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In this paper, we investigate the existence of infinitely many solutions to a fractional 𝑝-Kirchhoff-type problem satisfying
superlinearity with homogeneous Dirichlet boundary conditions as follows: {[𝑎 + 𝑏(∫

R2𝑁
|𝑢(𝑥) − 𝑢(𝑦)|𝑝𝐾(𝑥 − 𝑦)𝑑𝑥𝑑𝑦)]L𝑠

𝑝𝑢 −
𝜆|𝑢|𝑝−2𝑢 = 𝑔(𝑥, 𝑢), 𝑖𝑛 Ω, 𝑢 = 0, 𝑖𝑛 R𝑁 \ Ω, } whereL𝑠

𝑝 is a nonlocal integrodifferential operator with a singular kernel𝐾. We only
consider the non-Ambrosetti-Rabinowitz condition to prove our results by using the symmetric mountain pass theorem.

1. Introduction

In recent years, the problems with fractional and nonlocal
operator have attracted a lot of attention. These types of
operators arise in many different contexts. We know that
there are population dynamics, stratified materials, minimal
surface, water waves, continuummechanics, and so on. As far
as we know, we are able to learn more about their association
through referring to [1–6].

The problem we are going to deal with also involves
fractional and nonlocal operator. Here, we will study the 𝑝-
Kirchhoff-type problem as follows:

[𝑎 + 𝑏 (∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝𝐾(𝑥 − 𝑦) 𝑑𝑥𝑑𝑦)]L𝑠
𝑝𝑢

− 𝜆 |𝑢|𝑝−2 𝑢 = 𝑔 (𝑥, 𝑢) 𝑖𝑛 Ω,
𝑢 = 0 𝑖𝑛 R

𝑁 \ Ω.
(1)

Ω is an open bounded smooth domain in R𝑁 with Lipschitz
boundary 𝜕Ω. 𝑎, 𝑏 > 0, 1 < 𝑝 < +∞;𝑝𝑠 < 𝑁with 𝑠 ∈ (0, 1). 𝜆
is a real parameter. 𝑔:Ω×R 󳨀→ R is a Carathéodory function

and L𝑠
𝑝 is usually called nonlocal operator. It is defined as

follows:

L
𝑠
𝑝𝑢 (𝑥) fl 2 lim

𝜀󳨀→0+
∫
R𝑁\B𝜀(𝑥)

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝−2
⋅ (𝑢 (𝑥) − 𝑢 (𝑦))𝐾 (𝑥 − 𝑦) 𝑑𝑦,

(2)

for all 𝑥 ∈ R𝑁, whereB𝜀(𝑥) = {𝑧 | |𝑥 − 𝑧| < 𝜀}.The function𝐾 : R𝑁 \ {0} 󳨀→ (0,∞) is measurable. It has the following
properties:

ℓ𝐾 ∈ 𝐿1 (R𝑁)
𝑤ℎ𝑒𝑟𝑒 ℓ (𝑥) = min {|𝑥|𝑝 , 1} ,

𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝛾 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐾 (𝑥) ≥ 𝛾 |𝑥|−(𝑁+𝑝𝑠)

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥 ∈ R
𝑁 \ {0} ,

𝐾 (𝑥) = 𝐾 (−𝑥) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥 ∈ R
𝑁 \ {0} .

(3)
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As the singular kernel 𝐾 satisfies 𝐾(𝑥) = |𝑥|−(𝑁+𝑝𝑠),
we call it a typical model. Hence, the fractional 𝑝-Laplace
operator may be defined as follows:

(−△)𝑠𝑝 𝑢 (𝑥)

fl 2 lim
𝜀󳨀→0+

∫
R𝑁\B𝜀(𝑥)

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝−2 (𝑢 (𝑥) − 𝑢 (𝑦))󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑁+𝑝𝑠
𝑑𝑦,

(4)

for 𝑥 ∈ R𝑁. Problem (1) also becomes

[𝑎 + 𝑏(∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝|𝑥|𝑁+𝑝𝑠
𝑑𝑥𝑑𝑦)] (−△)𝑠𝑝 𝑢 (𝑥)

− 𝜆 |𝑢|𝑝−2 𝑢 = 𝑔 (𝑥, 𝑢) 𝑖𝑛 Ω,
𝑢 = 0 𝑖𝑛 R

𝑁 \ Ω.
(5)

Usually, we write the Kirchhoff function as 𝑀. Clearly,𝑀(𝑡) = 𝑎 + 𝑏𝑡 in problem (5). When 𝑀 = 1, 𝑝 = 2, 𝜆 = 0,
problem (5) becomes the original problemwith the following
fractional Laplacian form:

(−△)𝑠 𝑢 = 𝑔 (𝑥, 𝑢) 𝑖𝑛 Ω,
𝑢 = 0 𝑖𝑛 R

𝑁 \ Ω. (6)

It is the nonlocality that is a typical characteristic of
problem (6). In other words, the value of (−△)𝑠𝑢(𝑥) at any
point 𝑥 ∈ Ω relies not only on Ω but actually also on the
whole space. We know that the Dirichlet boundary condition
was applied to problem (6) in [5]. In [7], through the use of
the mountain pass theorem, Servadei and Valdinoci obtained
the existence of nontrivial weak solutions of problem (6). In
[8], Pucci and Saldi studied the Kirchhoff-type eigenvalue
problem in whole space. They proved the existence and
multiplicity of nontrivial solutions. We also refer to [9] for
related problems.

On the other hand, the Kirchhoff function 𝑀 is trans-
formable. So far, a variety of forms of function 𝑀 are taken
into account in many references on studying Kirchhoff-
type problems; see [10–18]. In addition, we notice that more
attention has been focused on 𝑝-Kirchhoff-type problems.

In [19], with the help of the Fountain Theorem, they
studied the existence of infinitely many solutions for a
fractional 𝑝-Kirchhoff equation. In [20], the authors showed
the existence and multiplicity of solutions to a degenerate
fractional 𝑝-Kirchhoff problem. However, we perceive that
the 𝐴𝑚𝑏𝑟𝑜𝑠𝑒𝑡𝑡𝑖 − 𝑅𝑎𝑏𝑖𝑛𝑜𝑤𝑖𝑡𝑧 condition was used widely
in these papers about 𝑝-Laplacian problems. We refer the
interested readers to [12, 21–28]. The condition is usually
called (AR) condition for short. It is described as follows:

𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑡ℎ𝑟𝑒𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑟 > 0, 𝜇 > 𝜂 > 1,
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

0 < 𝜇𝐺 (𝑥, 𝑡) ≤ 𝑡𝑔 (𝑥, 𝑡)
𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥 ∈ Ω, 𝑡 ∈ R 𝑎𝑛𝑑 |𝑡| ≥ 𝑟.

(7)

And 𝐺(𝑥, 𝑡) = ∫𝑡
0
𝑔(𝑥, 𝑠)𝑑𝑠.

It was introduced for the first time by Ambrosetti and
Rabinowitz in [29]. Since then, the (AR) condition has
been used far and wide in more and more works involving
superlinear elliptic boundary. We know that the importance
of (AR) condition is to guarantee the boundedness of familiar
(PS) sequences for the energy functional associated with the
problem. The nonlinearity function 𝑓 satisfies superlinear
growth under the (AR) condition.

