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In this paper, we investigate the existence of infinitely many solutions to a fractional p-Kirchhoft-type problem satisfying
superlinearity with homogeneous Dirichlet boundary conditions as follows: {[a + b(jRZN [u(x) — u(y)IPK(x - y)dxdy)]$;u -
Mul? 2y = glx,u),in Q,u=0,in RN \ Q,} where 3’; is a nonlocal integrodifferential operator with a singular kernel K. We only
consider the non-Ambrosetti-Rabinowitz condition to prove our results by using the symmetric mountain pass theorem.

1. Introduction

In recent years, the problems with fractional and nonlocal
operator have attracted a lot of attention. These types of
operators arise in many different contexts. We know that
there are population dynamics, stratified materials, minimal
surface, water waves, continuum mechanics, and so on. As far
as we know, we are able to learn more about their association
through referring to [1-6].

The problem we are going to deal with also involves
fractional and nonlocal operator. Here, we will study the p-
Kirchhoff-type problem as follows:

[a +b (ijN lu@)—u()| K(x-y) dxdy)] L

AP u= g inQ @

u=0 inRV\ Q.
Q is an open bounded smooth domain in RY with Lipschitz

boundary 0Q.a,b > 0,1 < p < +00; ps < Nwiths € (0,1). A
isareal parameter. g: QxR — Risa Carathéodory function

and Z;, is usually called nonlocal operator. It is defined as
follows:

gsux::ZIimJ ux) —u(y)?
o4 ) e—0* RN\.QJS(x)l G =u(y)l

(2)
“(u(x)-u(y)) K (x-y)dy,

for all x € RN, where B.(x) ={z | |x — 2| < &}. The function
K : RN\ {0} — (0, c0) is measurable. It has the following
properties:
¢K e L' (RY)
where £ (x) = min {|x|?, 1},
there exists y > 0 such that K (x) >y x| ®*P (3)
for any x € RN\ {0},

K(x)=K(-x) foranyx ¢ RN\ {0}.
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As the singular kernel K satisfies K(x) = |x|"N*P9,
we call it a typical model. Hence, the fractional p-Laplace
operator may be defined as follows:

(—A); u (x)
_ (4)
= 5 lim J |t () —u(y)| Zﬁli‘(x)_u(y))d%
e—0" JRN\3, (x) |x -y P
for x € RN. Problem (1) also becomes
|u () —u(y)] .
[a +b <JR2N dedy (—A)P u (.X')
(5)

—/\|u|P_2u:g(x,u) in Q,

u=20 inRN\Q.

Usually, we write the Kirchhoff function as M. Clearly,
M(t) = a + bt in problem (5). When M =1, p =2, A = 0,
problem (5) becomes the original problem with the following
fractional Laplacian form:

(-A)Y'u=g(xu) inQ,
N (6)
u=0 inR"\Q.

It is the nonlocality that is a typical characteristic of
problem (6). In other words, the value of (~A)*u(x) at any
point x € Q relies not only on Q but actually also on the
whole space. We know that the Dirichlet boundary condition
was applied to problem (6) in [5]. In [7], through the use of
the mountain pass theorem, Servadei and Valdinoci obtained
the existence of nontrivial weak solutions of problem (6). In
[8], Pucci and Saldi studied the Kirchhoff-type eigenvalue
problem in whole space. They proved the existence and
multiplicity of nontrivial solutions. We also refer to [9] for
related problems.

On the other hand, the Kirchhoff function M is trans-
formable. So far, a variety of forms of function M are taken
into account in many references on studying Kirchhoff-
type problems; see [10-18]. In addition, we notice that more
attention has been focused on p-Kirchhoft-type problems.

