
= +∞∑
ℓ󸀠=0

ℓ󸀠∑
𝑚󸀠=0

∑
𝑞󸀠=𝑒,𝑜

𝜇(𝑚,𝑚󸀠)/(𝑞,𝑞󸀠),𝜅
(ℓ,ℓ󸀠)

(𝜏𝑠; r0) 𝑃𝑚󸀠ℓ󸀠 (𝜁) 𝑓𝑞󸀠𝑚󸀠 (𝜑)

with 𝜅 = 1, 2, 3
(106)

as for ℓ ≥ 0, 𝑚 = 0, 1, 2, . . . , ℓ, and 𝑞 = 𝑒, 𝑜, whereas
projection in view of (44) and (45) reveals that

𝜆(𝑚,𝑚󸀠)/(𝑞,𝑞󸀠),𝜅(ℓ,ℓ󸀠),𝑗 (𝜏𝑠) = 2ℓ󸀠 + 14𝜋
(ℓ󸀠 − 𝑚󸀠)!
(ℓ󸀠 + 𝑚󸀠)!

⋅ 𝜀𝑚󸀠 ∫+1
−1

∫2𝜋
0
𝑓𝑚/𝑞,𝜅ℓ,𝑗 (𝜏𝑠, 𝜁, 𝜑) 𝑃𝑚󸀠ℓ󸀠 (𝜁)

⋅ 𝑓𝑞󸀠
𝑚󸀠
(𝜑) 𝑑𝜑 𝑑𝜁,

(107)

𝜇(𝑚,𝑚󸀠)/(𝑞,𝑞󸀠),𝜅
(ℓ,ℓ󸀠)

(𝜏𝑠; r0) = 2ℓ󸀠 + 14𝜋
(ℓ󸀠 − 𝑚󸀠)!
(ℓ󸀠 + 𝑚󸀠)!

⋅ 𝜀𝑚󸀠 ∫+1
−1

∫2𝜋
0
𝑔𝑚/𝑞,𝜅ℓ (𝜏𝑠, 𝜁, 𝜑; r0) 𝑃𝑚󸀠ℓ󸀠 (𝜁)

⋅ 𝑓𝑞󸀠
𝑚󸀠
(𝜑) 𝑑𝜑 𝑑𝜁

(108)

for every (ℓ, ℓ󸀠) ≥ 0, (𝑚,𝑚󸀠) = 0, 1, 2, . . . , (ℓ, ℓ󸀠), and (𝑞, 𝑞󸀠) =𝑒, 𝑜with 𝜅, 𝑗 = 1, 2, 3. Including (106) and (116) with (107) and
(108) within (102), we end up with

+∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

[
[
3∑
𝑗=1

(𝜆(𝑚,𝑚󸀠)/(𝑞,𝑞󸀠),𝜅(ℓ,ℓ󸀠),𝑗 (𝜏𝑠) 𝑑𝑚/𝑞ℓ,𝑗 ) − 𝜇(𝑚,𝑚󸀠)/(𝑞,𝑞󸀠),𝜅(ℓ,ℓ󸀠)
(𝜏𝑠; r0)]]

= 0 for r0 = (𝜏0, 𝜁0, 𝜑0) , (109)

while 𝜅 = 1, 2, 3, as well ℓ󸀠 ≥ 0, 𝑚󸀠 = 0, 1, 2, . . . , ℓ󸀠, and 𝑞󸀠 =𝑒, 𝑜. In matrix form, (109) reads

A𝐿 (𝜏𝑠) x𝐿 = z𝐿 (𝜏𝑠; r0) 󳨐⇒
x𝐿 = A

−1

𝐿 (𝜏𝑠) z𝐿 (𝜏𝑠; r0)
for r0 = (𝜏0, 𝜁0, 𝜑0) ,

(110)

which are linear algebraic systems, where, imposing a ficti-
tious upper limit ℓ = ℓ󸀠 = 0, 1, 2, . . . , 𝐿, then for any 𝑚 =𝑚󸀠 = 0, 1, 2, . . . , ℓ and 𝑞 = 𝑞󸀠 = 𝑒, 𝑜, as well as 𝜅, 𝑗 = 1, 2, 3,
we have

A𝐿 (𝜏𝑠) =
[[[[[
[

d
... c

⋅ ⋅ ⋅ 𝜆(𝑚,𝑚)/(𝑞,𝑞),𝜅(ℓ,ℓ),𝑗 (𝜏𝑠) ⋅ ⋅ ⋅
c

... d

]]]]]
]
,

x𝐿 =
[[[[[
[

...
𝑑𝑚/𝑞ℓ,𝑗...