Through (7), we can get

𝐺 (𝑥, 𝑡) ≥ 𝑎1 |𝑡|𝜇 − 𝑎2 𝑓𝑜𝑟 𝑎𝑛𝑦 (𝑥, 𝑡) ∈ Ω ×R, (8)

where 𝜇 > 𝜂, for two constants 𝑎1, 𝑎2 > 0.
However, there are still lots of functions that dissatisfy the

(AR) condition, even though they are superlinear at infinity.
We notice another form given by

lim
|𝑡|󳨀→∞

𝐺 (𝑥, 𝑡)|𝑡|𝜂 = +∞ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑓𝑜𝑟 𝑥 ∈ Ω. (9)

We find that the nonlinearity 𝑔 is also superlinear at
infinity under condition (9). Obviously, the functional

𝑔 (𝑥, 𝑡) = 𝑡𝜂−1 ln (1 + 𝑡) (10)

satisfies condition (9) and dissatisfies condition (8). So it does
not satisfy (7).

Motivated by the above works and [20, 24, 25, 30], we
study the existence of infinitely many solutions of problem
(1) without (AR) condition. Our results are extension of some
problems studied by N. VanThin in [30].

Now, we give some assumptions on the function 𝑔: Ω ×
R 󳨀→ R.

(𝑔1) There exist 𝐶 > 0 and 𝑞 ∈ (𝑝, 𝑝∗𝑠 ) such that |𝑔(𝑥, 𝑡)| ≤𝐶(1 + |𝑡|𝑞−1) for a.e. 𝑥 ∈ Ω and all 𝑡 ∈ R, where 𝑝∗𝑠 =𝑁𝑝/(𝑁 − 𝑝𝑠).
(𝑔2) 𝑔(𝑥, −𝑡) = −𝑔(𝑥, 𝑡) for all 𝑥 ∈ Ω, 𝑡 ∈ R.
(𝑔3) lim|𝑡|󳨀→∞(𝐺(𝑥, 𝑡)/|𝑡|2𝑝) = +∞ uniformly for 𝑥 ∈ Ω.

(𝑔4) lim|𝑡|󳨀→0(𝑔(𝑥, 𝑡)/|𝑡|𝑝−1) = 0 uniformly for 𝑥 ∈ Ω.
(𝑔5) There exists 𝑡̃ > 0 such that the function 𝑡 󳨃󳨀→𝑔(𝑥, 𝑡)/𝑡2𝑝−1 is decreasing if 𝑡 ≤ −𝑡̃ < 0 and increasing

if 𝑡 ≥ 𝑡̃ > 0 for all 𝑥 ∈ Ω.
(𝑔6) There exist 𝜎 ≥ 1 and 𝑇 ∈ 𝐿1(Ω) satisfying 𝑇(𝑥) ≥ 0

such that G(𝑥, 𝑠) ≤ 𝜎G(𝑥, 𝑡) + 𝑇(𝑥) for all 𝑥 ∈ Ω and0 ≤ |𝑠| ≤ |𝑡|, whereG(𝑥, 𝑡) = (1/2𝑝)𝑡𝑔(𝑥, 𝑡) − 𝐺(𝑥, 𝑡).
Definition 1. We claim that a function 𝑢 ∈ 𝑋0 is a weak
solution of problem (1), if

(𝑎 + 𝑏 ‖𝑢‖𝑝𝑋0)∫
Q

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝−2 (𝑢 (𝑥) − 𝑢 (𝑦))
⋅ (ℏ (𝑥) − ℏ (𝑦))𝐾 (𝑥 − 𝑦) 𝑑𝑥𝑑𝑦
− 𝜆∫

Ω
|𝑢 (𝑥)|𝑝−2 𝑢 (𝑥) ℏ (𝑥) 𝑑𝑥 − ∫

Ω
𝑔 (𝑥, 𝑢 (𝑥))

⋅ ℏ (𝑥) 𝑑𝑥 = 0, 𝑓𝑜𝑟 𝑎𝑛𝑦 ℏ ∈ 𝑋0.

(11)

See Section 2 for a detailed description for of 𝑋0.
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Theorem 2. Let 𝐾 : R𝑁 \ {0} 󳨀→ (0,∞) be a function
satisfying (3). Let conditions (𝑔1) − (𝑔5) hold. Then, for any𝜆 ∈ R, problem (1) has infinitely many nontrivial solutions{𝑢𝑘}𝑘∈N in𝑋0 with unbounded energy.

Corollary 3. Let 𝐾 : R𝑁 \ {0} 󳨀→ (0,∞) be a function
satisfying (3). Let conditions (𝑔1)−(𝑔4) hold. If condition (𝑔6)
replaces (𝑔5), then the conclusion of Theorem 2 holds.

Remark. Originally, Jeanjean put forward a condition that
was similar to (𝑔6) in [31]. It is easy to see that condition (𝑔6)
is equivalent to (𝑔5) when 𝜎 = 1. Actually, condition (𝑔6) is
weaker than condition (𝑔5). We can find that there are some
functions satisfying (𝑔1) − (𝑔4), (𝑔6) but dissatisfying (𝑔5).
For example,

𝑔 (𝑥, 𝑡) = 2𝑝 |𝑡|2𝑝−2 𝑡 ln (1 + 𝑡2𝑝) + 𝑝 sin 𝑡. (12)

This paper consists of the following parts. In Section 2,
we give the definition and some properties for the space 𝑋0

and some preliminary results. Section 3 verifies compactness
conditions. In Section 4, we proveTheorem 2 andCorollary 3.

2. Preliminary Results

Firstly, we recall the functional space 𝑋 and 𝑋0 and some
lemmas, which will be used in next section for problem (1).
We appoint Q = R2𝑁 \ Γ where Γ = C(Ω) × C(Ω) ⊂ R2𝑁

and C(Ω) = R𝑁 \ Ω. The space X is a linear of Lebesgue
measurable functions fromR𝑁 to R such that the restriction
toΩ of any function 𝑢 in 𝑋 belongs to 𝐿𝑝(Ω) and

∫
Q

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝𝐾 (𝑥 − 𝑦) 𝑑𝑥𝑑𝑦 < ∞. (13)

X is endowed with the following norm:

‖𝑢‖𝑋 = ‖𝑢‖𝐿𝑝(Ω)
+ (∫

Q

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝𝐾(𝑥 − 𝑦) 𝑑𝑥𝑑𝑦)1/𝑝 . (14)

In addition, 𝑋0 is endowed with the following norm:

‖𝑢‖𝑋0 = (∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝𝐾 (𝑥 − 𝑦) 𝑑𝑥𝑑𝑦)1/𝑝 , (15)

and (𝑋0, ‖ ⋅ ‖𝑋0) is known as the Hilbert space defined by the
following scalar product (see [12], Lemma 7).

⟨𝑢, ℏ⟩𝑋0 fl ∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝−2 (𝑢 (𝑥) − 𝑢 (𝑦))
⋅ (ℏ (𝑥) − ℏ (𝑦))𝐾 (𝑥 − 𝑦) 𝑑𝑥𝑑𝑦.