In [19], with the help of the Fountain Theorem, they
studied the existence of infinitely many solutions for a
fractional p-Kirchhoff equation. In [20], the authors showed
the existence and multiplicity of solutions to a degenerate
fractional p-Kirchhoff problem. However, we perceive that
the Ambrosetti — Rabinowitz condition was used widely
in these papers about p-Laplacian problems. We refer the
interested readers to [12, 21-28]. The condition is usually
called (AR) condition for short. It is described as follows:

there exist three constants r > 0, > n > 1,
such that
(7)
0 < uG(x,t) <tg(x,t)
forany x € Q,t e R and [t| >r.

And G(x,t) = I; g(x,s)ds.
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It was introduced for the first time by Ambrosetti and
Rabinowitz in [29]. Since then, the (AR) condition has
been used far and wide in more and more works involving
superlinear elliptic boundary. We know that the importance
of (AR) condition is to guarantee the boundedness of familiar
(PS) sequences for the energy functional associated with the
problem. The nonlinearity function f satisfies superlinear
growth under the (AR) condition.

Through (7), we can get

G(x,t)>a |t —a, forany (x,t) e QxR, (8)

where u>n, for two constants ap,a, > 0.

However, there are still lots of functions that dissatisfy the
(AR) condition, even though they are superlinear at infinity.
We notice another form given by

G(x,t ;
m Gy +oo uniformly for x e Q.  (9)
ltl—oo |¢]"

We find that the nonlinearity g is also superlinear at
infinity under condition (9). Obviously, the functional

gxt)=t""In(1 +1¢) (10)

satisfies condition (9) and dissatisfies condition (8). So it does
not satisty (7).

Motivated by the above works and [20, 24, 25, 30], we
study the existence of infinitely many solutions of problem
(1) without (AR) condition. Our results are extension of some
problems studied by N. Van Thin in [30].

Now, we give some assumptions on the function g: Q x
R — R.

(g1) There exist C > 0 and g € (p, p) such that |g(x, t)| <
C + [t|7") forae. x € Qand all t € R, where pi =
Np/(N - ps).

(g2) g(x,—t) = —g(x,t)forallx € O, t € R.

(93) limy ., (G(x, t)/1t|*?) = +00 uniformly for x € Q.

(g4) lim,_ o (g(x, £)/1t1P™") = 0 uniformly for x € Q.

(g5) There exists £ > 0 such that the function t +—

g(x, t)/t*P7" is decreasing if t < —F < 0 and increasing
ift >f>0forall x € Q.

(g6) Thereexisto > land T € LY(Q) satisfying T'(x) > 0
such that ©(x,s) < 09(x,t) + T(x) for all x € Q and
0 < |s] < [t], where Z(x,t) = (1/2p)tg(x,t) — G(x, ).

Definition 1. We claim that a function u € X, is a weak
solution of problem (1), if

(a+blalg,) [ feeo-u O (w0 -u(»)

(h () = (y)) K (x - y) dxdy
(1)

—Aj (P2 () () dlx - j g (o u(x)
Q Q
‘h(x)dx =0, foranyheX,.

See Section 2 for a detailed description for of X,.
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Theorem 2. Let K : RY \ {0} — (0,00) be a function
satisfying (3). Let conditions (gl) — (g5) hold. Then, for any
A € R, problem (1) has infinitely many nontrivial solutions
{ughien in X, with unbounded energy.

Corollary 3. Let K : RN\ {0} — (0,00) be a function
satisfying (3). Let conditions (g1) — (g4) hold. If condition (g6)
replaces (g5), then the conclusion of Theorem 2 holds.

Remark. Originally, Jeanjean put forward a condition that
was similar to (g6) in [31]. It is easy to see that condition (g6)
is equivalent to (g5) when o = 1. Actually, condition (g6) is
weaker than condition (g5). We can find that there are some
functions satisfying (gl) — (g4), (g6) but dissatistying (g5).
For example,

g(x,t) :2p|t|2P—2tln(1+t2p)+psint. (12)

This paper consists of the following parts. In Section 2,
we give the definition and some properties for the space X,
and some preliminary results. Section 3 verifies compactness
conditions. In Section 4, we prove Theorem 2 and Corollary 3.

