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We used the complex method and the exp(-𝜙(𝑧))-expansion method to find exact solutions of the (2+1)-dimensional mKdV
equation. Through the maple software, we acquire some exact solutions. We have faith in that this method exhibited in this paper
can be used to solve some nonlinear evolution equations inmathematical physics. Finally, we show some simulated pictures plotted
by the maple software to illustrate our results.

1. Introduction

Nonlinear science is basic science to study the generality
of nonlinear phenomena. It is a comprehensive discipline
which has been gradually developed by various branch
disciplines characterized by nonlinearity since the 1960s [1].
It was known as the “Third Revolution” of Natural Science
in the 20th century. The scientific community believes that
the research of nonlinear science has not only great sci-
entific significance but also broad application prospects. It
involves almost all fields of natural science and social science,
including engineering application, basic physical research,
biological research, control theory, and management [2, 3].
And the nonlinear science is changing people’s traditional
view of the real world. It is more and more important to
find the exact solution of the nonlinear evolution equation.
Therefore, a variety of solutions have emerged.

In 1967, Gardner and others [4] first proposed scatter-
ing inversion method for KdV equation. Since then, many
methods and techniques for constructing nonlinear partial
differential equations have been gradually proposed for
seeking soliton solutions [5–7], such as Bäcklund transform
[8], Hirota method [9–11], and Darboux transform [12]. But

these methods are complex and difficult to use in solving
processes.With the deepening of research and the continuous
development of mathematical computing software, in recent
years, some analytical tools and direct algebraic methods
have gradually emerged, such as fixed point theorems [13–
16], variational methods [17–20], topological degree method
[21–24], homogeneous balance method [25], tanh function
method [26, 27], Jacobi elliptic function method [28, 29],
F-expansion method [30, 31], and exp(−𝜙(𝑧))-expansion
method [32–34].

In 2012, Alejo [35] got some numerical results which
showed a new family of solutions of the geometric mKdV
equation. In 2014, Huang Y, Wu Y, and Meng F, et al.
[36] used the complex method to get the meromorphic
solutions of complex combined KdV-mKdV equation. Singh
[37] used the Jacobian elliptic function expansion method
to get the exact solutions of Wick-type stochastic Kersten-
Krasil’ shchik coupled KdV-mKdV equations.

Consider the following:

𝑢𝑡 + 𝜏𝑢2𝑢𝑥 + 𝛽𝑢𝑥𝑥𝑥 = 0. (1)

In (1)(see [38]), 𝜏 and 𝛽 are constants.
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Submitting 𝑢(𝑥, 𝑡) = 𝑤(𝑧), 𝑧 = 𝑘𝑥 + 𝑤𝑡, into (1) and after
integrating, we get

𝛽𝑘3𝑤 + 𝑘𝜏3 𝑤3 − 𝜛𝑤 + 𝑑 = 0. (2)

In order to get the exact solution of mKdV equation, we
use the complex method which was suggested by Yuan et al.

[39–42] to get solutions of (2), and thenwe also get some exact
solutions by the exp(−𝜙(𝑧))-expansion method.

Theorem 1. By using the complex method, we suppose that𝛽𝑘4𝜏/3 ̸= 0 and then allmeromorphic solutions𝑤 belong to the
classW. Andwe found that there will be three forms of solutions
of (2):

(1) The Elliptic Function Solutions

𝑤𝑑 (𝑧) = ±12√−𝛽𝑘2𝜏 (−℘ + 𝑐) (4℘𝑐2 + 4℘2𝑐 + 2℘𝑎 − ℘𝑔2 − 𝑐𝑔2)((12𝑐2 − 𝑔2) ℘ + 4𝑐3 − 3𝑐𝑔2) ℘ + (4℘3 + 12𝑐℘2 − 3𝑔2℘ − 𝑐𝑔2) 𝑑 , (3)

in (3), 𝑔3 = 0, 𝑎2 = 4𝑐3 − 𝑔2𝑐, and 𝑔2 and 𝑐 are arbitrary
constants.

(2) The Simply Periodic Solutions

𝑤𝑠,1 (𝑧) = 𝛼√−6𝛽𝑘2𝜏 (coth 𝛼2 (𝑧 − 𝑧0)
− coth 𝛼2 (𝑧 − 𝑧0 − 𝑧1) − coth 𝛼2 𝑧1) ,

(4)

in (4), 𝑧0 ∈ C, 𝜛 = −𝛽𝑘3𝛼2(1/2 + 3/2 sinh2(𝛼/2)𝑧1), 𝑑 =√−6𝛽𝑘2/𝜏 tanh(𝛼/2)𝑧1/sinh2(𝛼/2)𝑧1, and 𝑧1 ̸= 0.
And the other solution is