(16)

We denote the usual fractional Sobolev space by𝑊𝑠,𝑝(Ω),
which is endowed with norm (the so-called 𝐺𝑎𝑔𝑙𝑖𝑎𝑟𝑑𝑜𝑛𝑜𝑟𝑚)
as follows:
‖𝑢‖𝑊𝑠,𝑝(Ω)
= ‖𝑢‖𝐿𝑝(Ω)

+ (∫
Ω×Ω

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨−(𝑁+𝑝𝑠) 𝑑𝑥𝑑𝑦)1/𝑝 .
(17)

We observe that the norms (14) and (17) are not the same
when 𝐾(𝑥) = 1/|𝑥|𝑁+𝑝𝑠, since Ω × Ω is contained strictly
in Q. It makes the space 𝑋0 different from the usual classical
fractional Sobolev space.Therefore, from the point of view of
the variational method, the classical fractional Sobolev space
is insufficient for dealing with our problem.

We recall that the space 𝑋0 is nonempty due to 𝐶∞
0 ⊆ 𝑋0

(see [12], Lemma 2.1). The following conclusion is correct if a
general kernel 𝐾 satisfies (3):

𝑋0 ⊂ {𝑢 ∈ 𝑊𝑠,𝑝 (R𝑁) : 𝑢 (𝑥) = 0 𝑎.𝑒. 𝑖𝑛 R
𝑁 \ Ω} . (18)

Particularly, the following characterization holds when𝐾(𝑥) = 1/|𝑥|𝑁+𝑝𝑠:

𝑋0 = {𝑢 ∈ 𝑊𝑠,𝑝 (R𝑁) : 𝑢 (𝑥) = 0 𝑎.𝑒. 𝑖𝑛 R
𝑁 \ Ω} . (19)

For more details about space𝑋 and 𝑋0, we refer to [5, 32].
Considering future works, we recall the following eigen-

value problem:

L
𝑠
𝑝𝑢 = 𝜆 |𝑢|𝑝−2 𝑢 𝑖𝑛 Ω,
𝑢 = 0 𝑖𝑛 R

N \ Ω. (20)

It has a divergent sequence of positive eigenvalues

0 < 𝜆1 ≤ 𝜆2 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑗 ≤ 𝜆𝑗+1 ≤ ⋅ ⋅ ⋅ (21)

whose homologous eigenfunctions are denoted by 𝑒𝑗. From
Proposition 9 of [32], we know that {𝑒𝑗}𝑗∈N can be chosen in
such a way that this sequence provides an orthonormal basis
in 𝐿𝑝(Ω) and an orthogonal basis in𝑋0.

Firstly, we define

Ψ (𝑢) = 𝐽 (𝑢) − 𝐼 (𝑢) − 𝐻 (𝑢) , (22)

where

𝐽 (𝑢) = 𝑎 ‖𝑢‖𝑝𝑋0 + 𝑏 ‖𝑢‖2𝑝𝑋0 ,
𝐼 (𝑢) = 𝜆𝑝 ∫

Ω
|𝑢|𝑝 𝑑𝑥,

𝐻 (𝑢) = ∫
Ω
𝐺 (𝑥, 𝑢) 𝑑𝑥,

(23)

where 𝐺(𝑥, 𝑢) fl ∫𝑢
0
𝑔(𝑥, 𝑠)𝑑𝑠.

Clearly, the energy functional Ψ : 𝑋0 󳨀→ R associated
with problem (1) is well defined.

For convenience, we write ‖𝑢‖𝐿𝑝(Ω) as ‖𝑢‖𝑝. From Lemma
3.1 of [25], clearly we know that functional 𝐽 ∈ 𝐶1(𝑋0,R).
And if (𝑔1) holds, 𝐻 ∈ 𝐶1(𝑋0,R). So, we get that Ψ ∈𝐶1(𝑋0,R) and

⟨Ψ󸀠 (𝑢) , ℏ⟩
𝑋0

= (𝑎 + 𝑏 ‖𝑢‖𝑝𝑋0)∫
Q

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝−2
⋅ (𝑢 (𝑥) − 𝑢 (𝑦)) (ℏ (𝑥) − ℏ (𝑦))
⋅ 𝐾 (𝑥 − 𝑦) 𝑑𝑥𝑑𝑦 − 𝜆∫

Ω
|𝑢 (𝑥)|𝑝−2 𝑢 (𝑥)

⋅ ℏ (𝑥) 𝑑𝑥 − ∫
Ω
𝑔 (𝑥, 𝑢 (𝑥)) ℏ (𝑥) 𝑑𝑥

(24)
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for all 𝑢, ℏ ∈ 𝑋0. In order to prove the conclusion of problem
(1), we need some lemmas.

Lemma 4 (see [12]). Assume that (3) holds. We have the
following conclusions:

(1) For any 𝜅 ∈ [1, 𝑝∗𝑠 ), the embedding 𝑋0 󳨅→ 𝐿𝜅(Ω)
is compact when Ω is a bounded domain with continuous
boundary.

(2) For all 𝜅 ∈ [1, 𝑝∗𝑠 ], the embedding 𝑋0 󳨅→ 𝐿𝜅(Ω) is
continuous.

Definition 5. Let Ψ ∈ 𝐶1(𝑋0,R). The functional Ψ satisfies(𝐶𝑒)𝑐 at the level 𝑐 ∈ R, if any sequence {𝑢𝑘} ⊂ 𝑋0, with

Ψ(𝑢𝑘) 󳨀→ 𝑐 𝑖𝑛 𝑋0,
(1 + 󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩) Ψ󸀠 (𝑢𝑘) 󳨀→ 0 𝑖𝑛 𝑋󸀠

0

𝑎𝑠 𝑘 󳨀→ ∞,
(25)

has a strongly convergent subsequence in 𝑋0. 𝑋󸀠
0 is the dual

space of 𝑋0.

Theorem 6 (symmetric mountain pass theorem [33]).
Assume that X is an infinite dimensional Banach space. 𝑌̃ is
a finite dimensional Banach space and 𝑋 = 𝑌̃ ⊕ 𝑍. For any𝑐 > 0, if Ψ ∈ 𝐶1(𝑋,R), it satisfies (𝐶𝑒)𝑐 condition, and

(a) Ψ is even and Ψ(0) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑋.
(b) There exist constants 𝛿, 𝜌 > 0 such that Ψ|𝜕𝐵𝛿(𝑋) ≥ 𝜌,

where

𝐵𝛿 (𝑋) = {𝑢 ∈ 𝑋 : ‖𝑢‖ ≤ 𝛿} . (26)

(c) For any finite dimensional subspace𝑋 ⊆ 𝑋, there exists
R = R(𝑋) > 0 such that Ψ(𝑢) ≤ 0 on 𝑋 \ 𝐵R(𝑋).

Then Ψ possesses an unbounded sequence of critical values
characterized by a minimax argument.

3. Compactness Conditions

In this section, we are going to give some lemmas about the
compactness of functional Ψ and prove them.

Lemma 7. Let (𝑔1) hold. Any bounded sequence {𝑢𝑘}𝑘∈N ⊂𝑋0, which satisfies (1 + ‖𝑢𝑘‖)Ψ󸀠(𝑢𝑘) 󳨀→ 0 as 𝑘 󳨀→ ∞,
possesses a strongly convergent subsequence in𝑋0

Proof. Suppose that {𝑢𝑘}𝑘 is bounded in𝑋0. From Lemma 2.4
of [12] andTheorem 1.21 of [34], we know that𝑋0 is reflexive.
Combining with Lemma 4, we have

𝑢𝑘 ⇀ 𝑢 𝑖𝑛 𝑋0,
𝑢𝑘 󳨀→ 𝑢 𝑖𝑛 𝐿𝜅 (Ω) , 1 ≤ 𝜅 < 𝑝∗𝑠 ,
𝑢𝑘 󳨀→ 𝑢 𝑎.𝑒. 𝑖𝑛 R

𝑁.
(27)

We just need to prove that 𝑢𝑘 󳨀→ 𝑢 strongly in 𝑋0.

