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Although some numerical methods of the Lorenz system have been announced, simple and efficient methods have always been
the direction that scholars strive to pursue. Based on this problem, this paper introduces a novel numerical method to solve the
Lorenz-type chaotic system which is based on barycentric Lagrange interpolation collocation method (BLICM). The system (1) is
adopted as an example to elucidate the solution process. Numerical simulations are used to verify the effectiveness of the present
method.

1. Introduction

In 1963, Edward Lorenz developed a simplified mathematical
model for atmospheric convection. The model is a system
of three ordinary differential equations now known as the
Lorenz equations (see [1–3]):

𝑑𝑥
𝑑𝑡 = 𝑎 (𝑦 − 𝑥) ,
𝑑𝑦
𝑑𝑡 = 𝑥 (𝑐 − 𝑥) − 𝑦,
𝑑𝑧
𝑑𝑡 = −𝑏𝑧 + 𝑥𝑦,

𝑡 ∈ [0, 𝑇]

(1)

with the initial conditions
𝑥 (0) = 𝑐1,
𝑦 (0) = 𝑐2,
𝑧 (0) = 𝑐3,

(2)

where 𝑥(𝑡) is proportional to the rate of convection,
𝑦(𝑡) to the horizontal temperature variation, and 𝑧(𝑡) to the

vertical temperature variation.The constants 𝑎, 𝑐, 𝑏 are system
parameters proportional to the Prandtl number, Rayleigh
number, and certain physical dimensions of the layer
itself.

As chaos theory progresses, many new Lorenz-type
systems [4–6] have been proposed, specially Lorenz hyper-
chaotic systems [7–10]. The Lorenz system is widely used
in electric circuits, chemical reactions, and forward osmo-
sis. Although some numerical methods of the Lorenz sys-
tem have been announced, simple and efficient methods
have always been the direction that scholars strive to
pursue.

With the development of numerical analysis, there are
some high-precision methods, such as variational iteration
method [11–13], BLICM [14–22], and so on [23]. J.P. Berrut
[24–26] introduced barycentric Lagrange interpolation, [27,
28] studied numerical stability of barycentric Lagrange inter-
polation, and [15, 16] give algorithm of BLICM. Some authors
[14, 17–22] have usedBLICM to solve all sorts of problems and
show the BLICM is a high precision numerical method. This
paper suggests the BLICM to solve the Lorenz system. The
system (1) is adopted as an example to elucidate the solution
process.
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2. The Numerical Solution of the System (1)

First of all, we give initial function 𝑥0(𝑡), 𝑦0(𝑡), 𝑧0(𝑡) and
construct following linear iterative format of system (1)

𝑑𝑥𝑛
𝑑𝑡 + 𝑎𝑥𝑛 (𝑡) − 𝑎𝑦𝑛 (𝑡) = 0,
𝑑𝑦𝑛
𝑑𝑡 − 𝑐𝑥𝑛 (𝑡) + 𝑦𝑛 (𝑡) = 𝑥𝑛−1 (𝑡) 𝑧𝑛−1 (𝑡) ,

𝑑𝑧𝑛
𝑑𝑡 + 𝑏𝑧𝑛 (𝑡) = 𝑥𝑛−1 (𝑡) 𝑦𝑛−1 (𝑡) .

𝑛 = 1, 2, 3, . . . ,

(3)

Next, we use BLICM to solve (3).
Using the barycentric Lagrange interpolation functions

[14–16, 24–26], we can get following:

𝑥𝑛 (𝑡) =
𝑀

∑
𝑗=1

𝜉𝑗 (𝑡) 𝑥𝑛 (𝑡𝑗) ,

𝑦𝑛 (𝑡) =
𝑀

∑
𝑗=1

𝜉𝑗 (𝑡) 𝑦𝑛 (𝑡𝑗) ,

𝑧𝑛 (𝑡) =
𝑀

∑
𝑗=1

𝜉𝑗 (𝑡) 𝑧𝑛 (𝑡𝑗) .