2. Preliminary Results

Firstly, we recall the functional space X and X, and some
lemmas, which will be used in next section for problem (1).
We appoint @ = R2N \ T where I = €(Q) x €(Q) ¢ R¥
and €(Q) = RY \ Q. The space X is a linear of Lebesgue
measurable functions from R to R such that the restriction
to Q of any function u in X belongs to L?(Q) and

J |u(x) —u(y)| K (x - y)dxdy < co. (13)
@
X is endowed with the following norm:

lullx = lullzr oy
i/p  (14)
+ (J@ | () —u ()] K (x - y) dxdy) :

In addition, X, is endowed with the following norm:

1/p
I, = (|, 1u @) = K (6= p)dxdy) . 09)

and (X, | - lx,) is known as the Hilbert space defined by the
following scalar product (see [12], Lemma 7).

i, = [ 1) - u ) @ -1 ()

(h(x) = h(y)) K (x = y) dxdy.

We denote the usual fractional Sobolev space by W7 (Q),
which is endowed with norm (the so-called Gagliardonorm)
as follows:

(16)

lllwsr )

lleellLe oy (17)

/
+ (J i () = (P e =y dxdy)l '
QxQ

We observe that the norms (14) and (17) are not the same
when K(x) = 1/|x|V*7, since Q x Q is contained strictly
in @. It makes the space X|, different from the usual classical
fractional Sobolev space. Therefore, from the point of view of
the variational method, the classical fractional Sobolev space
is insufficient for dealing with our problem.

We recall that the space X, is nonempty due to Cy° € X
(see [12], Lemma 2.1). The following conclusion is correct if a
general kernel K satisfies (3):

X, ¢ {u e W (RN) cu(x) =0 ae. in RV \ Q} (18)

Particularly, the following characterization holds when
K(x) = 1/|x[V*P
X, = {u e WP ([RN) cu(x) =0 ae. in RV \ Q} (19)

For more details about space X and X, we refer to [5, 32].
Considering future works, we recall the following eigen-
value problem:

E;u =AMul’u inQ,

(20)
u=0 inR"Y \ Q.
It has a divergent sequence of positive eigenvalues
0<A <A, < <A<, < (21)

whose homologous eigenfunctions are denoted by e;. From

Proposition 9 of [32], we know that {e j} jen can be chosen in
such a way that this sequence provides an orthonormal basis
in L (Q) and an orthogonal basis in X|,.

Firstly, we define

V(u)=Jw)-1I(u)-H(u), (22)
where

T () = alull +bluli,
A
I(u)= ’ L lul? dx, (23)

H(u) = L G (x,u) dx,

where G(x, u) := L? g(x, s)ds.

Clearly, the energy functional ¥ : X, — R associated
with problem (1) is well defined.

For convenience, we write [|u|»(q, as [|ull p- From Lemma
3.1 of [25], clearly we know that functional ] € CH(X, R).
And if (g1) holds, H ¢ CI(XO, R). So, we get that ¥ €
C'(X,, R) and

(¥ .h), = (asblul,) [ ue-u()pP”
(u(x) —u(y)) (h(x)-h(y))

(24)
“K(x-y)dxdy -\ J lu ()P u (x)
Q

-h(x)dx—J g u(x))h(x)dx
Q



for all u, i € X,,. In order to prove the conclusion of problem
(1), we need some lemmas.

Lemma 4 (see [12]). Assume that (3) holds. We have the
following conclusions:

(1) For any k € [1,p}), the embedding X, — L*(Q)
is compact when Q is a bounded domain with continuous
boundary.

(2) For all k € [1,p;], the embedding X, — L*(Q) is
continuous.

Definition 5. Let ¥ € C'(X,,R). The functional ¥ satisfies
(Ce), at the level ¢ € R, if any sequence {u} C X, with

Y () — ¢ in Xo,
(1 Jal) ¥ () — 0 in X, @s)

as k — oo,

has a strongly convergent subsequence in X,. X is the dual
space of X,,.