Through the Hölder inequality and (𝑔1), we obtain
∫
Ω

󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝑢𝑘) (𝑢𝑘 − 𝑢)󵄨󵄨󵄨󵄨 𝑑𝑥
≤ ∫

Ω
(𝐶 + 𝐶 󵄨󵄨󵄨󵄨𝑢𝑘󵄨󵄨󵄨󵄨𝑞−1) 󵄨󵄨󵄨󵄨𝑢𝑘 − 𝑢󵄨󵄨󵄨󵄨 𝑑𝑥

≤ 𝐶 (|Ω|(𝑞−1)/𝑞 + 󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩𝑞−1𝑞 ) 󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢󵄩󵄩󵄩󵄩𝑞 .
(28)

By (27), we get

lim
𝑘󳨀→∞

∫
Ω
𝑔 (𝑥, 𝑢𝑘) (𝑢𝑘 − 𝑢) 𝑑𝑥 = 0. (29)

We consider the following formula with Hölder inequality:

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘󵄨󵄨󵄨󵄨𝑝−2 𝑢𝑘 (𝑢𝑘 − 𝑢) 𝑑𝑥 ≤ 󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩𝑝−1𝑝
󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢󵄩󵄩󵄩󵄩𝑝 . (30)

Hence, by (27), we get

lim
𝑘󳨀→∞

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘󵄨󵄨󵄨󵄨𝑝−2 𝑢𝑘 (𝑢𝑘 − 𝑢) 𝑑𝑥 = 0. (31)

Then, for convenience, we define a new linear functional on𝑋0 as follows:

𝐵𝑤 (V) fl ∫
R2𝑁

󵄨󵄨󵄨󵄨𝑤 (𝑥) − 𝑤 (𝑦)󵄨󵄨󵄨󵄨𝑝−2 (𝑤 (𝑥) − 𝑤 (𝑦))
⋅ (V (𝑥) − V (𝑦))𝐾 (𝑥 − 𝑦) 𝑑𝑥𝑑𝑦,

(32)

for all 𝑤, V ∈ 𝑋0. By means of the Hölder inequality, we have
that

󵄨󵄨󵄨󵄨𝐵𝑤 (V)󵄨󵄨󵄨󵄨 ≤ ‖𝑤‖𝑝−1𝑋0
⋅ ‖V‖𝑋0 𝑓𝑜𝑟 𝑎𝑙𝑙 V ∈ 𝑋0. (33)

Hence, 𝐵𝑤(V) is a continuous functional on 𝑋0. Hence, we
obtain that

lim
𝑘󳨀→∞

𝐵𝑢 (𝑢𝑘 − 𝑢) 𝑑𝑥 = 0. (34)

Clearly, ⟨Ψ󸀠(𝑢𝑘), 𝑢𝑘 − 𝑢⟩ 󳨀→ 0 as 𝑘 󳨀→ ∞, since 𝑢𝑘 ⇀ 𝑢 in𝑋0 and (1 + ‖𝑢𝑘‖𝑋0)Ψ󸀠(𝑢𝑘) 󳨀→ 0 in 𝑋󸀠
0. Hence, by (27), (29),

and (31), we have

𝑜 (1) = ⟨Ψ󸀠 (𝑢𝑘) , 𝑢𝑘 − 𝑢⟩
= (𝑎 + 𝑏 󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩𝑝𝑋0) 𝐵𝑢𝑘 (𝑢𝑘 − 𝑢)

− 𝜆∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘󵄨󵄨󵄨󵄨𝑝−2 𝑢𝑘 (𝑢𝑘 − 𝑢) 𝑑𝑥
+ ∫

Ω
𝑔 (𝑥, 𝑢𝑘) (𝑢𝑘 − 𝑢) 𝑑𝑥

= (𝑎 + 𝑏 󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩𝑝𝑋0) 𝐵𝑢𝑘 (𝑢𝑘 − 𝑢) + 𝑜 (1)
𝑎𝑠 𝑘 󳨀→ ∞.

(35)

Hence, through the boundedness of ‖𝑢𝑘‖ in 𝑋0 and (34), we
have

lim
𝑘󳨀→∞

[𝐵𝑢𝑘 (𝑢𝑘 − 𝑢) − 𝐵𝑢 (𝑢𝑘 − 𝑢)] = 0. (36)
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Now, we recall the Simon inequalities:

󵄨󵄨󵄨󵄨𝜗 − 𝜒󵄨󵄨󵄨󵄨𝑝 ≤ 𝑄𝑝 (|𝜗|𝑝−2 𝜗 − 󵄨󵄨󵄨󵄨𝜒󵄨󵄨󵄨󵄨𝑝−2 𝜒) ⋅ (𝜗 − 𝜒) 𝑝 ≥ 2, (37)

󵄨󵄨󵄨󵄨𝜗 − 𝜒󵄨󵄨󵄨󵄨𝑝 ≤ 𝑄𝑝 [(|𝜗|𝑝−2 𝜗 − 󵄨󵄨󵄨󵄨𝜒󵄨󵄨󵄨󵄨𝑝−2 𝜒)]𝑝/2
⋅ (|𝜗|𝑝 + 󵄨󵄨󵄨󵄨𝜒󵄨󵄨󵄨󵄨𝑝)(2−𝑝)/2 1 < 𝑝 < 2,

(38)

for all 𝜗, 𝜒 ∈ R𝑁, where 𝑄𝑝, 𝑄𝑝 > 0 relying on 𝑝. Then if𝑝 ≥ 2, by (36) and (37), we have
󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢󵄩󵄩󵄩󵄩𝑝𝑋0

≤ 𝑄𝑝 ∫
R2𝑁

[󵄨󵄨󵄨󵄨𝑢𝑘 (𝑥) − 𝑢𝑘 (𝑦)󵄨󵄨󵄨󵄨𝑝−2 (𝑢𝑘 (𝑥) − 𝑢𝑘 (𝑦))
− 󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝−2 (𝑢 (𝑥) − 𝑢 (𝑦))]
× [(𝑢𝑘 (𝑥) − 𝑢 (𝑥)) − (𝑢𝑘 (𝑦) − 𝑢 (𝑦))]𝐾 (𝑥
− 𝑦) 𝑑𝑥𝑑𝑦 = 𝑄𝑝 [𝐵𝑢𝑘 (𝑢𝑘 − 𝑢) − 𝐵𝑢 (𝑢𝑘
− 𝑢)] 󳨀→ 0,

(39)

as 𝑘 󳨀→ ∞. When 1 < 𝑝 < 2, by (36), (38), and the
boundedness of ‖𝑢𝑘‖ in𝑋0, we have

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢󵄩󵄩󵄩󵄩𝑝𝑋0 ≤ 𝑄𝑝 [𝐵𝑢𝑘 (𝑢𝑘 − 𝑢) − 𝐵𝑢 (𝑢𝑘 − 𝑢)]𝑝/2
⋅ (󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩𝑝𝑋0 + ‖𝑢‖𝑝𝑋0)(2−𝑝)/2
≤ 𝑄𝑝 [𝐵𝑢𝑘 (𝑢𝑘 − 𝑢) − 𝐵𝑢 (𝑢𝑘 − 𝑢)]𝑝/2
⋅ (󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩𝑝(2−𝑝)/2𝑋0

+ ‖𝑢‖𝑝(2−𝑝)/2𝑋0
) 󳨀→ 0,

(40)

as 𝑘 󳨀→ ∞. Hence, we get 𝑢𝑘 󳨀→ 𝑢 strongly in 𝑋0.