]]]]]
]
,

z𝐿 (𝜏𝑠; r0) =
[[[[[
[

...
𝜇(𝑚,𝑚)/(𝑞,𝑞),𝜅
(ℓ,ℓ),𝑗

(𝜏𝑠; r0)...

]]]]]
]
,

(111)

which stand for the 3(𝐿 + 1) × 𝑚 × 𝑞 squared-type invertible
matrix of the coefficients of the unknowns, the vector of the
unknown coefficients, and the vector of the known constants,
respectively, of this particular problem. A standard cut-off
method is applied to (110) in order to decide the truncation
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amplitude 𝐿, which supplies with an acceptable accuracy
of a possible numerical implementation. Afterwards, the
coefficients d𝑚/𝑞ℓ,ex = 𝑑𝑚/𝑞ℓ,1 x̂1 + 𝑑𝑚/𝑞ℓ,2 x̂2 + 𝑑𝑚/𝑞ℓ,3 x̂3 are determined
for ℓ=0, 1, 2, . . . , 𝐿, 𝑚 = 0, 1, 2, . . . , ℓ, and 𝑞 = 𝑒, 𝑜, while the
scattered electric field, comprising this situation, is built up
from (86), encountering (89) and (99), that is,

E𝑠3 (r)
= +∞∑
ℓ=0

ℓ∑
𝑚=0

∑
𝑞=𝑒,𝑜

[(d𝑚/𝑞ℓ,ex + s𝑚/𝑞ℓ,ex)𝑄𝑚ℓ (𝜏) + s𝑚/𝑞ℓ,in 𝑃𝑚ℓ (𝜏) + S𝑚/𝑞ℓ (𝜏)]
⋅ 𝑃𝑚ℓ (𝜁) 𝑓𝑞𝑚 (𝜑) for r ∈ Ω,

(112)

being established by the prolate spheroidal configuration of
d𝑚/𝑞ℓ,ex in (90) for ℓ=0, 1, 2, . . . , 𝐿,𝑚 = 0, 1, 2, . . . , ℓ, and 𝑞 = 𝑒, 𝑜,
once notations (94), (95), and (98) are considered.

3.4. Recapitulation: The Oblate Spheroid and Limiting Cases.
Summarizing all the above analysis, we have retrieved in a
closed-type analytical fashion the surviving low-frequency
terms of the scatteredmagneticH𝑠0,H

𝑠
2,H
𝑠
3 and electric E

𝑠
1, E
𝑠
3

fields under consideration in the prolate spheroidal domain of
interest Ω from well-posed boundary value problems, while
H𝑠1 = E𝑠0 = E𝑠2 = 0. Collecting the associated terms (58), (76),
(83) and (85), (112), respectively, we may substitute them into
(21) and (22), so as to obtain the electromagnetic fields in a
compact analytical form as infinite power series expansions,
being ready for further possible numerical implementation.

Recapitulating and for reasons of completeness, we men-
tion that the corresponding results of the oblate spheroidal
geometry are recovered through the simple transformation
[12]

𝜏 󳨀→ 𝑖𝜆, 𝑐 󳨀→ −𝑖𝑐, (113)

where 0 ≤ 𝜆 ≡ sinh 𝜂 < +∞ and 𝑐 > 0 are the new
characteristic variables of the system. On the other hand, the
asymptotic case of the needle of length 𝑎1 can be reached by
a prolate spheroid when 0 < 𝑎3 = 𝑎2 ≪ 𝑎1 < +∞, while, for

the case where 0 < 𝑎3 ≪ 𝑎2 = 𝑎1 < +∞, the oblate spheroid
takes the shape of a circular disk of radius 𝑎1 = 𝑎2.
4. Analytical and Numerical Validation

The spheroidal geometry yields a reliable and quite represen-
tative coordinate systemwhenwe have to deal with scattering
wave problems, where the field is perturbed by a perfectly
conducting body. However, this is true only when the low-
frequency approximation is implied, since we are able to deal
with boundary value problems of Laplace’s equation, which
is fully separable in this geometry. Hence, problems similar
to our case adopt this fitting system of coordinates to obtain
analytical or semianalytical results for the corresponding
fields.

Nevertheless, it is not always easy and feasible to pursue
fully analytical solutions in closed forms without computa-
tional error, or the obtained closed formulae do not have the
required accuracy, even in the low-frequency realm. Indeed,
even though the scattered electromagnetic fields have been
calculated for 𝑛 = 0, 1, 2, 3 (higher order terms are not of
substantial interest) in a closed analytical form of infinite
series in terms of the spheroidal harmonic eigenexpansions,
they are not given in fully compact fashion. This is due to
the fact that the constant coefficients in some circumstances
are evaluated up to a certain order of accuracy via cut-
off techniques. There, accuracy is controlled by the sum of
terms taken in each case, which inherits the semianalytical
character to our method. To this end, we need validation
methods, both analytical and numerical, in order to cross-
check the credibility of our results, those being the analytical
reduction to the sphere-body case and the implementation of
the obtained formulae.