Theorem 6 (symmetric mountain pass theorem [33]).
Assume that X is an infinite dimensional Banach space. Y is
a finite dimensional Banach space and X = Y @ Z. For any
c>0,if¥Ye CYUX,R), it satisfies (Ce),. condition, and

(a) Yis even and ¥Y(0) =0 for all u e X.

(b) There exist constants &, p > 0 such that ¥l (x) > ps
where

Bs (X) ={ue X:|lul <6}. (26)
(c) For any finite dimensional subspace X C X, there exists
R = R(X) > 0 such that ¥(u) < 0 on X \ Byh(X).

Then ¥ possesses an unbounded sequence of critical values
characterized by a minimax argument.

3. Compactness Conditions

In this section, we are going to give some lemmas about the
compactness of functional ¥ and prove them.

Lemma 7. Let (gl) hold. Any bounded sequence {u;}icn C
X, which satisfies (1 + IIukII)\P'(uk) — O0ask — oo,
possesses a strongly convergent subsequence in X,

Proof. Suppose that {1}, is bounded in X ). From Lemma 2.4
of [12] and Theorem 1.21 of [34], we know that X, is reflexive.
Combining with Lemma 4, we have

u, —u in X,
w,—u inL*(Q), 1<k<p], (27)

N
U, —u ae inR".

We just need to prove that 1, — u strongly in X,.
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Through the Holder inequality and (g1), we obtain
J Lo o) (=)
< L (C +C |uqu—1) v — | dx (28)
<C

Q1T e ) e = -

By (27), we get

lim J g (x,uy) (uy —u)dx = 0. (29)

k—o00 JO

We consider the following formula with Holder inequality:

L ot 1y (1 — ) e < |2 o =, 30)
Hence, by (27), we get

lim J |uk|p_2 uy (. —u)dx = 0. (31)
o

k—00

Then, for convenience, we define a new linear functional on
X, as follows:

Ba= [ -0 we-w()
R2N (32)
(v () v () K (x - y) dxdy,

for all w, v € X,,. By means of the Hélder inequality, we have
that

B, 0| < lwlf " - Ivlx, forallveX,  (33)

Hence, B, (v) is a continuous functional on X,. Hence, we
obtain that

lim B, (u —u)dx = 0. (34)

k—00

Clearly, (‘I”(uk),uk —u) — 0ask — 00, since u;, — uin
X,and (1 + ||uk||XU)\I"(uk) — 0in Xé. Hence, by (27), (29),
and (31), we have

o(l) = <‘I" (ug) > vy — u>
= (a+0ul,) B (14— 1)
-1 J luag| P72 v (e — ) dx
! (35)
+ J g (x,uy) (uy —u)dx
Q

= (a + b||uk||§U)Buk (e —u) +0(1)
as k — oo.

Hence, through the boundedness of |lu| in X, and (34), we
have

lim [Buk (e —u) = B, (uy — u)] =0. (36)

k—00
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Now, we recall the Simon inequalities:
9-xI” <Q, (1979~ (" x)-(9-x) p=2 (37)
— B -~ /2
9-xl” <@ [(977 9 - [0 x)]”

-(|9|P + |X|P)(2_P)/2 1<p<2,

(38)
for all 9,y € RN, where Qp,(j; > 0 relying on p. Then if
p = 2,by (36) and (37), we have

ot - wl,

<Q “”k (x) = uy (J’)|p_2 (e (%) = g ()
RZN

) = u I ) - (x)] (39)
x [(u ()~ () = (s () - () K (x
- y)dxdy = Qy [B,, (u—u) - B, (u,

—u)]—»O

ask — o00. When1 < p < 2, by (36), (38), and the
boundedness of [[u; [l in X, we have

s~ ully, <@y [Bu, (g~ ) - B, (e~ )]

@-p)/2
(e, + )™
" (40)
<Q, [Buk (we —u) = B, (4 — ”)]P
(el + W) — o,
as k — 00. Hence, we get 1. — u strongly in X,. O

Lemma 8. Let (gl),(g3), and (g5) hold. Then, functional ¥
satisfies the (Ce), condition.