Lemma 8. Let (𝑔1), (𝑔3), and (𝑔5) hold. Then, functional Ψ
satisfies the (𝐶𝑒)𝑐 condition.
Proof. Let (𝑔5) hold. According to the monotonicity of 𝑡 󳨃󳨀→𝑔(𝑥, 𝑡)/𝑡2𝑝−1, we find that there exists a positive constant 𝐿1

such that

G (𝑥, 𝑠) ≤ G (𝑥, 𝑡) + 𝐿1, (41)

where G(𝑥, 𝑡) = (1/2𝑝)𝑡𝑔(𝑥, 𝑡) − 𝐺(𝑥, 𝑡), for all 𝑥 ∈ Ω and0 ≤ |𝑠| ≤ |𝑡|. Let {𝑢𝑘}𝑘∈N be a Cecrami sequence in 𝑋0. We
know that it satisfies

Ψ(𝑢𝑘) 󳨀→ 𝑐 𝑖𝑛 𝑋0, (42)

(1 + 󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩𝑋0)Ψ󸀠 (𝑢𝑘) 󳨀→ 0 𝑖𝑛 𝑋󸀠
0 (43)

as 𝑘 󳨀→ ∞. By means of Lemma 7, it suffices to prove the
boundedness of {𝑢𝑘}. Suppose that {𝑢𝑘}𝑘∈N is unbounded in𝑋0. Then we have

󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩𝑋0 󳨀→ +∞. (44)

By (43) and (44), we get

Ψ󸀠 (𝑢𝑘) 󳨀→ 0. (45)

Hence, we get

󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩𝑋0⟨Ψ󸀠 (𝑢𝑘) , 𝑢𝑘󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩𝑋0⟩ 󳨀→ 0 𝑎𝑠 𝑘 󳨀→ ∞. (46)

We define 𝜁𝑘 = 𝑢𝑘/‖𝑢𝑘‖𝑋0 . Then ‖𝜁𝑘‖𝑋0 = 1. So {𝜁𝑘}𝑘∈N is a
bounded sequence in𝑋0. Through Lemma 4, there exists 𝜁∞
satisfying

𝜁𝑘 󳨀→ 𝜁∞ 𝑖𝑛 𝐿𝑝 (R𝑁) ,
𝜁𝑘 󳨀→ 𝜁∞ 𝑖𝑛 𝐿𝑞 (R𝑁) ,
𝜁𝑘 󳨀→ 𝜁∞ 𝑖𝑛 R

𝑁,
(47)

as 𝑘 󳨀→ ∞. What is more, through Lemma A.1 of [35], there
exists a function 𝜀 ∈ 𝐿𝑞(R𝑁) satisfying

󵄨󵄨󵄨󵄨𝜁𝑘 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝜀 (𝑥) 𝑖𝑛 R
𝑁. (48)

We only need to consider two cases: 𝜁∞ = 0 and 𝜁∞ ̸= 0.
Firstly, we consider the case 𝜁∞ = 0. Refer to [31]; for any𝑘 ∈ N, we have 𝑙𝑘 ∈ [0, 1] such that

Ψ(𝑙𝑘𝑢𝑘) = max
𝑙∈[0,1]

Ψ(𝑙𝑢𝑘) . (49)

Because of the unboundedness of {𝑢𝑘}, for any 𝜏 ∈ N, we
select ℎ𝜏 = ((4𝑝/𝑏)𝜏)1/2𝑝 such that

ℎ𝜏󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩𝑋0 ∈ (0, 1) , (50)

where 𝑘 is large enough, say 𝑘 > 𝑘, with 𝑘 = 𝑘(𝜏). By (47) and𝜁∞ = 0, we get
∫
Ω

󵄨󵄨󵄨󵄨ℎ (𝜏) 𝜁𝑘 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 󳨀→ 0. (51)

Since the function 𝐺 is continuous, we get that

𝐺(𝑥, ℎ𝜏𝜁𝑘 (𝑥)) 󳨀→ 𝐺(𝑥, ℎ𝜏𝜁∞ (𝑥)) 𝑖𝑛 Ω, (52)

as 𝑘 󳨀→ ∞, for any 𝜏 ∈ N. Through (𝑔1), (48), and Hölder
inequality, we obtain that

󵄨󵄨󵄨󵄨𝐺 (𝑥, ℎ𝜏𝜁𝑘 (𝑥))󵄨󵄨󵄨󵄨 ≤ 𝐶 󵄨󵄨󵄨󵄨ℎ𝜏𝜁𝑘 (𝑥)󵄨󵄨󵄨󵄨 + 𝐶𝑞 󵄨󵄨󵄨󵄨ℎ𝜏𝜁𝑘 (𝑥)󵄨󵄨󵄨󵄨𝑞

≤ 𝐶 󵄨󵄨󵄨󵄨ℎ𝜏𝜀 (𝑥)󵄨󵄨󵄨󵄨 + 𝐶𝑞 󵄨󵄨󵄨󵄨ℎ𝜏𝜀 (𝑥)󵄨󵄨󵄨󵄨𝑞
∈ 𝐿1 (Ω) ,

(53)

for any 𝑘, 𝜏 ∈ N. Hence, we get that

𝐺 (⋅, ℎ𝜏𝜁𝑘 (⋅)) 󳨀→ 𝐺 (⋅, ℎ𝜏𝜁∞ (⋅)) 𝑖𝑛 𝐿1 (Ω) , (54)
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as 𝑘 󳨀→ ∞, for any 𝜏 ∈ N, thanks to the Dominated
Convergence Theorem and (51) and (52). As a consequence
of 𝐺(𝑥, 0) = 0 for all 𝑥 ∈ Ω, by (54) and 𝜁∞ = 0, we have

∫
Ω
𝐺(𝑥, ℎ𝜏𝜁𝑘 (𝑥)) 𝑑𝑥 󳨀→ 0, (55)

as 𝑘 󳨀→ ∞, for any 𝜏 ∈ N. Therefore, by (50)–(52) and (55),
we get

Ψ(𝑙𝑘𝑢𝑘) ≥ Ψ( ℎ𝜏󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩𝑋0 𝑢𝑘) = Ψ (ℎ𝜏𝜁𝑘)
= 𝑎𝑝 󵄩󵄩󵄩󵄩ℎ𝜏𝜁𝑘 (𝑥)󵄩󵄩󵄩󵄩𝑝𝑋0 + 𝑏2𝑝 󵄩󵄩󵄩󵄩ℎ𝜏𝜁𝑘 (𝑥)󵄩󵄩󵄩󵄩2𝑝𝑋0

