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We develop a numerical method for elliptic interface problems with implicit jumps. To handle the discontinuity, we enrich usual𝑃1-conforming finite element space by adding extra degrees of freedom on one side of the interface. Next, we define a new bilinear
form,which incorporates the implicit jump conditions.We show that the bilinear form is coercive and bounded if the penalty term is
sufficiently large.We prove the optimal error estimates in both energy-like norm and 𝐿2-norm.We provide numerical experiments.
We observe that our scheme converges with optimal rates, which coincides with our error analysis.

1. Introduction

Interface problems arise in various disciplines including
mechanical, material, and medical image and petroleum
engineering [1–9]. There are several difficulties to solve for
the governing equation of such problems.

Firstly, partial differential equations may have different
coefficients along the interface due to the change of material
properties. When the geometry of interface is complex, one
needs to generate grids that align with the interfaces. Once a
fitted grid is generated, one uses finite elementmethod (FEM)
or finite volumemethod (FVM) based on this grid. Secondly,
the problem may have nonhomogeneous jump conditions
along the interface. When the jumps along the interface
are known explicitly, (say [𝑢] = 𝑔1, [𝜕𝑢/𝜕n] = 𝑔2, with
known 𝑔1 and 𝑔2), these jumps may be handled effectively
by discontinuous Galerkin (DG) [10, 11] by incorporating
jumps into the bilinear form with proper penalty terms. For
example, an effective DG scheme was developed to describe
discontinuous phenomena arising from porous media with
discontinuous capillary pressure [12]. The interface problems
with known jumps can be solved with immersed interface
methods [13–15] or discontinuous bubble-immersed finite
element methods [16].

However, when the jumps are implicit along the inter-
face problems, numerically solving the governing equations

becomes more challenging. Let us consider some problems
with interface conditions, where the jumps of primary vari-
ables are related to the normal fluxes. Firstly, these problems
arise in the medical imaging of cancer cells using MREIT [3,
4] or electrochemotherapy [17], where the jumps of an electric
voltage across the cell membrane appear. Next, an elastic
body has spring-type jumps that are related to stress [18, 19].
The heat in the material interface may have implicit jump
conditions along the interface [20, 21]. Also, a generalized
jump condition for Laplace equation or Helmholtz equation
has been considered in [22–24].

The first attempt to solve the elliptic interface problems
having implicit jump conditions seems to be introduced in
[25], where the iterative method was used. Recently, some
XFEM-based nonfitted methods were developed in [26, 27]
for the elliptic problems and elasticity problems, respectively,
where the extra degrees of freedom are introduced on ele-
ments cut by the interface. On the other hand, an immersed
finite element type method was developed in [28].

In this work, we introduce a new numerical method to
solve elliptic interface problems, where the jumps are related
to the normal fluxes and some known functions. Amain idea
of our work is to include the jump conditions implicitly on
the bilinear form so that the numerical solutions for the weak
problems satisfy the implicit jump conditions. We enrich the
usual 𝑃1 FEM space near the interface. We show that our
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bilinear form is coercive and bounded and prove the optimal
error estimates. In numerical section, we provide several
numerical examples supporting our analysis.

Let Ω be a convex domain in R𝑛 (𝑛 = 2, 3), which
is divided into Ω+ and Ω− by a 𝐶2 closed interface Γ. The
governing equations onΩ are given by

−∇ ⋅ 𝛽∇𝑢 = 𝑓, in Ω fl Ω− ∪ Ω+, (1)

𝑢 = 𝑔0, on 𝜕Ω, (2)

[𝑢]Γ = 𝛼𝜕𝑢+𝜕n+ + 𝑔1, on Γ, (3)

[𝛽 𝜕𝑢𝜕nΓ ]Γ = 𝑔2, on Γ, (4)

where 𝑓 ∈ 𝐿2(Ω) and 𝑔0 ∈ 𝐻3/2(𝜕Ω), 𝑔1 ∈ 𝐻3/2(Γ), 𝑔2 ∈𝐻1/2(Γ), and 𝛽 is a positive piecewise constant; that is, 𝛽 = 𝛽+
in Ω+ and 𝛽 = 𝛽− in Ω−, where 𝛽+ and 𝛽− are some positive
constants. Here, n𝑠 is the outer unit normal vector to Ω𝑠 (𝑠 =−, +) and [⋅]Γ is the jump along the interface; that is, [𝑢]Γ =𝑢|Ω− − 𝑢|Ω+ . Also, we define nΓ to be an outer normal vector
toΩ−. The jump of normal derivatives of 𝑢 is defined as

[𝛽 𝜕𝑢𝜕nΓ ]Γ = 𝛽− 𝜕𝑢|Ω−𝜕nΓ − 𝛽+ 𝜕𝑢|Ω+𝜕nΓ . (5)

We assume that 𝛼 is a positive constant.
We introduce some notations. Let 𝑂 be any domain and

let 𝐻𝑚(𝑂), 𝑚 = 1, 2, be a usual Sobolev space with norm‖𝑢‖𝑚,𝑂.We define𝐻10 (𝑂) as the set of functions in𝐻1(𝑂)with
vanishing trace on 𝜕𝑂. We define the subspaces of𝐻𝑚(𝑂),

𝐻̃𝑚 (𝑂) fl 𝐻𝑚 (Ω− ∩ 𝑂) ∩ 𝐻𝑚 (Ω+ ∩ 𝑂) , (6)

equipped with the (semi)norms:

|𝑢|𝐻̃𝑚(𝑂) fl |𝑢|𝐻𝑚(Ω−∩𝑂) + |𝑢|𝐻𝑚(Ω+∩𝑂) ,
‖𝑢‖𝐻̃𝑚(𝑂) fl ‖𝑢‖𝐻𝑚(Ω−∩𝑂) + ‖𝑢‖𝐻𝑚(Ω+∩𝑂) . (7)

Finally, we define subspace of 𝐻̃1(Ω):
𝐻̃10 (Ω) fl {𝑢 : 𝑢 ∈ 𝐻̃1 (𝑂) | 𝑢|𝜕Ω = 0} . (8)

We state a theorem regarding the existence and regularity of
the problem [29, 30].