(4)

𝑥𝑛 (𝑡) =
𝑀

∑
𝑗=1

𝜉𝑗 (𝑡) 𝑥𝑛 (𝑡𝑗) ,

𝑦𝑛 (𝑡) =
𝑀

∑
𝑗=1

𝜉𝑗 (𝑡) 𝑦𝑛 (𝑡𝑗) ,

𝑧𝑛 (𝑡) =
𝑀

∑
𝑗=1

𝜉𝑗 (𝑡) 𝑧𝑛 (𝑡𝑗) .

(5)

𝑀

∑
𝑖=1

𝜉𝑖 (0) 𝑥𝑛 (𝑡𝑖) = 𝑐1,
𝑀

∑
𝑖=1

𝜉𝑖 (0) 𝑦𝑛 (𝑡𝑖) = 𝑐2,
𝑀

∑
𝑖=1

𝜉𝑖 (0) 𝑧𝑛 (𝑡𝑖) = 𝑐3.

(6)

where 𝜉𝑗(𝑡) = (𝜔𝑗/(𝑡 − 𝑡𝑗))/∑𝑀𝑘=1(𝜔𝑘/(𝑡 − 𝑡𝑘)) is
respectively barycentric interpolation primary function, 𝜔𝑗 =
1/∏𝑀𝑖=1,𝑗 ̸=𝑘(𝑡𝑖 − 𝑡𝑗) is center of gravity Lagrange interpolation
weight, and 0 ≤ 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑀 ≤ 𝑇.

Substitute formulae (4) and (5) into iterative format (3)
and let 𝑡 = 𝑡𝑖, (𝑖 = 1, 2, ⋅ ⋅ ⋅𝑀). So, linear iterative format (3)
can be written in following partitioned matrix form:

[[
[

𝐷 + 𝑎𝐼 −𝑎𝐼 0
−𝑐𝐼 𝐷 + 𝐼 0
0 0 𝐷 + 𝑏𝐼

]]
]
[[
[

𝑥𝑛
𝑦𝑛
𝑧𝑛
]]
]
= [[
[

0
𝑥𝑛−1𝑧𝑛−1
𝑥𝑛−1𝑦𝑛−1

]]
]

(7)

where 𝐼 is 𝑀 order unit matrix, 𝐷 = (𝜉𝑗(𝑡𝑖))𝑖,𝑗=1,2,⋅⋅⋅𝑀 is 𝑀
order matrix, and the vector

[𝑥𝑛, 𝑦𝑛, 𝑧𝑛] = [𝑥𝑛 (𝑡1) , 𝑥𝑛 (𝑡2) , ⋅ ⋅ ⋅ , 𝑥𝑛 (𝑡𝑀) , 𝑦𝑛 (𝑡1) ,
𝑦𝑛 (𝑡2) , ⋅ ⋅ ⋅ , 𝑦𝑛 (𝑡𝑀) , 𝑧𝑛 (𝑡1) , 𝑧𝑛 (𝑡2) , ⋅ ⋅ ⋅ , 𝑧𝑛 (𝑡𝑀)] ,

(8)

The vector

[0, 𝑥𝑛−1𝑧𝑛−1, 𝑥𝑛−1𝑦𝑛−1] = [0, ⋅ ⋅ ⋅ , 0, 𝑥𝑛−1 (𝑡1)
⋅ 𝑧𝑛−1 (𝑡1) , 𝑥𝑛−1 (𝑡2)
⋅ 𝑧𝑛−1 (𝑡2) , ⋅ ⋅ ⋅ , 𝑥𝑛−1 (𝑡𝑀) 𝑧𝑛−1 (𝑡𝑀)) , 𝑥𝑛−1 (𝑡1)
⋅ 𝑦𝑛−1 (𝑡1) , 𝑥𝑛−1 (𝑡2)
⋅ 𝑦𝑛−1 (𝑡2) , ⋅ ⋅ ⋅ , 𝑥𝑛−1 (𝑡𝑀) 𝑦𝑛−1 (𝑡𝑀))] .

(9)

The first line of (7) is replaced separately by the equation
of initial conditions (6) in turn.