− 𝜆𝑝 ∫
Ω

󵄨󵄨󵄨󵄨ℎ𝜏𝜁𝑘 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥
− ∫

Ω
𝐺 (𝑥, ℎ𝜏𝜁𝑘 (𝑥)) 𝑑𝑥

≥ 𝑏2𝑝 󵄩󵄩󵄩󵄩ℎ𝜏𝜁𝑘 (𝑥)󵄩󵄩󵄩󵄩2𝑝𝑋0 = 2𝜏,

(56)

as 𝑘 󳨀→ ∞, for any 𝜏 ∈ N. Hence, we infer that

Ψ(𝑙𝑘𝑢𝑘) 󳨀→ +∞ 𝑎𝑠 𝑘 󳨀→ ∞. (57)

Now, we will show that

lim
𝑘󳨀→∞

supΨ(𝑙𝑘𝑢𝑘) ≤ 𝜛, (58)

where 𝜛 > 0. Because Ω ⊂ R𝑁 is an open bounded smooth
domain with Lipschitz boundary, we deduce that there exists
a positive constant 𝐶𝑝,𝜆, which depends on 𝜆 and 𝑝 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜆2𝑝 ∫

Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 𝐶𝑝,𝜆 < +∞. (59)

We notice that Ψ(0) = 0. Through (42), (49), and (57), we get
that there exists 𝑙𝑘 ∈ (0, 1) such that

𝑑𝑑𝑙
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑙=𝑙𝑘 Ψ (𝑙𝑢𝑘) = 0, (60)

for any 𝑘 ∈ N. Then we have

⟨Ψ󸀠 (𝑙𝑘𝑢𝑘) , 𝑙𝑘𝑢𝑘⟩ = 𝑙𝑘 𝑑𝑑𝑙
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑙=𝑙𝑘 Ψ(𝑙𝑢𝑘) = 0. (61)

Through (41), (59), and 𝑙𝑘 ∈ [0, 1], we have

Ψ(𝑙𝑘𝑢𝑘) = Ψ (𝑙𝑘𝑢𝑘) − 12𝑝 ⟨Ψ󸀠 (𝑙𝑘𝑢𝑘) , 𝑙𝑘𝑢𝑘⟩
= 𝑎2𝑝 󵄩󵄩󵄩󵄩𝑡𝑘𝑢𝑘 (𝑥)󵄩󵄩󵄩󵄩𝑝𝑋0 − 𝜆2𝑝 ∫

Ω

󵄨󵄨󵄨󵄨𝑙𝑘𝑢𝑘 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥
− ∫

Ω
𝐺 (𝑥, 𝑙𝑘𝑢𝑘 (𝑥)) 𝑑𝑥

+ ∫
Ω

12𝑝𝑔 (𝑥, 𝑙𝑘𝑢𝑘 (𝑥)) 𝑙𝑘𝑢𝑘 (𝑥) 𝑑𝑥
≤ 𝑎2𝑝 󵄩󵄩󵄩󵄩𝑡𝑘𝑢𝑘 (𝑥)󵄩󵄩󵄩󵄩𝑝𝑋0 + ∫

Ω
G (𝑥, 𝑙𝑘𝑢𝑘) 𝑑𝑥

+ 𝐶𝑝,𝜆

≤ 𝑎2𝑝 󵄩󵄩󵄩󵄩𝑢𝑘 (𝑥)󵄩󵄩󵄩󵄩𝑝𝑋0 + ∫
Ω
G (𝑥, 𝑢𝑘) 𝑑𝑥 + 𝐿1 |Ω|

+ 𝐶𝑝,𝜆

= 𝑎2𝑝 󵄩󵄩󵄩󵄩𝑢𝑘 (𝑥)󵄩󵄩󵄩󵄩𝑝𝑋0 − 𝜆2𝑝 ∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥
− ∫

Ω
𝐺 (𝑥, 𝑢𝑘 (𝑥)) 𝑑𝑥

+ ∫
Ω

12𝑝𝑔 (𝑥, 𝑢𝑘 (𝑥)) 𝑢𝑘 (𝑥) 𝑑𝑥
+ 𝜆2𝑝 ∫

Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 + 𝐿1 |Ω| + 𝐶𝑝,𝜆

≤ Ψ (𝑢𝑘) − 12𝑝 ⟨Ψ󸀠 (𝑢𝑘) , 𝑢𝑘⟩ + 2𝐶𝑝,𝜆

+ 𝐿1 |Ω| = 𝑐 + 2𝐶𝑝,𝜆 + 𝐿1 |Ω| < +∞.

(62)

And 𝑘 󳨀→ ∞. It contradicts with (57). Hence, the sequence{𝑢𝑘}𝑘∈N is bounded in 𝑋0.
Now we consider the case 𝜁∞ ̸= 0. We define Ω = {𝑥 ∈Ω : 𝜁∞(𝑥) ̸= 0}. Clearly,Ω is Lebesguemeasureable. Through

(44), (47), and 𝜁∞ ̸= 0, we have
󵄨󵄨󵄨󵄨𝑢𝑘 (𝑥)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝜁𝑘 (𝑥)󵄨󵄨󵄨󵄨 ⋅ 󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩𝑋0 󳨀→ +∞ 𝑖𝑛 Ω, (63)

as 𝑘 󳨀→ ∞. Through (47), (63), and (𝑔3), it holds true that
𝐺 (𝑥, 𝑢𝑘 (𝑥))󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0

= 𝐺 (𝑥, 𝑢𝑘 (𝑥))󵄨󵄨󵄨󵄨𝑢𝑘󵄨󵄨󵄨󵄨2𝑝 ⋅ 󵄨󵄨󵄨󵄨𝑢𝑘󵄨󵄨󵄨󵄨2𝑝󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0
= 𝐺 (𝑥, 𝑢𝑘 (𝑥))󵄨󵄨󵄨󵄨𝑢𝑘 (𝑥)󵄨󵄨󵄨󵄨2𝑝

󵄨󵄨󵄨󵄨𝜁𝑘 (𝑥)󵄨󵄨󵄨󵄨2𝑝 󳨀→ +∞,
(64)

𝑖𝑛 Ω, as 𝑘 󳨀→ ∞. Through the Fatou Lemma and (64), we
have

∫
Ω

𝐺 (𝑥, 𝑢𝑘 (𝑥))󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0
𝑑𝑥 󳨀→ +∞. (65)

Next, we discusses the case in Ω \ Ω. By (𝑔3), we get
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lim
|𝑡|󳨀→∞

𝐺 (𝑥, 𝑡) = +∞, 𝑥 ∈ Ω. (66)

Therefore, there exist constants 𝑡1, 𝐴 > 0 such that

𝐺 (𝑥, 𝑡) ≥ 𝐴, (67)

for all 𝑥 ∈ Ω and |𝑡| > 𝑡1. Moreover, by means of the
continuity of 𝐺 inΩ ×R, we get

𝐺 (𝑥, 𝑡) ≥ min
(𝑥,𝑡)∈Ω×[−𝑡1,𝑡1]

𝐺 (𝑥, 𝑡) , (68)

for all |𝑡| ≤ 𝑡1. Hence, we obtain that

𝐺 (𝑥, 𝑡) ≥ min{𝐴, min
(𝑥,𝑡)∈Ω×[−𝑡1,𝑡1]

𝐺 (𝑥, 𝑡)} fl 𝐴, (69)

for any (𝑥, 𝑡) ∈ Ω ×R, thanks to (67) and (68). So we get

lim
|𝑡|󳨀→∞

∫
Ω\Ω

𝐺(𝑥, 𝑢𝑘 (𝑥))󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0
𝑑𝑥 ≥ 0. (70)