Theorem 1. Problem (1)–(4) has a unique solution 𝑢 ∈ 𝐻̃2(Ω)
such that, for some constant 𝐶 > 0,

‖𝑢‖𝐻̃2(Ω) ≤ 𝐶 (󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(Ω) + 󵄩󵄩󵄩󵄩𝑔0󵄩󵄩󵄩󵄩𝐻3/2(𝜕Ω) + 󵄩󵄩󵄩󵄩𝑔1󵄩󵄩󵄩󵄩𝐻3/2(Γ)
+ 󵄩󵄩󵄩󵄩𝑔2󵄩󵄩󵄩󵄩𝐻1/2(Γ)) . (9)

The rest of the paper is organized as follows. In Section 2,
we derive the variational forms for the problems with implicit
jump conditions. We introduce new numerical methods in
Section 3 and in Section 4 we prove the error estimates. In
Section 5, we give numerical results that support our analysis.
The conclusion follows in Section 6.

2. Variational Form

In this section, we derive a variational formulation of the
model problem. Without loss of generality, we may assume
that 𝑔0 = 0. First, we multiply V ∈ 𝐻̃10 (Ω) to (1) and apply
integration by parts on each subdomain to get

∫
Ω𝑠

𝛽∇𝑢 ⋅ ∇V 𝑑x − ∫
𝜕Ω𝑠

𝛽𝑠 𝜕𝑢𝑠𝜕n𝑠 V 𝑑𝑠 = ∫
Ω𝑠

𝑓V 𝑑x,
𝑠 = +, −. (10)

By summation, we have

∑
𝑠=+,−

∫
Ω𝑠

𝛽∇𝑢 ⋅ ∇V 𝑑x − ∑
𝑠=+,−

∫
𝜕Ω𝑠

𝛽𝑠 𝜕𝑢𝑠𝜕n𝑠 V 𝑑𝑠
= ∑
𝑠=+,−

∫
Ω𝑠

𝑓V 𝑑x. (11)

Using the jump conditions (3) and (4), we see the second
terms become

− ∑
𝑠=+,−

∫
𝜕Ω𝑠

𝛽𝑠 𝜕𝑢𝑠𝜕n𝑠 V 𝑑𝑠 = −∫
𝜕Ω−

𝛽− 𝜕𝑢−𝜕nΓ V−𝑑𝑠
+ ∫
𝜕Ω+

𝛽+ 𝜕𝑢+𝜕nΓ V+𝑑𝑠,
= −∫
Γ

𝛽+ 𝜕𝑢+𝜕nΓ [V]Γ 𝑑𝑠
− ∫
Γ

𝑔2V−𝑑𝑠, by (4)
= −∫
Γ

𝛽+𝛼 (𝑔1 − [𝑢]Γ) [V]Γ 𝑑𝑠
− ∫
Γ

𝑔2V−𝑑𝑠, by (3)
= 𝛽+𝛼 ∫

Γ

[𝑢]Γ [V]Γ 𝑑𝑠
− 𝛽+𝛼 ∫

Γ

𝑔1 [V]Γ 𝑑𝑠
− ∫
Γ

𝑔2V−𝑑𝑠.

(12)

We define a bilinear form and a functional on𝐻1(Ω):
𝑎 (𝑢, V) fl ∫

Ω−
𝛽∇𝑢 ⋅ ∇V 𝑑x + ∫

Ω+
𝛽∇𝑢 ⋅ ∇V 𝑑x

+ 𝛽+𝛼 ⟨[𝑢]Γ , [V]Γ⟩Γ ,
(13)

𝐹 (V) fl (𝑓, V) + 𝛽+𝛼 ⟨𝑔1, [V]Γ⟩Γ + ⟨𝑔2, V−⟩Γ , (14)
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where (⋅, ⋅) denotes 𝐿2(Ω) inner product on Ω and ⟨⋅, ⋅⟩Γ
denotes the 𝐿2(Γ) inner product. By (12) and (13), we have the
weak problem: find 𝑢 ∈ 𝐻̃2(Ω) ∩ 𝐻̃10 (Ω) satisfying

𝑎 (𝑢, V) = 𝐹 (V) , (15)

for all V ∈ 𝐻̃10 (Ω).
Now let us show that the weak problem (15) is equivalent

to (1)–(4). Suppose that 𝑢 ∈ 𝐻̃2(Ω) ∩ 𝐻̃10 (Ω) satisfies (15).
First, let V be any function 𝐻10 (Ω−) (or V ∈ 𝐻10 (Ω+)). Then,
we have

∫
Ω−

𝛽∇𝑢 ⋅ ∇V 𝑑𝑥 = ∫
Ω−

𝑓V 𝑑x,
(or, ∫

Ω+
𝛽∇𝑢 ⋅ ∇V 𝑑x = ∫

Ω+
𝑓V 𝑑x) . (16)

By integration by parts, we see that 𝑢 satisfies

−∇ ⋅ 𝛽∇𝑢 = 𝑓, on Ω− ∪ Ω+. (17)

Now, assume that V ∈ 𝐻10 (Ω) in (15). By Green’s theorem
and the fact that [V]Γ = 0, the left side of (15) becomes

∑
𝑠=+,−

(∫
𝜕Ω𝑠

𝛽𝑠 𝜕𝑢𝑠𝜕n𝑠 V 𝑑𝑠 − ∫
Ω𝑠

∇ ⋅ (𝛽∇𝑢) V 𝑑x)
= ∫
Γ

[𝛽 𝜕𝑢𝜕nΓ ]Γ V 𝑑𝑠 + ∫
Ω

𝑓V 𝑑x. (18)

Comparing with the right side of (15), we have

[𝛽 𝜕𝑢𝜕nΓ ]Γ = 𝑔2. (19)

Finally, assume that V ∈ 𝐻̃10 (Ω) in (15). By integration by
parts, the left hand side of (15) becomes

∑
𝑠=+,−

(∫
𝜕Ω𝑠

𝛽𝑠 𝜕𝑢𝑠𝜕n𝑠 V 𝑑𝑠 − ∫
Ω𝑠

∇ ⋅ (𝛽∇𝑢) V 𝑑𝑥)
+ 𝛽+𝛼 ∫

Γ

[𝑢]Γ [V]Γ 𝑑𝑠
= ∫
Γ

𝛽+ 𝜕𝑢+𝜕nΓ [V]Γ 𝑑𝑠 + ∫
Γ

𝑔2V− + 𝛽+𝛼 ∫
Γ

[𝑢]Γ [V]Γ 𝑑𝑠
+ ∫
Ω

𝑓V 𝑑x.