Proof. Let (g5) hold. According to the monotonicity of t —
glx, 1)/ 2771 we find that there exists a positive constant L,
such that

G(x,8) <G (x,t)+ Ly, (41)

where Z(x,t) = (1/2p)tg(x,t) — G(x, 1), for all x € Q and
0 < |s| < [t]. Let {u}ren be a Cecrami sequence in X, We
know that it satisfies

¥ (u) —c in X, (42)

(1+ el ) ¥ (i) — 0 in X (43)

as k — 00. By means of Lemma 7, it suffices to prove the
boundedness of {u;}. Suppose that {1}y is unbounded in

X, Then we have

leaell, — +oo. (44)

By (43) and (44), we get
¥ (u;) — 0. (45)

Hence, we get

>—>0 as k — oco.  (46)

nw&<ku

leo

We define . = w/llullx,- Then [{llx, = 1. So {(hien is a
bounded sequence in X,,. Through Lemma 4, there exists {,
satisfying

G — (o in LP(RY),
& — (o in LY(RY), (47)
G —lo inRY,

as k — 00. What is more, through Lemma A.1 of [35], there
exists a function ¢ € L1(RY) satisfying
[ (0] <e(x) in RN, (48)

We only need to consider two cases: {,, = 0 and {, # 0.
Firstly, we consider the case {,, = 0. Refer to [31]; for any
k € N, we have [, € [0, 1] such that
W (1 = W (Tuy) .
() = max ¥ () (49)

Because of the unboundedness of {u;}, for any 7 € N, we
select h, = ((4p/b))"/** such that

€(0,1), (50)
Jouellx, kllxg

where k is large enough, say k > k, with k = k(). By (47) and
(o = 0, we get

J Ih () & ()| dx — 0. (51)
Q
Since the function G is continuous, we get that

hloo (x))

as k — oo, for any 7 € N. Through (g1), (48), and Holder
inequality, we obtain that

G (x,h,( (x) — G(x, inQ, (52

6o 5 ()| < Clnti (o + § [ty (O

< Clhe(x)] + % |h.e (x)]7 (53)

el'(Q),
for any k, 7 € N. Hence, we get that



as k — oo, for any 7 € N, thanks to the Dominated
Convergence Theorem and (51) and (52). As a consequence
of G(x,0) = 0 for all x € Q, by (54) and (., = 0, we have

J G(x,h, . (x))dx — 0, (55)
Q

as k — o0, for any 7 € N. Therefore, by (50)-(52) and (55),
we get

Y (L) > \1/( L

—u
foaellx,

b
- % et GO, + 55 Wi I,

) =¥ (her)

_A P (56)
o | o ax
- L G (x,h{ (x))dx

b
s Ik I =27,

as k — 00, for any 7 € N. Hence, we infer that
¥ (L) — +00  as k — oo. (57)
Now, we will show that

klim sup ¥ (L) < @, (58)

where @ > 0. Because Q ¢ R" is an open bounded smooth
domain with Lipschitz boundary, we deduce that there exists
a positive constant C, ;, which depends on A and p such that

A
lﬁ JQ |”k (x)lp dx

< Cpy < +o00. (59)

We notice that ¥(0) = 0. Through (42), (49), and (57), we get
that there exists [, € (0, 1) such that

¥ (luy) =0, (60)

for any k € N. Then we have

/ d
(' (hawe) ey =y i ¥ (lu) = 0. (61)

lz—zk

Through (41), (59), and [, € [0, 1], we have
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1
b (lk”k) =Y (lk“k) - E <\P’ (lk“k)’lk“k>
== It 0|I%, - 2 J [y ()] dx
2p X 2p Jo