4.1. Reduction to the Spherical Case. The prolate spheroidal
geometry degenerates to the spherical one [12] when 𝑐 →0+. For the corresponding analytical reduction, the limiting
process involves an appropriate combination of the semifocal
distance with the coordinate variable 𝜏 > 1, such as

lim
𝑐→0+

𝑐𝜏 = 𝑟, lim
𝑐→0+

12𝑐 ln 𝜏 + 1𝜏 − 1 = 1𝑟 , where 𝑟 ≡ ‖r‖ = 𝑐√𝜏2 + 𝜁2 − 1 for 󵄨󵄨󵄨󵄨𝜁󵄨󵄨󵄨󵄨 ≤ 1, (114)

where 𝑟 ≥ 0 is the radial component of the spherical
coordinate system

𝑥1 = 𝑟𝜁,
𝑥2 = 𝑟√1 − 𝜁2 cos𝜑,
𝑥3 = 𝑟√1 − 𝜁2 sin𝜑,

for 𝑟 ≥ 0, 󵄨󵄨󵄨󵄨𝜁󵄨󵄨󵄨󵄨 ≤ 1, 𝜑 ∈ [0, 2𝜋) ,

(115)

which is readily recovered from (33), pointing out that the
other two radial variables remain unaltered, because they

coincide in both systems.Obviously, if wemultiply nominator
and dominator of (36) and (37) by 𝑐 > 0 and use (114), we
obtain the spherical radial unit normal vector

lim
𝑐→0+
𝜏̂ (𝜏, 𝜁, 𝜑) = r̂ (𝜁, 𝜑)

= 𝜁x̂1 + √1 − 𝜁2 cos𝜑x̂2
+ √1 − 𝜁2 sin𝜑x̂3 ≡ r𝑟

with 𝑟 ≥ 0,

(116)
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where |𝜁| ≤ 1 and 𝜑 ∈ [0, 2𝜋), while the remaining vectors
assume similar spherical form.

The corresponding reduction of formulae (58), (76), (83)
and (85), (112) for the electromagnetic fields is mainly based
on a proper limiting procedure, which is a consequence of the
definition of the associated Legendre functions of the first and
the second kind [14, 15], revealing that

lim
𝑐→0+

𝑐ℓ𝑃𝑚ℓ (𝜏) = 𝑝ℓ ℓ!(ℓ − 𝑚)!𝑟ℓ,
lim
𝑐→0+

𝑐−(ℓ+1)𝑄𝑚ℓ (𝜏) = 𝑞ℓ (−1)𝑚 (ℓ + 𝑚)!ℓ! 𝑟−(ℓ+1),
for 𝑟 ≥ 0,

(117)

upon usage of (114), where for any value of ℓ ≥ 0 it is
𝑝ℓ = (2ℓ)!2ℓ (ℓ!)2 ,

𝑞ℓ = 12ℓ
[ℓ/2]∑
𝑘=0

(−1)𝜅 (2ℓ − 2𝑘)!𝑘! (ℓ − 𝑘)! (ℓ − 2𝑘)! (2ℓ − 2𝑘 + 1) ,
with (2ℓ + 1) 𝑝ℓ𝑞ℓ = 1.

(118)

The degeneration of the aforementioned low-frequency elec-
tric and magnetic fields, in order to recover the case of a
spherical metallic body of radius 𝑐𝜏𝑠 → 𝑟𝑠, embedded within
a losslessmedium, is then a straightforward sequence of steps,
since any kind of indeterminacies is absent.

4.2. Numerical Implementation. We adopt the appropriate
prolate spheroidal geometry to describe a perfectly conduct-
ing (𝜎body → +∞) spheroidal body of major and minor axis𝑎1 = 75m and 𝑎2 = 𝑎3 = 50m, respectively; therefore, taking
the semifocal distance as 𝑐 = 25m, the characteristic prolate
spheroidal variable is 𝜏𝑠 = 3. We wish to implement the most
frequently measurable field, which is the scattered magnetic
fieldH𝑠, given by expression (21), implying the low-frequency
solutions (58), (76), and (83). The particular geometry we
use to represent the metallic target, which is embedded in
a homogeneous infinite space of permeability 𝜇 ≅ 𝜇0 =4𝜋 × 10−7 F/m and permittivity 𝜀 ≅ 𝜀0 = 8.854 × 10−12 F/m
(values of vacuum), is shown in Figure 1, whereas the axis of
symmetry is comprised by the 𝑥1-axis.