(20)

Comparing with the right side of (15), we see that 𝑢 satisfies

[𝑢]Γ = 𝛼𝜕𝑢+𝜕n+ + 𝑔1, on Γ. (21)

3. Numerical Methods

In this section, we develop a numerical method for (1)–(4).
Our method is obtained by adding extra degrees of freedom
to 𝑃1-conforming space on one side of the interface. For
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Figure 1: The support and the degrees of freedom of a function 𝜙ℎ
in 𝐵ℎ(Ω).
simplicity, we assume that Ω ⊂ R2. However, similar
constructions are possible for the case of Ω ⊂ R3 as well.

Let Tℎ be a given regular triangulation of Ω fitted with
the interface. We let T+ℎ and T−ℎ be set of elements in Tℎ
which belong to Ω+ and Ω−, respectively. We let 𝑆ℎ(Ω) be
the usual 𝑃1-conforming space; that is, any function in𝑆ℎ(Ω) is continuous and piecewise linear and is vanishing
on the boundary. We use notation 𝑆ℎ(𝑇) for the set of linear
functions on 𝑇.

We let Iℎ be the set of all neighboring elements of
interface Γ inT+ℎ ; that is, 𝑇 ∈ Tℎ belongs toIℎ if and only if𝑇 ∈ T+ℎ and at least one node of𝑇 is located on Γ.We let𝐵ℎ(𝑇)
be the space of functions in 𝑆ℎ(𝑇) vanishing on nodes not
lying at the interface. For example, suppose that 𝑇 has three
nodes 𝐴1, 𝐴2, and 𝐴3, where 𝐴1 and 𝐴2 are located on Γ.
Then, a function in 𝐵ℎ(𝑇) is linear on 𝑇 vanishing at 𝐴3. In
this case, 𝐵ℎ(𝑇) has dimension two. On the other hand, if 𝑇
have only one node located on Γ, the dimension of 𝐵ℎ(𝑇) is
one. A function in 𝐵ℎ(𝑇) is extended to Ω as follows:

𝐵ℎ (Ω) = {{{
𝜙󵄨󵄨󵄨󵄨𝑇 = 0, on 𝑇 ∈ Tℎ −Iℎ,𝜙󵄨󵄨󵄨󵄨𝑇 ∈ 𝐵ℎ (𝑇) , on 𝑇 ∈ Iℎ. (22)

For example, suppose that there are seven elements
aligning with interface (see Figure 1). Then function 𝜙ℎ
in 𝐵ℎ(Ω) has a support on grey region. Moreover, 𝜙ℎ has
vanishing values on outside nodes onΩ+. Thus, 𝜙ℎ has seven
degrees of freedom, that is, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ.

We decompose 𝑢 as

𝑢 fl 𝑢0 + 𝑢∗, (23)

where 𝑢0 belongs to 𝐻10 (Ω) and 𝑢∗ belongs to 𝐻̃10 (Ω). We
approximate 𝑢0 from 𝑆ℎ(Ω) and approximate 𝑢∗ from 𝐵ℎ(Ω).
Thus, 𝑢 = 𝑢0+𝑢∗ is approximated in 𝑆ℎ(Ω) fl 𝑆ℎ(Ω)+𝐵ℎ(Ω).

Now, we discretize (1)–(4). LetEℎ be edges of elements in
Tℎ and let us define subspaces of Eℎ (see Figure 1).

(i) E𝐼ℎ is the set of edges of Eℎ whose two endpoints are
located on Γ.

(ii) E𝑁ℎ is the set of edges of Eℎ whose one endpoint is
located on Γ and the other is located in the interiorΩ−.
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(iii) E𝑂ℎ fl Eℎ −E𝐼ℎ −E𝑁ℎ .

We note that Eℎ = E𝐼ℎ ∪ E𝑁ℎ ∪ E𝑂ℎ . For all edges 𝑒 in Eℎ, we
fix a normal vector n𝑒 once and for all. We define jumps and
averages across the edges:

[𝑢]𝑒 fl 𝑢|𝑇1𝑒 − 𝑢|𝑇2𝑒 ,
{𝑢}𝑒 fl 0.5𝑢|𝑇1𝑒 + 0.5𝑢|𝑇2𝑒 , (24)

where 𝑇1𝑒 and 𝑇2𝑒 are two neighboring elements of 𝑒.
Wemultiply Vℎ ∈ 𝑆ℎ(Ω) to (1) and use integration by parts

to obtain the following:

∑
𝑇∈Tℎ

∫
𝑇

𝛽∇𝑢 ⋅ ∇Vℎ 𝑑x + ∑
𝑒∈Eℎ

𝐷𝑒 = ∑
𝑇∈Tℎ

(𝑓, Vℎ)𝑇 , (25)

where

𝐷𝑒 fl −∫
𝑒

((𝛽∇𝑢)󵄨󵄨󵄨󵄨𝑇1𝑒 ⋅ n𝑒 Vℎ󵄨󵄨󵄨󵄨𝑇1𝑒 − (𝛽∇𝑢)󵄨󵄨󵄨󵄨𝑇2𝑒
⋅ n𝑒 Vℎ󵄨󵄨󵄨󵄨𝑇2𝑒 ) 𝑑𝑠. (26)