- J G (x, [y (x)) dx
o

1
], 359 Cohan () haw (i

IN

a
2 (£ (x)||§<0 + J;) @G (x, L) dx

+ Cp,/\

IN

£ p d Q
oIl [ Feumdiian
+Cpn

A
= % “uk (x)“f(0 - 5 L |uk (x)lp dx
—J G (x, uy (x)) dx
Q
+ J;) ﬁg (%, g (%)) vy (x) dx

2 L u (x)|P dx+ L, |Q]+C,,

1
<VY (Mk) - E <\II’ (Mk) ,Mk> + ZCP'/\

+L,|1Q]=c +2C,, + L, Q] < +00.

And k — o0. It contradicts with (57). Hence, the sequence
{14} ren is bounded in X,.
Now we consider the case (., # 0. We define O={xc¢

Q : {,(x) # 0}. Clearly, Q is Lebesgue measureable. Through
(44), (47), and {, # 0, we have

|uk (x)l = |Ck (x)l . “”knxn — +00 in Q, (63)
as k — o0o. Through (47), (63), and (g3), it holds true that

Gru () _Glou) |ul”

lluklli‘: l”klzp ||uk||§§:
(64)
G (x) »
|1 (9C)|2}7 ) o

in Q,as k — oo. Through the Fatou Lemma and (64), we
have

J’ G (x, uy (x))
)

dx — +o00. 65
el )

Next, we discusses the case in Q \ Q. By (g3), we get
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lim G(x,t) = +oo,
|t|—00

x € Q. (66)
Therefore, there exist constants ¢,, A > 0 such that
G(x,1) 2 A, (67)

for all x € Q and |t| > t,. Moreover, by means of the
continuity of G in Q x R, we get

G(x,t) > min
(x,1)eQx[~t,t]

G(x,t), (68)
for all |¢| < t,. Hence, we obtain that
G(x,t) > min {A, min G (x, t)} = A, (69)
(6, €Qx[~t,t]

for any (x,t) € Q x R, thanks to (67) and (68). So we get

) G (x, uy (x))
Itllinoo JQ\E ||uk||§g; 20 (70)

By (42) and (44), we get
_ ¥ ()
el

a_ . = -2 J |”k(x)|de

DY 2
o ully,

P ||uk||§§: 2p P

o(1)

(71)
~ J G (x, ug (x)) I
Q

el

- J G (x, uy (x))
o ¥

as k — oo. Consider (63), (65), (70), and the variational
characterization of A j defined as follows:

~ - PK(x - y)dxd
A;= min JR @) ~u (I K(x = y)dx y. (72)
ueX,\{0} IQ lu (x)|P dx

>

We have

ek bl
Q

Jouel

o(1) =
plluklli’l 2p P

- G (x, uy) . G(x, uk)d
Jﬁ Iluklliﬁ L\ﬁ Ilukllii
} (73)

u P

S£+max 0,—LJ' " k"f‘)dx
2p PAydo fu [
G(xu G(x,u

_j_ ( 2;) x_j_ ( 2;)01

9 ey, N ue

< —00.

We find that (73) is a contradictory result. Thus, the sequence
{u}ren is bounded in X,. This ends the proof of Lemma 8.
O

4., Proof of Theorem 2 and Corollary 3

We know that X, is a Hilbert space. Hence, we divide X, into
two parts. Let X = €D ;,,X;, where X; = span{e;} ;. Now
we define

P+

Y, = Px,
=1
(74)
o0
z,=Px;
j=m
Obviously, Y,,, is a finite-dimensional space.
Lemma9. Letv € [1, p;). We have
£, () = sup {lull, : u € Z,,, Jully, = 1} — 0,
(75)

m —> OQO.