By (42) and (44), we get

𝑜 (1) = Ψ (𝑢𝑘)󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0
= 𝑎
𝑝 󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0

+ 𝑏2𝑝 − 𝜆𝑝 ∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑥)󵄨󵄨󵄨󵄨𝑝󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0
𝑑𝑥

− ∫
Ω

𝐺(𝑥, 𝑢𝑘 (𝑥))󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝X0
𝑑𝑥

− ∫
Ω\Ω

𝐺 (𝑥, 𝑢𝑘 (𝑥))󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0
𝑑𝑥,

(71)

as 𝑘 󳨀→ ∞. Consider (63), (65), (70), and the variational
characterization of 𝜆𝑗 defined as follows:

𝜆𝑗 = min
𝑢∈𝑋0\{0}

∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝𝐾 (𝑥 − 𝑦) 𝑑𝑥𝑑𝑦
∫
Ω
|𝑢 (𝑥)|𝑝 𝑑𝑥 . (72)

We have

𝑜 (1) = 𝑎
𝑝 󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0

+ 𝑏2𝑝 − 𝜆𝑝 ∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑥)󵄨󵄨󵄨󵄨𝑝󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0
𝑑𝑥

− ∫
Ω

𝐺 (𝑥, 𝑢𝑘)󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0
𝑑𝑥 − ∫

Ω\Ω

𝐺(𝑥, 𝑢𝑘)󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0
𝑑𝑥

≤ 𝑏2𝑝 +max
{{{
0, − 𝜆𝑝𝜆1 ∫Ω

󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩𝑝𝑋0󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0
𝑑𝑥}}}

− ∫
Ω

𝐺 (𝑥, 𝑢𝑘)󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0
𝑑𝑥 − ∫

Ω\Ω

𝐺(𝑥, 𝑢𝑘)󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩2𝑝𝑋0
𝑑𝑥

≤ −∞.

(73)

We find that (73) is a contradictory result. Thus, the sequence{𝑢𝑘}𝑘∈N is bounded in 𝑋0. This ends the proof of Lemma 8.

4. Proof of Theorem 2 and Corollary 3

We know that𝑋0 is a Hilbert space. Hence, we divide𝑋0 into
two parts. Let 𝑋0 = ⨁𝑗≥1𝑋𝑗, where 𝑋𝑗 = span{𝑒𝑗}𝑗∈N. Now
we define

𝑌𝑚 = 𝑚⨁
𝑗=1

𝑋𝑗,

𝑍𝑚 = ∞⨁
𝑗=𝑚

𝑋𝑗.
(74)

Obviously, 𝑌𝑚 is a finite-dimensional space.

Lemma 9. Let ] ∈ [1, 𝑝∗𝑠 ). We have

𝜉𝑚 (]) fl sup {‖𝑢‖] : 𝑢 ∈ 𝑍𝑚, ‖𝑢‖𝑋0 = 1} 󳨀→ 0,
𝑚 󳨀→ ∞. (75)

Proof. Clearly 𝜉𝑚+1 ≥ 𝜉𝑚 ≥ 0, so that 𝜉𝑚 󳨀→ 𝜉 ≥ 0, as 𝑚 󳨀→∞. For every 𝑚 ∈ N, there exists 𝑢𝑚 ∈ 𝑍𝑚 such that ‖𝑢𝑚‖] >𝜉𝑚/2 and ‖𝑢𝑚‖𝑋0 = 1. Through the definition of 𝑍𝑚, we can
get 𝑢𝑚 ⇀ 0 in 𝑋0. According to Lemma 4, the embedding𝑋0 󳨅→󳨅→ 𝐿𝜅(Ω) (1 ≤ 𝜅 < 𝑝∗𝑠 ) implies that 𝑢𝑚 󳨀→ 0 in𝐿𝜅(Ω).Therefore, we get 𝜉 = 0, as𝑚 󳨀→ ∞. This implies that
the proof is complete.

Proof ofTheorem2. Obviously, all norms are equivalent in𝑌𝑚 .
Hence, there exist two constants 𝐶1, 𝐶2 > 0 such that

𝐶1 ‖𝑢‖𝑋0 ≤ ‖𝑢‖] ≤ 𝐶2 ‖𝑢‖𝑋0 𝑓𝑜𝑟 𝑎𝑛𝑦 ] ∈ [1, 𝑝∗𝑠 ) . (76)

According toTheorem 6 and Lemma 8, we just need to prove(𝑎), (𝑏), and (𝑐) ofTheorem6. Let (𝑔2)hold. Clearly,Ψ(0) = 0.
Hence, condition (𝑎) ofTheorem 6 is true.Then, we take into
account the range of values of 𝜆. According to (72), if 𝜆/𝑎 >𝜆1, we can find 𝑗 ∈ N and 𝑗 > 2 such that 𝜆/𝑎 ∈ [𝜆𝑗−1, 𝜆𝑗).
So, for all 𝑗, there exists 𝑗 ∈ N and 𝑗 ≥ 1 such that 𝜆/𝑎 < 𝜆𝑗
for any 𝜆 ∈ R.

By (𝑔1) and (𝑔4), for any 󰜚 > 0, there exists 𝐶󰜚 > 0 such
that

𝐺 (𝑥, 𝑡) ≤ 󰜚𝑝 |𝑡|𝑝 + 𝐶󰜚𝑞 |𝑡|𝑞 , (77)

for any (𝑥, 𝑡) ∈ Ω×R. By Lemma 9, for any fixed 󰜚 > 0, choose
an integer 𝑚̃ ≥ 1 such that

‖𝑢‖𝑝𝑝 ≤ min {𝑎, 𝑎 − 𝜆/𝜆𝑗}2󰜚 ‖𝑢‖𝑝𝑋0 ,

‖𝑢‖𝑞𝑞 ≤ 𝑞min {𝑎, 𝑎 − 𝜆/𝜆𝑗}2𝑝𝐶󰜚

‖𝑢‖𝑞𝑋0 ,
(78)
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for any 𝑢 ∈ 𝑍𝑚. Choose 𝛿 fl ‖𝑢‖𝑋0 = 1/2, for all 𝑢 ∈ 𝑍𝑚.
Note that 𝑞 > 𝑝; from (77) and (78), we have

Ψ (𝑢) = 𝑎𝑝 ‖𝑢‖𝑝𝑋0 + 𝑏2𝑝 ‖𝑢‖2𝑝𝑋0 − 𝜆𝑝 ∫
Ω
|𝑢 (𝑥)|𝑝 𝑑𝑥

− ∫
Ω
𝐺 (𝑥, 𝑢 (𝑥)) 𝑑𝑥

≥ 𝑎𝑝 ‖𝑢‖𝑝𝑋0 +min{0, − 𝜆𝑝𝜆𝑗} ‖𝑢‖𝑝𝑋0 − 󰜚𝑝 ‖𝑢‖𝑝𝑝
− 𝐶󰜚𝑞 ‖𝑢‖𝑞𝑞

≥ 1𝑝min{𝑎, 𝑎 − 𝜆𝜆𝑗} ‖𝑢‖𝑝𝑋0
− 12𝑝min{𝑎, 𝑎 − 𝜆𝜆𝑗} ‖𝑢‖𝑝𝑋0
− 12𝑝min{𝑎, 𝑎 − 𝜆𝜆𝑗} ‖𝑢‖𝑞𝑋0

≥ 12𝑝min{𝑎, 𝑎 − 𝜆𝜆𝑗}(‖𝑢‖𝑝𝑋0 − ‖𝑢‖𝑞𝑋0)

= 12𝑝min{𝑎, 𝑎 − 𝜆𝜆𝑗}( 12𝑝 − 12𝑞 ) fl 𝜌 > 0.