Let us classify𝐷𝑒 into three categories. Firstly, if 𝑒 ∈ E𝐼ℎ, then
using the similar method used in deriving (12), we have

𝐷𝑒 = 𝛽+𝛼 ∫
𝑒

[𝑢]𝑒 [Vℎ]𝑒 𝑑𝑠 − 𝛽+𝛼 ∫
𝑒

𝑔1 [Vℎ]𝑒 𝑑𝑠
− ∫
𝑒

𝑔2V−ℎ𝑑𝑠.
(27)

Secondly, if 𝑒 ∈ E𝑁ℎ , then by using the identity

𝑎−𝑏− − 𝑎+𝑏+ = (𝑎− + 𝑎+) (𝑏− − 𝑏+2 )
+ (𝑎− − 𝑎+2 ) (𝑏− + 𝑏+) (28)

and the fact that

[𝛽∇𝑢 ⋅ n𝑒]𝑒 = 0, (29)

we have

𝐷𝑒 = −∫
𝑒

{𝛽∇𝑢 ⋅ n𝑒}𝑒 [Vℎ]𝑒 𝑑𝑠
− ∫
𝑒

[𝛽∇𝑢 ⋅ n𝑒]𝑒 {Vℎ}𝑒 𝑑𝑠,
= −∫
𝑒

{𝛽∇𝑢 ⋅ n𝑒}𝑒 [Vℎ]𝑒 𝑑𝑠.
(30)

Finally, if 𝑒 ∈ E𝑂ℎ , 𝐷𝑒 vanishes, since both 𝛽∇𝑢 and Vℎ are
continuous across 𝑒. Thus, (25) becomes

∑
𝑇∈Tℎ

∫
𝑇

𝛽∇𝑢 ⋅ ∇Vℎ𝑑x − ∑
𝑒∈E𝑁
ℎ

∫
𝑒

{𝛽∇𝑢 ⋅ n𝑒}𝑒 [Vℎ]𝑒 𝑑𝑠
+ ∑
𝑒∈E𝐼
ℎ

𝛽+𝛼 ∫
𝑒

[𝑢]𝑒 [Vℎ]𝑒 𝑑𝑠
= ∑
𝑇∈Tℎ

(𝑓, Vℎ)𝑇 + ∑
𝑒∈E𝐼
ℎ

𝛽+𝛼 ∫
𝑒

𝑔1 [Vℎ]𝑒 𝑑𝑠
+ ∑
𝑒∈E𝐼
ℎ

∫
𝑒

𝑔2V−ℎ𝑑𝑠.

(31)

Now we propose our method based on enriched 𝑃1-
conforming space: find 𝑢ℎ ∈ 𝑆ℎ(Ω) satisfying

𝑎𝜖ℎ (𝑢ℎ, Vℎ) = 𝐹ℎ (Vℎ) , (32)

for all Vℎ ∈ 𝑆ℎ(Ω), where
𝑎𝜖ℎ (𝑢, V) fl ∑

𝑇∈Tℎ

∫
𝑇

𝛽∇𝑢 ⋅ ∇V 𝑑x
− ∑
𝑒∈E𝑁
ℎ

∫
𝑒

{𝛽∇𝑢 ⋅ n𝑒}𝑒 [V]𝑒 𝑑𝑠
+ 𝜖 ∑
𝑒∈E𝑁
ℎ

∫
𝑒

{𝛽∇V ⋅ n𝑒}𝑒 [𝑢]𝑒 𝑑𝑠
+ ∑
𝑒∈E𝑁
ℎ

∫
𝑒

𝜎|𝑒| [𝑢]𝑒 [V]𝑒 𝑑𝑠
+ ∑
𝑒∈E𝐼
ℎ

𝛽+𝛼 ∫
𝑒

[𝑢]𝑒 [V]𝑒 𝑑𝑠,

(33)

𝐹ℎ (Vℎ) = (𝑓, Vℎ) + ∑
𝑒∈E𝐼
ℎ

𝛽+𝛼 ∫
𝑒

𝑔1 [Vℎ]𝑒 𝑑𝑠
+ ∑
𝑒∈E𝐼
ℎ

∫
𝑒

𝑔2V−ℎ𝑑𝑠.
(34)

In (33), the parameter 𝜎 is positive and the parameter 𝜖 is 1, 0,
or −1, which is motivated by NIPG, IIPG, and SIPG of DG
scheme [11].

We show that our scheme is consistent.

Lemma 2. Suppose that 𝑢 is the solution of (1)–(4). Then, for
all Vℎ ∈ 𝑆ℎ(Ω), the following holds:

𝑎𝜖ℎ (𝑢, Vℎ) = 𝐹ℎ (Vℎ) . (35)

In other words, we have

𝑎𝜖ℎ (𝑢 − 𝑢ℎ, Vℎ) = 0, (36)

for all Vℎ ∈ 𝑆ℎ(Ω).
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Proof. Since [𝑢]𝑒 = 0 for all 𝑒 ∈ E𝑁ℎ , we have

𝑎𝜖ℎ (𝑢, Vℎ) fl ∑
𝑇∈Tℎ

∫
𝑇

𝛽∇𝑢 ⋅ ∇Vℎ𝑑x
− ∑
𝑒∈E𝑁
ℎ

∫
𝑒

{𝛽∇𝑢 ⋅ n𝑒}𝑒 [Vℎ]𝑒 𝑑𝑠
+ ∑
𝑒∈E𝐼
ℎ

𝛽+𝛼 ∫
𝑒

[𝑢]𝑒 [Vℎ]𝑒 𝑑𝑠,
(37)

for all Vℎ ∈ 𝑆ℎ(Ω). By (31), we have the conclusion.
4. Error Estimates

Wedefine energy-like norm‹⋅‹ℎ on𝐻ℎ(Ω) fl 𝐻̃2(Ω)+𝑆ℎ(Ω).
‹𝜙‹2 = ∑

𝑇∈Tℎ

∫
𝑇

𝛽∇𝜙 ⋅ ∇𝜙 𝑑x + ∑
𝑒∈E𝑁
ℎ

1|𝑒| ∫𝑒 [𝜙]2𝑒 𝑑𝑠
+ ∑
𝑒∈E𝐼
ℎ

∫
𝑒

[𝜙]2
𝑒
𝑑𝑠. (38)

Let 𝛾0 : 𝐻1(𝑇) → 𝐻1(𝜕𝑇) be the usual trace operator. Then
we have the following theorem [31, 32].