Proof. Clearly &, ., > &, >0,s0thaté,, — &>0,asm —
00. For every m € N, there exists u,, € Z,, such that [lu,,|[, >
&n/2 and |lu,,[lx, = 1. Through the definition of Z,,, we can
get u,, — 0in X,. According to Lemma 4, the embedding
X, == L*(Q) (1 < « < p;) implies that u,, — 0 in
L*(Q). Therefore, we get & = 0, as m — 0. This implies that
the proof is complete. O

Proof of Theorem 2. Obviously, all norms are equivalentinY,,.
Hence, there exist two constants Cy,C, > 0 such that

Cy llulyx, <llull, <Cylulx, for any ve [l p;). (76)
According to Theorem 6 and Lemma 8, we just need to prove
(a), (b),and (c) of Theorem 6. Let (g2) hold. Clearly, ¥(0) = 0.
Hence, condition (a) of Theorem 6 is true. Then, we take into
account the range of values of A. According to (72), if A/a >
Ay, we can find j € Nand j > 2 such that A/a € [A; 4, 1)).
So, for all j, there exists j € Nand j > 1 such that A\/a < A,
forany A € R.

By (g1) and (g4), for any ¢ > 0, there exists C, > 0 such
that

C
Glot) < 2P+ 22 g, (77)
p q

forany (x,t) € OxR.By Lemma 9, for any fixed ¢ > 0, choose
an integer 71 > 1 such that

min {a,a - A/Aj}

p p
lully < ” lul,
{ } (78)
qminja,a - A/A;
Il < —— =l
PG, ’



for any u € Zz. Choose § = ||u||X0 =1/2,forall u € Z.
Note that g > p; from (77) and (78), we have

¥ =2 Julf, + —|| 27 pj ()1 dx

- J G (x,u(x))dx
Q

a , A 4
> = [lull} + min {0,——} ol = = flull?
p pA ] p R

J

— q
lull?

> lmm a,a— —} ||u||
T p ’ j (79)

Then, condition (b) of Theorem 6 is true.

In the end, we demonstrate condition (c) of Theorem 6.
In view of (g3), there exist constants « > b/2 pC?‘l7 , B> Osuch
that

(80)

G(x,t) > alt|f,

for any x € Q and [¢t| > f. Considering condition (g1), we
have

IG () < C(1+ 7)1, (81)

for any x € Qand |t| < B. Take C, = C(1 + ﬁq_l), where

C, > 0. We obtain
(82)

G(x,t) > altP -C, |t

for any (x,t) € Q x R. Then, by (76) and (82), we have
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¥ (u) = IIMII — II || J |u (x)|? dx
—J G(x,u(x))dx
Q
a b 2
< Sl + o
+max {0, -2 lul? = o ul?? (83)
X > pA] X, 2p

= C, llul,

1 A } »
< —maxia,a— — ¢ [ul
p { A; %
+ (i - CZPa) lul¥ = C,C" lull, -
2p 1 XU 0

Let Z# = R(X) > 0be large enough. When ||u||X0 > R,
Y(u) < 0. Hence, condition (c) of Theorem 6 is true. In
conclusion, Theorem 2 is proven. O

Proof of Corollary 3. Let (g6) hold. Similar to Theorem 2, we
only need to prove inequality (62).

é‘l’(lkuk) ! <‘I’(lkuk) - Ly (lkuk),lkuk>>
- 5 (55 s I, 5 . 35 J Bon o ax
J (x, Lty (x)) dx

J L g (e Lt () Bty () dx)

< i <% B O, + L % (x, L) dx)

+C,p < % s O, + JQ % (x,uy) dx + é

: JQ T(x)dx+C,, = % e I - 2 (84)

- JQ g (o) dx - L G (0, 1y (x)) dx

+ L ﬁg(x, () () dx + %

: L g o) dx + é L T (x)dx +C,,

< (1) - ﬁ (¥ (1) 1) + 2G04 —

J T(x)dx <c+2C,, + j T (x) dx

< +00.

The proof is completed. O
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