(79)

Then, condition (b) of Theorem 6 is true.
In the end, we demonstrate condition (c) of Theorem 6.

In view of (𝑔3), there exist constants 𝛼 > 𝑏/2𝑝𝐶2𝑝
1 , 𝛽 > 0 such

that

𝐺 (𝑥, 𝑡) ≥ 𝛼 |𝑡|2𝑝 , (80)

for any 𝑥 ∈ Ω and |𝑡| > 𝛽. Considering condition (𝑔1), we
have

|𝐺 (𝑥, 𝑡)| ≤ 𝐶 (1 + 𝛽𝑞−1) |𝑡| , (81)

for any 𝑥 ∈ Ω and |𝑡| ≤ 𝛽. Take 𝐶∗ = 𝐶(1 + 𝛽𝑞−1), where𝐶∗ > 0. We obtain

𝐺 (𝑥, 𝑡) ≥ 𝛼 |𝑡|2𝑝 − 𝐶∗ |𝑡| , (82)

for any (𝑥, 𝑡) ∈ Ω ×R. Then, by (76) and (82), we have

Ψ (𝑢) = 𝑎𝑝 ‖𝑢‖𝑝𝑋0 + 𝑏2𝑝 ‖𝑢‖2𝑝𝑋0 − 𝜆𝑝 ∫
Ω
|𝑢 (𝑥)|𝑝 𝑑𝑥

− ∫
Ω
𝐺 (𝑥, 𝑢 (𝑥)) 𝑑𝑥

≤ 𝑎𝑝 ‖𝑢‖𝑝𝑋0 + 𝑏2𝑝 ‖𝑢‖2𝑝𝑋0
+max{0, − 𝜆𝑝𝜆𝑗} ‖𝑢‖𝑝𝑋0 − 𝛼 ‖𝑢‖2𝑝2𝑝
− 𝐶∗ ‖𝑢‖1

≤ 1𝑝 max{𝑎, 𝑎 − 𝜆𝜆𝑗} ‖𝑢‖𝑝𝑋0
+ ( 𝑏2𝑝 − 𝐶2𝑝

1 𝛼) ‖𝑢‖2𝑝𝑋0 − 𝐶1𝐶∗ ‖𝑢‖𝑋0 .

(83)

Let R = R(𝑋) > 0 be large enough. When ‖𝑢‖𝑋0 > R,Ψ(𝑢) ≤ 0. Hence, condition (c) of Theorem 6 is true. In
conclusion, Theorem 2 is proven.

Proof of Corollary 3. Let (𝑔6) hold. Similar to Theorem 2, we
only need to prove inequality (62).

1𝜎Ψ (𝑙𝑘𝑢𝑘) = 1𝜎 (Ψ (𝑙𝑘𝑢𝑘) − 12𝑝 ⟨Ψ󸀠 (𝑙𝑘𝑢𝑘) , 𝑙𝑘𝑢𝑘⟩)
= 1𝜎 ( 𝑎2𝑝 󵄩󵄩󵄩󵄩𝑙𝑘𝑢𝑘 (𝑥)󵄩󵄩󵄩󵄩𝑝𝑋0 − 𝜆2𝑝 ∫

Ω

󵄨󵄨󵄨󵄨𝑙𝑘𝑢𝑘 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥
− ∫

Ω
𝐺 (𝑥, 𝑙𝑘𝑢𝑘 (𝑥)) 𝑑𝑥

+ ∫
Ω

12𝑝𝑔 (𝑥, 𝑙𝑘𝑢𝑘 (𝑥)) 𝑙𝑘𝑢𝑘 (𝑥) 𝑑𝑥)
≤ 1𝜎 ( 𝑎2𝑝 󵄩󵄩󵄩󵄩𝑙𝑘𝑢𝑘 (𝑥)󵄩󵄩󵄩󵄩𝑝𝑋0 + ∫

Ω
G (𝑥, 𝑙𝑘𝑢𝑘) 𝑑𝑥)

+ 𝐶𝑝,𝜆 ≤ 𝑎2𝑝 󵄩󵄩󵄩󵄩𝑢𝑘 (𝑥)󵄩󵄩󵄩󵄩𝑝𝑋0 + ∫
Ω
G (𝑥, 𝑢𝑘) 𝑑𝑥 + 1𝜎

⋅ ∫
Ω
𝑇 (𝑥) 𝑑𝑥 + 𝐶𝑝,𝜆 = 𝑎2𝑝 󵄩󵄩󵄩󵄩𝑢𝑘 (𝑥)󵄩󵄩󵄩󵄩𝑝𝑋0 − 𝜆2𝑝

⋅ ∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 − ∫
Ω
𝐺(𝑥, 𝑢𝑘 (𝑥)) 𝑑𝑥

+ ∫
Ω

12𝑝𝑔 (𝑥, 𝑢𝑘 (𝑥)) 𝑢𝑘 (𝑥) 𝑑𝑥 + 𝜆2𝑝
⋅ ∫

Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 + 1𝜎 ∫
Ω
𝑇 (𝑥) 𝑑𝑥 + 𝐶𝑝,𝜆

≤ Ψ (𝑢𝑘) − 12𝑝 ⟨Ψ󸀠 (𝑢𝑘) , 𝑢𝑘⟩ + 2𝐶𝑝,𝜆 + 1𝜎
⋅ ∫

Ω
𝑇 (𝑥) 𝑑𝑥 ≤ 𝑐 + 2𝐶𝑝,𝜆 + 1𝜎 ∫

Ω
𝑇 (𝑥) 𝑑𝑥

< +∞.

(84)

The proof is completed.
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RevistaMatemática Iberoamericana, vol. 29, no. 3, pp. 1091–1126,
2013.

[6] K. Teng, “Two nontrivial solutions for hemivariational inequal-
ities driven by nonlocal elliptic operators,” Nonlinear Analysis:
Real World Applications, vol. 14, no. 1, pp. 867–874, 2013.

[7] R. Servadei and E. Valdinoci, “Mountain pass solutions for non-
local elliptic operators,” Journal of Mathematical Analysis and
Applications, vol. 389, no. 2, pp. 887–898, 2012.

[8] P. Pucci and S. Saldi, “Critical stationary Kirchhoff equa-
tions in R𝑁 involving nonlocal operators,” Revista Matematica
Iberoamericana, vol. 32, no. 1, pp. 1–22, 2016.

[9] G. Autuori and P. Pucci, “Elliptic problems involving the
fractional Laplacian in R𝑁,” Journal of Differential Equations,
vol. 255, no. 8, pp. 2340–2362, 2013.

[10] Z. Binlin, G. Molica Bisci, and R. Servadei, “Superlinear
nonlocal fractional problems with infinitely many solutions,”
Nonlinearity, vol. 28, no. 7, pp. 2247–2264, 2015.
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