Lemma 3 (trace theorem). There exists a constant𝐶 such that󵄩󵄩󵄩󵄩𝛾0V󵄩󵄩󵄩󵄩𝐿2(𝜕𝑇) ≤ 𝐶 (ℎ−1/2 ‖V‖𝐿2(𝑇) + ℎ1/2 ‖∇V‖𝐿2(𝑇)) , (39)

for all V ∈ 𝐻1(𝑇).
We define a local interpolation operator 𝐼ℎ : 𝑢 ∈𝐻2(𝑇) → 𝐼ℎ𝑢 ∈ 𝑆ℎ(𝑇) by(𝐼ℎ𝑢) (𝑋𝑖) = 𝑢 (𝑋𝑖) , 𝑖 = 1, 2, 3, (40)

where 𝑋𝑖’s are nodes of 𝑇. The operator 𝐼ℎ is extended to 𝑢 ∈𝐻̃2(Ω) by (𝐼ℎ𝑢)|𝑇 = 𝐼ℎ(𝑢|𝑇) for each element 𝑇. We note that
if 𝑒 belongs to E𝐼ℎ, 𝐼ℎ𝑢 is discontinuous across 𝑒; that is,[𝐼ℎ𝑢]𝑒 ̸= 0. However, 𝐼ℎ𝑢 is continuous on each subdomainΩ− andΩ+. Then, by the standard interpolation theory, there
exists a constant 𝐶 such that

∑
𝑇∈T+
ℎ

󵄩󵄩󵄩󵄩𝑢 − 𝐼ℎ𝑢󵄩󵄩󵄩󵄩0,𝑇 + ℎ ∑
𝑇∈T+
ℎ

󵄩󵄩󵄩󵄩∇ (𝑢 − 𝐼ℎ𝑢)󵄩󵄩󵄩󵄩0,𝑇
≤ 𝐶ℎ2 ‖𝑢‖𝐻̃2(Ω+) ,

∑
𝑇∈T−
ℎ

󵄩󵄩󵄩󵄩𝑢 − 𝐼ℎ𝑢󵄩󵄩󵄩󵄩0,𝑇 + ℎ ∑
𝑇∈T−
ℎ

󵄩󵄩󵄩󵄩∇ (𝑢 − 𝐼ℎ𝑢)󵄩󵄩󵄩󵄩0,𝑇
≤ 𝐶ℎ2 ‖𝑢‖𝐻̃2(Ω−) .

(41)

From this, we can obtain interpolation estimate in ‹ ⋅‹ norm.

Corollary 4. There exists a constant 𝐶𝐼 such that, for all 𝑢 ∈𝐻̃2(Ω),
‹𝑢 − 𝐼ℎ𝑢‹ ≤ 𝐶𝐼ℎ ‖𝑢‖𝐻̃2(Ω) . (42)

Proof. Since 𝑢 − 𝑢ℎ is continuous across 𝑒 ∈ E𝑁ℎ , we have

‹𝑢 − 𝐼ℎ𝑢‹2 = ∑
𝑇∈Tℎ

󵄩󵄩󵄩󵄩󵄩𝛽1/2∇ (𝑢 − 𝐼ℎ𝑢)󵄩󵄩󵄩󵄩󵄩20,𝑇
+ ∑
𝑒∈E𝐼
ℎ

∫
𝑒

[𝑢 − 𝐼ℎ𝑢]2 𝑑𝑠
≤ 𝐶ℎ2 ‖𝑢‖2

𝐻̃2(Ω)
+ ∑
𝑒∈E𝐼
ℎ

∫
𝑒

[𝑢 − 𝐼ℎ𝑢]2 𝑑𝑠.
(43)

It suffices to show that

∑
𝑒∈E𝐼
ℎ

∫
𝑒

[𝑢 − 𝐼ℎ𝑢]2 𝑑𝑠 ≤ 𝐶ℎ2 ‖𝑢‖𝐻̃2(Ω) , (44)

for some constant 𝐶 > 0. Let 𝜙 = 𝑢 − 𝐼ℎ𝑢. By the trace
inequality (41), we have

∑
𝑒∈E𝐼
ℎ

∫
𝑒

[𝜙]2 𝑑𝑠 ≤ ∑
𝑒∈E𝐼
ℎ

∑
𝑖=1,2

󵄩󵄩󵄩󵄩󵄩󵄩𝜙󵄨󵄨󵄨󵄨𝑇𝑖𝑒󵄩󵄩󵄩󵄩󵄩󵄩20,𝑒
≤ 𝐶 ∑
𝑒∈E𝐼
ℎ

∑
𝑖=1,2

(ℎ−1 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩20,𝑇𝑖𝑒 + ℎ1 󵄩󵄩󵄩󵄩∇𝜙󵄩󵄩󵄩󵄩20,𝑇𝑖𝑒)
≤ ∑
𝑒∈E𝐼
ℎ

∑
𝑖=1,2

𝐶ℎ3 ‖𝑢‖2𝐻2(𝑇𝑖𝑒) ≤ 𝐶ℎ2 ∑
𝑇∈Tℎ

‖𝑢‖2𝐻2(𝑇) .
(45)

We have the following coercivity property.