In order to provide understandable and symmetric dia-
grams so as to validate the achieved relations for the impli-
cated fields, we choose a magnetic dipole source m = 𝑚1x̂1
of strength 𝑚1 = 4𝜋 × 103 A⋅m2, which is located at r0 ≡(𝑥10, 𝑥20, 𝑥30) = (200, 0, 0)m and illuminates the prolate
spheroid at the low frequency of 𝜔 = 2𝜋], where ] = 50Hz,
while the magnetic field is measured along a line parallel
to the 𝑥1-axis, set at (𝑥1, 𝑥2, 𝑥3) = ([−200, 200], 200, 0)m.
We show numerical results by providing illustrations for the
real and the imaginary parts of the complex approximated
scattered magnetic field in units [A/m], readily shown in the
sequel within Figure 2.

Additionally, under the aim of providing numerical
demonstrations for the limiting occasions of the prolate

spheroid, we also plot the two interesting limits of the needle
with length 𝑎1 = 75m ≫ 𝑎2 = 𝑎3 = 5m and the sphere
of radius 𝑎 = 50m = 𝑎1 = 𝑎2 = 𝑎3. Furthermore, in order to
compare all three cases, we insert in the same figure (Figure 2)
both the needle and the sphere circumstances, along with the
general case of a genuine prolate spheroidal object.

The series solution obtained for the evaluation of H𝑠
converges relatively fast as ℓ → +∞, while it must be pointed
out that a few terms of the series expansions ℓ ≅ 20 are
enough for determining the scattered magnetic field within
a very good accuracy. Moreover, the number of the adequate
terms needed to converge and obtain a specific accuracy
depends upon the ratio of the major axes over one of the
two minor axes of the prolate spheroid, which means an
increase of ℓ as this ratio increases. Certainly, the number
of the utilized terms is increased, a fact that it is partly
justified by the necessity of the applied cut-off techniques.
Further discussion involves the numerical behavior of the
analytical solution, presented in Figure 2. Obviously, the 𝑥3-
components are absent, sincewe have chosen our observation
line at 𝑥3 = 0. As expected and in accordance with the
position of the dipole, the results are symmetric with respect
to the line 𝑥1 = 0. On the other hand, all the three situations
behave similarly, while in terms of magnitudes there is no
significant change between the prolate spheroidal and the
spherical case, which is not the fact for the case of a needle,
meaning that, for extreme circumstances, there is a slight
difference in the final result.

5. Conclusions and Discussion

An analytical method to the electromagnetic low-frequency
scattering problem for a perfectly electrically conducting
spheroidal body in a conductive surrounding, which is
illuminated by a magnetic dipole with arbitrary close to the
object location and orientation, is developed. The general
methodology for the identification of the metal spheroid
is presented, based on rigorous, yet versatile, mathematical
tools. Its highly conductingmorphology is taken into account
via impenetrable conditions, while the limiting behavior
of the fields at infinity is readily secured. This radiation
approximation of a vanishing field at sufficiently long distance
from the source creates an error of minor significance.
Upon definition of the medium’s wave number, the three-
dimensional fields assumed expansions at low frequencies,
where a few terms are needed to provide an accurate descrip-
tion of the phenomenon. The spheroidal coordinate system
was best fitted to the physical configuration of the problem
and therein the 3D solution has been obtained in terms of
handy spheroidal eigenfunctions.The commensurable spher-
ical occasion is recovered via a careful limiting procedure,
which demonstrated our cumbersome analysis at hand.

Suchlike analytical solutions and formulae attaining
closed-type forms have quite important advantages com-
pared with the pure numerical methods. Indeed, the validity
of numerical solutions can be verified by analytical or semian-
alytical techniques. On the other hand, bearing in mind that
very important physical laws can be derived from analytical
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Figure 2:The 𝑥1-components and 𝑥2-components of the real and the imaginary parts of the approximated low-frequency scatteredmagnetic
fieldH𝑠, obtained on the 𝑥1-axis for a prolate spheroid (⋅ ⋅ ⋅ 󳵳 ⋅ ⋅ ⋅ ), a needle (⊙), and a sphere (—). The 𝑥3-components are all vanishing.

methods, we can understand the necessity of tackling with
a confident mathematical basis before incorporating with an
algorithmic procedure. Therefore, even nowadays, there is
always room for such kind of methods that coexist with pure
numerical codes and aim to the solution of boundary value
problems in physical applications of major importance.

Mathematical and computational work is currently in
progress and involves research into several directions, such
as the introduction of more complicated geometries for the
metallic target or the accomplishment of actually difficult
inversion algorithms, taking profit from the proposed frame-
work.
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