So, we can get that 𝑥𝑛(𝑡𝑗), 𝑦𝑛(𝑡𝑗), 𝑧𝑛(𝑡𝑗), (𝑗 = 1, 2, ⋅ ⋅ ⋅𝑀)
are approximate solution of (1) and (2).

3. Numerical Experiment

In this section, some numerical examples are studied to find
some new chaotic behaviors and verify the existing chaotic
dynamic behaviors. In Experiments 1–5, the accuracy of
iteration control is 𝜀 = 10−10, the initial iteration value 𝑥0 =𝑦0 = 𝑧0 = 0; 𝑥1 = 𝑦1 = 𝑧1 = 𝑇, and for parameters 𝑎, 𝑏, 𝑐, and
𝑚 see Table 1.

Experiment 1. We consider the model (1) with 𝑎 = −1.5, 𝑏 = 5
and the initial conditions 𝑥(0) = 0, 𝑦(0) = 1, 𝑧(0) = 0 [4].

We choose Chebyshev nodes, and the number of nodes
𝑀 = 40. Figure 1 is obtained by using the current method
with 𝑐 = 1. Among them, (a) is the time series plot;
(b) is the phase diagram of 𝑧; (c) is the three-dimensional
space graph; (d) is the graph projected on (𝑥, 𝑧)-plane; (e)
is the graph projected on (𝑦, 𝑧)-plane. Figures 2 and 3 are
obtained by using the current method at 𝑐 = 10 and 𝑐 =
100, respectively. We can see that the fluctuation amplitude
of 𝑥 and 𝑦 increases, while the fluctuation amplitude of 𝑧
decreases with the increase of 𝜌. The corresponding graphs
𝑏, 𝑐, 𝑑, and 𝑒 also have obvious changes.
Experiment 2. We consider the Lorenz-type system [6]

𝑑𝑥
𝑑𝑡 = 𝑎 (𝑦 − 𝑥) + 𝑦𝑧,
𝑑𝑦
𝑑𝑡 = 𝑐𝑥 − 𝑥𝑧,
𝑑𝑧
𝑑𝑡 = −𝑏𝑧 + 𝑥𝑦

(10)

We choose Chebyshev nodes, the number of nodes𝑀 =
40, and the parameters 𝑎 = 7, 𝑐 = 5 and the initial conditions
𝑥(0) = 0, 𝑦(0) = 1, 𝑧(0) = 0.
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Figure 1: Lorenz system for Experiment 1 at 𝑐 = 1: (a) time series plot; (b) phase diagram of 𝑧; (c) on the three-dimensional space; (d)
projected on the (𝑥, 𝑧)-plane; (e) projected on the (𝑦, 𝑧)-plane.

Table 1: Parameters used in the Experiments 1–5.

Fig. a b c m
1 -1.5 5 1
2 -1.5 5 10
3 -1.5 5 100
4 7 1 5
5 7 2 5
6 7 3 5
8 10 15 1
9 10 15 2
10 10 15 3
12 10 8/3 28
13 0.5 -0.1 1.5 0.12

Figure 4 is strange attractors of chaotic system for
Experiment 2 at 𝑏 = 1 by using the current method. (a) is
the graph projected on (𝑥, 𝑦)-plane; (b) is the graph projected
on (𝑥, 𝑧)-plane; (c) is the graph projected on (𝑦, 𝑧)-plane.
Figure 7 is time series plots of chaotic system for Experiment 2
at different parameter value 𝑏. We can see that the frequency

of fluctuations of 𝑥, 𝑦, and 𝑧 accelerates obviously with the
increase of 𝑏. When 𝑏 = 3, the fluctuations of 𝑥, 𝑦, and 𝑧
change obviously, and their fluctuations become smaller and
smaller and finally stop at a certain value. Figures 5 and 6 are
strange attractors of chaotic system for Experiment 2 by using
the current method at 𝑏 = 2 and 𝑏 = 3 respectively.
Experiment 3. We consider the 3D autonomous chaotic
Lorenz-type system [7]

𝑑𝑥
𝑑𝑡 = 𝑎 (𝑦 − 𝑥) ,
𝑑𝑦
𝑑𝑡 = −𝑥𝑧 − 𝑐𝑦,
𝑑𝑧
𝑑𝑡 = −𝑏 + 𝑥𝑦,

(11)

We choose Chebyshev nodes and the number of nodes
𝑀 = 60 and the parameters 𝑎 = 10, 𝑏 = 15 and the initial
conditions 𝑥(0) = 10, 𝑦(0) = −0.2, 𝑧(0) = 0.75.