Theorem 5. If we choose 𝜎 so that

𝜎 > 3 (1 − 𝜖)2 𝐶212 , (46)

then the following holds:

𝑎𝜖ℎ (Vℎ, Vℎ) ≥ 𝐶1‹Vℎ‹2, (47)

for all Vℎ ∈ 𝑆ℎ(Ω), where
𝐶1 = min{12 , 𝜎, 𝛽

+

𝛼 } . (48)

Proof. If 𝜖 = 1, then by definition of 𝑎ℎ(⋅, ⋅) and ‹ ⋅‹ norm, we
have

𝑎𝜖ℎ (Vℎ, Vℎ) ≥ min{1, 𝜎, 𝛽+𝛼 } 󵄩󵄩󵄩󵄩Vℎ󵄩󵄩󵄩󵄩2ℎ . (49)

Now, suppose that 𝜖 = −1 or 0. We have

𝑎𝜖ℎ (Vℎ, Vℎ) = ∑
𝑇∈Tℎ

󵄩󵄩󵄩󵄩󵄩𝛽1/2∇Vℎ󵄩󵄩󵄩󵄩󵄩20,𝑇
− (1 − 𝜖) ∑

𝑒∈E𝑁
ℎ

∫
𝑒

{𝛽∇Vℎ ⋅ n𝑒}𝑒 [Vℎ]𝑒 𝑑𝑠
+ ∑
𝑒∈E𝑁
ℎ

𝜎|𝑒| 󵄩󵄩󵄩󵄩[Vℎ]𝑒󵄩󵄩󵄩󵄩20,𝑒 + ∑
𝑒∈E𝐼
ℎ

𝛽+𝛼 󵄩󵄩󵄩󵄩[Vℎ]𝑒󵄩󵄩󵄩󵄩20,𝑒
fl 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4.

(50)
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We bound 𝐴2 by Cauchy-Schwarz inequality, (39), and
Young’s inequality.

(1 − 𝜖) ∑
𝑒∈E𝑁
ℎ

∫
𝑒

{𝛽∇Vℎ ⋅ n𝑒}𝑒 [Vℎ]𝑒 𝑑𝑠 ≤ (1 − 𝜖)
⋅ ∑
𝑒∈E𝑁
ℎ

󵄩󵄩󵄩󵄩󵄩{𝛽1/2Vℎ}𝑒󵄩󵄩󵄩󵄩󵄩0,𝑒 󵄩󵄩󵄩󵄩[Vℎ]𝑒󵄩󵄩󵄩󵄩0,𝑒 ≤ ∑
𝑒∈E𝑁
ℎ

(1 − 𝜖)
⋅ 𝐶1ℎ−1/2 (12 󵄩󵄩󵄩󵄩󵄩𝛽1/2∇Vℎ󵄩󵄩󵄩󵄩󵄩0,𝑇1𝑒 + 12 󵄩󵄩󵄩󵄩󵄩𝛽1/2∇Vℎ󵄩󵄩󵄩󵄩󵄩0,𝑇2𝑒 )
⋅ 󵄩󵄩󵄩󵄩[Vℎ]𝑒󵄩󵄩󵄩󵄩0,𝑒 ≤ (1 − 𝜖)
⋅ 𝐶1ℎ−1/2( ∑

𝑒∈E𝑁
ℎ

󵄩󵄩󵄩󵄩󵄩𝛽1/2∇Vℎ󵄩󵄩󵄩󵄩󵄩20,𝑇1𝑒)
1/2

⋅ ( ∑
𝑒∈E𝑁
ℎ

󵄩󵄩󵄩󵄩[Vℎ]𝑒󵄩󵄩󵄩󵄩20,𝑒)
1/2

≤ (1 − 𝜖)

⋅ 𝐶1ℎ−1/2(3 ∑
𝑇∈Tℎ

󵄩󵄩󵄩󵄩󵄩𝛽1/2∇Vℎ󵄩󵄩󵄩󵄩󵄩20,𝑇)
1/2

⋅ ( ∑
𝑒∈E𝑁
ℎ

󵄩󵄩󵄩󵄩[Vℎ]𝑒󵄩󵄩󵄩󵄩20,𝑒)
1/2

≤ 𝜖12 ( ∑
𝑇∈Tℎ

󵄩󵄩󵄩󵄩󵄩𝛽1/2∇Vℎ󵄩󵄩󵄩󵄩󵄩20,𝑇)

+ 3 (1 − 𝜖)2 𝐶212𝜖1 ( ∑
𝑒∈E𝑁
ℎ

1|𝑒| 󵄩󵄩󵄩󵄩[Vℎ]𝑒󵄩󵄩󵄩󵄩20,𝑒) ,

(51)

for all 𝜖1 > 0. Thus, we have

𝑎𝜖ℎ (Vℎ, Vℎ)
≥ (1 − 𝜖12 ) ∑

𝑇∈Tℎ

󵄩󵄩󵄩󵄩󵄩𝛽1/2∇Vℎ󵄩󵄩󵄩󵄩󵄩20,𝑇
+ (𝜎 − 3 (1 − 𝜖)2 𝐶212𝜖1 ) ∑

𝑒∈E𝑁
ℎ

1|𝑒| 󵄩󵄩󵄩󵄩[Vℎ]𝑒󵄩󵄩󵄩󵄩20,𝑒
+ 𝛽+𝛼 ∑
𝑒∈E𝐼
ℎ

󵄩󵄩󵄩󵄩[Vℎ]𝑒󵄩󵄩󵄩󵄩20,𝑒 .

(52)

Then (47) is obtained by taking 𝜖 = 1.
By a similar technique, we can show that 𝑎ℎ is bounded.

Theorem6. There exists a constant𝐶𝐵 > 0 such that following
holds:

𝑎𝜖ℎ (𝑢ℎ, Vℎ) ≤ 𝐶𝐵‹𝑢ℎ‹ ⋅ ‹Vℎ‹ℎ, (53)

for all 𝑢ℎ, Vℎ ∈ 𝑆ℎ(Ω).
Finally, we prove the error estimate in the energy-like

norm.

Theorem 7. Assume that 𝜎 > 0 satisfies (46). There exists a
constant 𝐶 > 0 such that
‹𝑢 − 𝑢ℎ‹ ≤ 𝐶ℎ (󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(Ω) + 󵄩󵄩󵄩󵄩𝑔1󵄩󵄩󵄩󵄩𝐻3/2(Γ) + 󵄩󵄩󵄩󵄩𝑔2󵄩󵄩󵄩󵄩𝐻1/2(Γ)) . (54)

Proof. By (36), we have

𝑎𝜖ℎ (𝑢 − 𝑢ℎ, 𝑢 − 𝑢ℎ) = 𝑎𝜖ℎ (𝑢 − 𝑢ℎ, 𝑢 − 𝜙ℎ) , (55)

for all 𝜙ℎ ∈ 𝑆ℎ(Ω). By (55), (47), and (53) we have

𝐶1‹𝑢 − 𝑢ℎ‹2 ≤ 𝑎𝜖ℎ (𝑢 − 𝑢ℎ, 𝑢 − 𝜙ℎ)
≤ 𝐶𝐵‹𝑢 − 𝑢ℎ‹ ⋅ ‹𝑢 − 𝜙ℎ‹. (56)

If we take 𝜙ℎ = 𝐼ℎ𝑢, then, by (42) and (9), we have

‹𝑢 − 𝑢ℎ‹ ≤ 𝐶𝐵𝐶1 𝐶𝐼ℎ ‖𝑢‖𝐻̃2(Ω)
≤ 𝐶𝐵𝐶1 𝐶𝐼ℎ (󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(Ω) + 󵄩󵄩󵄩󵄩𝑔1󵄩󵄩󵄩󵄩𝐻3/2(Γ) + 󵄩󵄩󵄩󵄩𝑔2󵄩󵄩󵄩󵄩𝐻1/2(Γ)) .

(57)

Next, we prove 𝐿2 estimates using duality argument when𝜖 = −1.
Theorem 8. If 𝜎 > 0 satisfies (46) and 𝜖 = −1, there exists a
constant 𝐶 > 0 such that󵄩󵄩󵄩󵄩𝑢 − 𝑢ℎ󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶ℎ2 (󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(Ω) + 󵄩󵄩󵄩󵄩𝑔1󵄩󵄩󵄩󵄩𝐻3/2(Γ) + 󵄩󵄩󵄩󵄩𝑔2󵄩󵄩󵄩󵄩𝐻1/2(Γ)) . (58)

Proof. We define an auxiliary problem. Let 𝜓 ∈ 𝐻̃2(Ω) be
solution of

−∇ ⋅ 𝛽∇𝜓 = 𝑒ℎ, on Ω+ ∪ Ω−, (59)

[𝜓]
Γ
= −𝛼𝜕𝜓+𝜕n+ , on Γ, (60)

[𝛽𝜕𝜓𝜕n ]
Γ

= 0, on Γ, (61)

𝜓 = 0, on 𝜕Ω, (62)

where 𝑒ℎ fl 𝑢 − 𝑢ℎ ∈ 𝐿2(Ω). We multiply 𝑒ℎ to (59) and we
use integration by parts to have

󵄩󵄩󵄩󵄩𝑒ℎ󵄩󵄩󵄩󵄩2𝐿2(Ω) = − ∑
𝑇∈Tℎ

∫
𝑇

(∇ ⋅ 𝛽∇𝜓) 𝑒ℎ𝑑x = ∑
𝑇∈Tℎ

∫
𝑇

𝛽∇𝜓
⋅ ∇𝑒ℎ𝑑x − ∑

𝑒∈Eℎ

∫
𝑒

((𝛽∇𝜓)󵄨󵄨󵄨󵄨𝑇1𝑒 ⋅ n𝑒 𝑒ℎ󵄨󵄨󵄨󵄨𝑇1𝑒 − (𝛽∇𝜓)󵄨󵄨󵄨󵄨𝑇2𝑒
⋅ n𝑒 𝑒ℎ󵄨󵄨󵄨󵄨𝑇2𝑒 ) 𝑑𝑠.

(63)



Advances in Mathematical Physics 7

Table 1: 𝐿2 and𝐻1 errors of Example 1.

Elements DoF ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) Order ‖𝑢 − 𝑢ℎ‖1,ℎ Order
70 80 3.934 × 10−1 4.629 × 10−1
264 221 1.019 × 10−1 1.949 1.793 × 10−1 1.368
1062 709 2.568 × 10−2 1.988 8.009 × 10−2 1.163
4171 2439 6.432 × 10−3 1.998 3.940 × 10−2 1.023
16557 8986 1.610 × 10−3 1.998 1.967 × 10−2 1.002
65521 34174 4.023 × 10−4 2.001 9.832 × 10−3 1.000
260961 133311 1.006 × 10−4 2.000 4.911 × 10−3 1.002

Table 2: 𝐿2 and𝐻1 errors of Example 2.

Elements DoF ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) Order ‖𝑢 − 𝑢ℎ‖1,ℎ Order
110 118 5.964 × 10−3 1.008 × 10−1
382 313 2.720 × 10−3 1.133 7.348 × 10−2 0.456
1355 920 6.077 × 10−4 2.162 3.589 × 10−2 1.034
5005 2983 1.714 × 10−4 1.826 1.924 × 10−2 0.900
18993 10461 4.321 × 10−5 1.988 9.900 × 10−3 0.959
74225 39037 1.090 × 10−5 1.987 4.989 × 10−3 0.989
292404 150041 2.769 × 10−6 1.976 2.519 × 10−3 0.986

We use similar techniques in the classification of 𝐷𝑒 of (25)
to derive

− ∑
𝑒∈Eℎ

∫
𝑒

((𝛽∇𝜓)󵄨󵄨󵄨󵄨𝑇1𝑒 ⋅ n𝑒 𝑒ℎ󵄨󵄨󵄨󵄨𝑇1𝑒 − (𝛽∇𝜓)󵄨󵄨󵄨󵄨𝑇2𝑒
⋅ n𝑒 𝑒ℎ󵄨󵄨󵄨󵄨𝑇2𝑒 ) 𝑑𝑠 = − ∑

𝑒∈E𝑁
ℎ

∫
𝑒

{𝛽∇𝜓 ⋅ n𝑒}𝑒 [𝑒ℎ]𝑒 𝑑𝑠
+ ∑
𝑒∈E𝐼
ℎ

𝛽+𝛼 ∫
𝑒

[𝜓]
𝑒
[𝑒ℎ]𝑒 𝑑𝑠.