Figure 8 is phase portraits of the 3D chaotic Lorenz type
system for Experiment 3 at 𝑐 = 1 by using the currentmethod.
(a) is the graph projected on (𝑥, 𝑦)-plane; (b) is the graph
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Figure 2: Lorenz system for Experiment 1 at 𝑐 = 10: (a) time series plot; (b) phase diagram of 𝑧; (c) on the three-dimensional space; (d)
projected on the (𝑥, 𝑧)-plane; (e) projected on the (𝑦, 𝑧)-plane.

projected on (𝑥, 𝑧)-plane; (c) is the graph projected on (𝑦, 𝑧)-
plane. Figure 11 is time series plots of the 3D chaotic Lorenz
type system for Experiment 3 at different parameter value 𝑐.
We can see that the fluctuation range of 𝑦 changes obviously
with the increase of 𝑐. When 𝑐 = 1, the fluctuation range of 𝑦
is −5 to 15, and when 𝑐 = 3, the fluctuation range of 𝑦 is −15
to 5. Figures 9 and 10 are phase portraits of the 3D chaotic
Lorenz type system for Experiment 3 by using the current
method at 𝑐 = 2 and 𝑐 = 3, respectively.
Experiment 4. We consider the Lorenz system [5]

𝑑𝑥
𝑑𝑡 = −𝑎𝑥 + 𝑎𝑦,
𝑑𝑦
𝑑𝑡 = −𝑎𝑥 − 𝑦 − 𝑥𝑧,
𝑑𝑧
𝑑𝑡 = −𝑏𝑧 + 𝑥𝑦 − 𝑏 (𝑐 + 𝑎) ,

(12)

where 𝑎, 𝑏, and 𝑐 are real parameters, which satisfy the
following initial conditions:

𝑥 (0) = 1,
𝑦 (0) = 2,
𝑧 (0) = 1

(13)

We choose Chebyshev nodes and the number of nodes
𝑀 = 40. Figure 12 is obtained by using the current method
with the parameters 𝑎 = 10, 𝑏 = 8/3, and 𝑐 = 28. In Figure 12,
(a) is the time series plot of 𝑥; (b) is the time series plot of
𝑧; (c) is the three-dimensional space graph; (d) is the graph
projected on (𝑥, 𝑦)-plane; (e) is the graph projected on (𝑥, 𝑧)-
plane; (f) is the graph projected on (𝑦, 𝑧)-plane.
Experiment 5. We consider the new chaotic system [8]

𝑑𝑥
𝑑𝑡 = 𝑎 (𝑥 − 𝑦) ,
𝑑𝑦
𝑑𝑡 = −4𝑎𝑦 + 𝑥𝑧 + 𝑚𝑥

3,
𝑑𝑧
𝑑𝑡 = −𝑎𝑐𝑧 + 𝑥

3𝑦 + 𝑏𝑧2,

(14)

where 𝑥, 𝑦, and 𝑧 are state variables and 𝑎, 𝑏, 𝑐, and𝑚 are real
parameters, which satisfy the following initial conditions:

𝑥 (0) = 0.5,
𝑦 (0) = 0,
𝑧 (0) = 0

(15)
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Figure 3: Lorenz system for Experiment 1 at 𝑐 = 100: (a) time series plot; (b) phase diagram of 𝑧; (c) on the three-dimensional space; (d)
projected on the (𝑥, 𝑧)-plane; (e) projected on the (𝑦, 𝑧)-plane.
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Figure 4: Strange attractors of chaotic system for Experiment 2 at 𝑏 = 1: (a) (𝑥, 𝑦)-plane; (b) (𝑥, 𝑧)-plane; (c) (𝑦, 𝑧)-plane.