(64)

Combining with (63) and (64) and the fact that 𝜓 is continu-
ous on each subdomainΩ− andΩ+, we have󵄩󵄩󵄩󵄩𝑒ℎ󵄩󵄩󵄩󵄩2𝐿2(Ω) = 𝑎𝜖ℎ (𝜓, 𝑒ℎ) . (65)

By definition of 𝑒ℎ and the fact that 𝑎𝜖ℎ(⋅, ⋅) is symmetric and
by (36), (54), (42), and (9), we have

󵄩󵄩󵄩󵄩𝑢 − 𝑢ℎ󵄩󵄩󵄩󵄩2𝐿2(Ω) = 𝑎𝜖ℎ (𝑢 − 𝑢ℎ, 𝜓) = 𝑎𝜖ℎ (𝑢 − 𝑢ℎ, 𝜓 − 𝐼ℎ𝜓)
≤ 𝐶ℎ ‖𝑢‖𝐻̃2(Ω) 𝐶ℎ 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐻̃2(Ω)
≤ 𝐶ℎ2 (󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(Ω) + 󵄩󵄩󵄩󵄩𝑔1󵄩󵄩󵄩󵄩𝐻3/2(Γ) + 󵄩󵄩󵄩󵄩𝑔2󵄩󵄩󵄩󵄩𝐻1/2(Γ))
⋅ 󵄩󵄩󵄩󵄩𝑢 − 𝑢ℎ󵄩󵄩󵄩󵄩𝐿2(Ω) .

(66)

Thus, we have the conclusion.

5. Numerical Results

In this section, we provide some numerical experiments of
elliptic interface problems with implicit jump conditions. We
consider circle- and ellipse-type interface shapes.

We let the domain Ω = [−1, 1]2 and we let Tℎ be a
triangulation of Ω by regular triangles, which aligns with
interfaces. We set 𝜖 = −1 in bilinear form (33). We take 𝜎 in
(33) as a multiple of 𝛽. We report the number of elements,
degrees of freedom, 𝐿2-errors, and 𝐻1-errors for ℎ𝑘 = 2−𝑘,𝑘 = 1, 2, . . ., in Tables 1 and 2. For both examples, we observe
optimal error convergence, which supports our analysis in
Section 4.

Example 1 (circular interface). The interface is given by Γ ={(𝑥, 𝑦) : 𝑥2+𝑦2 = 𝑟20} andΩ− andΩ+ are inside and outside ofΓ, respectively. The coefficients are (𝛽−, 𝛽+) = (10, 1), 𝛼 = 1,
and 𝑟0 = 0.5. The exact solution is

𝑢
= {{{{{{{

𝑟22𝛽− − 𝛼𝑟0 + ( 1𝛽+ − 1𝛽−) 𝑟202 + 1.5 − 𝑟2, on Ω−,
𝑟22𝛽+ , on Ω+,

(67)

where 𝑟 = √𝑥2 + 𝑦2. We remark that 𝑢 satisfies jump
conditions (3) and (4), where 𝑔1 and 𝑔2 are given as

𝑔1 = 1.5 − 𝑟02,
𝑔2 = −20𝑟0. (68)

Table 1 shows the number of elements and 𝐿2 and piecewise𝐻1 errors. Figure 2 shows the numerical solution.We observe
that our scheme has optimal convergence in 𝐿2 and piecewise𝐻1-norms.

Example 2 (elliptical shape interface). The interface is given
by Γ = {(𝑥, 𝑦) : 𝑥2 +𝑦2/2 = 𝑟20} andΩ− andΩ+ are inside and



8 Advances in Mathematical Physics

Y

X

0

0
0

1.2

0.8

0.6

0.4

0.2

−0.5
−0.5

−1

−1

1

1

1

0.5

0.5

0.9

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Figure 2: Numerical solution of Example 1.
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Figure 3: Numerical solution of Example 2.

outside of Γ, respectively. The coefficients are (𝛽−, 𝛽+) =(1, 10) and 𝑟0 = 0.4. In the previous example, 𝛼 was constant.
However, in this example, we set 𝛼 as a function of (𝑥, 𝑦):

𝛼 = 1(𝑥2 + 𝑦2/4)1/2 . (69)

The exact solution is

𝑢 = {{{{{{{
𝑞2𝛽− − 12𝛽+ + ( 1𝛽+ − 1𝛽−) 𝑟202 + 𝑥𝑦, on Ω−,𝑞2𝛽+ on Ω+, (70)

where 𝑞 = 𝑥2 +𝑦2/4. We remark that 𝑔1 and 𝑔2 in (3) and (4)
are given as

𝑔1 = 𝑥𝑦,
𝑔2 = 3𝑥𝑦

√4𝑥2 + 𝑦2 .
(71)

Table 2 shows the errors and Figure 3 shows the numerical
solution. Again, we observe the optimal convergence.

6. Conclusion

In this work, we introduce a numerical method for elliptic
interface problems, where the jumps are related to the normal
fluxes. We enrich usual 𝑃1 space by extra degrees of freedom
on one side of the interface. We define bilinear form that
includes the jump conditions implicitly. We prove that the
bilinear form is coercive and bounded. Using Cea’s Lemma,
we prove the error estimates in energy-like norm. Next, we
prove 𝐿2 error estimate using the duality arguments. We
provide numerical experiments that support our analysis.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported by NRF (Contract no.2017R1D1A1B03032765).

References

[1] K. W. Garrett and H. M. Rosenberg, “The thermal conductivity
of epoxy-resin / powder compositematerials,” Journal of Physics
D: Applied Physics, vol. 7, no. 9, article no. 311, pp. 1247–1258,
1974.
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