We choose Chebyshev nodes and the number of nodes
𝑀 = 40. Figure 13 is obtained by using the current method
with the parameters 𝑎 = 0.5, 𝑏 = −0.1, 𝑐 = 1.5, and 𝑚 =
0.12. In Figure 13, (a) is the time series plot; (b) is the three-
dimensional space graph; (c) is the graph projected on (𝑥, 𝑦)-
plane; (d) is the graph projected on (𝑥, 𝑧)-plane; (e) is the
graph projected on (𝑦, 𝑧)-plane.

4. Conclusions and Remarks

In this paper, the Lorenz System has solved by using BLICM.
These numerical experiments illustrate that the numerical
results of the presentmethod are the same as the experimental
results.

All computations are performed by the MatlabR2017b
software packages.
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Figure 5: Strange attractors of chaotic system for Experiment 2 at 𝑏 = 2: (a) (𝑥, 𝑦)-plane; (b) (𝑥, 𝑧)-plane; (c) (𝑦, 𝑧)-plane.
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Figure 6: Strange attractors of chaotic system for Experiment 2 at 𝑏 = 3: (a) (𝑥, 𝑦)-plane; (b) (𝑥, 𝑧)-plane; (c) (𝑦, 𝑧)-plane.
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Figure 7: The time series plots of chaotic system for Experiment 2: (a) 𝑏 = 1; (b) 𝑏 = 2; (c) 𝑏 = 3.
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Figure 8: Phase portraits of the 3D chaotic Lorenz type system for Experiment 3 at 𝑐 = 1: (a) (𝑥, 𝑦)-plane; (b) (𝑥, 𝑧)-plane; (c) (𝑦, 𝑧)-plane.
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Figure 9: Phase portraits of the 3D chaotic Lorenz type system for Experiment 3 at 𝑐 = 2: (a) (𝑥, 𝑦)-plane; (b) (𝑥, 𝑧)-plane; (c) (𝑦, 𝑧)-plane.
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Figure 10: Phase portraits of the 3D chaotic Lorenz type system for Experiment 3 at 𝑐 = 3: (a) (𝑥, 𝑦)-plane; (b) (𝑥, 𝑧)-plane; (c) (𝑦, 𝑧)-plane.
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Figure 11: The time series plots of 3D autonomous chaotic Lorenz-type system for Experiment 3: (a) 𝑐 = 1; (b) 𝑐 = 2; (c) 𝑐 = 3.



8 Advances in Mathematical Physics

20 40 60 80 100 1200
t

−20
−15
−10
−5
0
5
10
15
20

x

(a)

−35
−30
−25
−20
−15
−10
−5
0
5
10

z

20 40 60 80 100 1200
t

(b)

−20−10
0 10 20

−40−2002040
−40
−30
−20
−10
0
10

xy

z

(c)

−25
−20
−15
−10
−5
0
5
10
15
20
25

y

20−1
0 −5 0 10−1
5

−2
0 5 15

x
(d)

−5−1
0 0 5

−2
0 10 15 20−1
5

x

−35
−30
−25
−20
−15
−10
−5
0
5
10

z

(e)

−35
−30
−25
−20
−15
−10
−5
0
5
10

z

15−1
5 0 20−2
5 5 10−1
0

−2
0 25−5

y

(f)

Figure 12: Lorenz system for Experiment 4 with 𝑎 = 10, 𝑏 = 8/3, 𝑐 = 28: (a) time series plot of 𝑥; (b) time series plot of 𝑧; (c) on the
three-dimensional space; (d) projected on the (𝑥, 𝑦)-plane; (e) projected on the (𝑥, 𝑧)-plane; (f) projected on the (𝑦, 𝑧)-plane.
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Figure 13:Thenew chaotic system for Experiment 5with 𝑎 = 0.5, 𝑏 = −0.1, 𝑐 = 1.5, 𝑚 = 0.12: (a) time series plot; (b) on the three-dimensional
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