𝑤𝑠,2 (𝑧) = 𝛼√−6𝛽𝑘2𝜏 tanh 𝛼2 (𝑧 − 𝑧0) , (5)

in (5), 𝑧0 ∈ C, 𝜛 = −𝛽𝑘3𝛼2/2, 𝑑 = 0.
(3) The Rational Function Solutions

𝑤𝑟,1 (𝑧) = ±√−6𝛽𝑘2𝜏 1𝑧 − 𝑧0 , (6)

and

𝑤𝑟,2 (𝑧) = ±√−6𝛽𝑘2𝜏𝑧21 ( 𝑧1𝑧 − 𝑧0 − 𝑧1𝑧 − 𝑧0 − 𝑧1 − 1) , (7)

in (6), 𝑧0 ∈ C, 𝜛 = 0, 𝑑 = 0, or in (7), 𝑧0 ∈ C, 𝜛 = −6𝛽𝑘3/𝑧21, 𝑑 = ∓(2/3)𝑘𝜏(−6𝛽𝑘2/𝜏𝑧21)3/2.
Theorem 2. By using exp(−𝜙(𝑧))-expansion method, there
will be three forms of solutions of (2).

If 𝛿2 − 4𝜇 > 0, 𝜇 ̸= 0,
𝑢11 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏

⋅ 2𝜇√(𝛿2 − 4𝜇) tanh ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) ,
(8)

𝑢12 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏
⋅ 2𝜇√(𝛿2 − 4𝜇) coth ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) ,

(9)

𝑢21 (𝑧) = −12𝜆√−6𝛽𝑘2𝜏 − √−6𝛽𝑘2𝜏
⋅ 2𝜇√(𝛿2 − 4𝜇) tanh ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) ,

(10)

𝑢22 (𝑧) = −12𝜆√−6𝛽𝑘2𝜏 − √−6𝛽𝑘2𝜏
⋅ 2𝜇√(𝛿2 − 4𝜇) coth ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) .

(11)

If 𝛿2 − 4𝜇 < 0, 𝜇 ̸= 0,
𝑢13 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏

⋅ 2𝜇√(𝛿2 − 4𝜇) tanh ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) ,
(12)

𝑢14 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏
⋅ 2𝜇√(𝛿2 − 4𝜇) coth ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) ,

(13)

𝑢23 (𝑧) = −12𝜆√−6𝛽𝑘2𝜏 − √−6𝛽𝑘2𝜏
⋅ 2𝜇√(𝛿2 − 4𝜇)tanh ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) ,

(14)
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𝑢24 (𝑧) = −12𝜆√−6𝛽𝑘2𝜏 − √−6𝛽𝑘2𝜏
⋅ 2𝜇√(𝛿2 − 4𝜇) coth ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) .

(15)

If 𝛿2 − 4𝜇 > 0, 𝜇 = 0, 𝛿 ̸= 0,
𝑢15 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏 𝛿

exp (𝛿 (𝑧 + 𝑐)) − 1 , (16)

𝑢25 (𝑧) = −12𝜆√−6𝛽𝑘2𝜏
− √−6𝛽𝑘2𝜏 𝛿

exp (𝛿 (𝑧 + 𝑐)) − 1 .
(17)

If 𝛿2 − 4𝜇 = 0, 𝜇 ̸= 0, 𝛿 ̸= 0,
𝑢16 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏 𝛿2 (𝑧 + 𝑐)2 (𝛿 (𝑧 + 𝑐) + 2) , (18)

𝑢26 (𝑧) = −12𝜆√−6𝛽𝑘2𝜏 − √−6𝛽𝑘2𝜏 𝛿2 (𝑧 + 𝑐)2 (𝛿 (𝑧 + 𝑐) + 2) . (19)

If 𝛿2 − 4𝜇 = 0, 𝜇 = 0, 𝛿 = 0,
𝑢17 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏 1𝑧 + 𝑐 , (20)

𝑢27 (𝑧) = −12𝜆√−6𝛽𝑘2𝜏 − √−6𝛽𝑘2𝜏 1𝑧 + 𝑐 . (21)

2. Preliminary Lemmas, Complex Method and𝑒𝑥𝑝(−𝜙(𝑧))-Expansion Method

2.1. Introduction of Complex Method. For the introduction
of complex method, we have to know some concepts and
symbols.

Lemma 3 (see [34]). First we set 𝑚 ∈ N fl {1, 2, 3 . . .}, 𝑟𝑗 ∈
N0 = N ∪ {0}, 𝑟 = (𝑟0, 𝑟1, . . . , 𝑟𝑚), 𝑗 = 0, 1, . . . , 𝑚. Then we can
get a differential monomial by

𝑀𝑟 [𝑤] (𝑧)
fl [𝑤 (𝑧)]𝑟0 [𝑤 (𝑧)]𝑟1 [𝑤 (𝑧)]𝑟2 ⋅ ⋅ ⋅ [𝑤(𝑚) (𝑧)]𝑟𝑚 . (22)

𝑝(𝑟) fl 𝑟0 +2𝑟1 + ⋅ ⋅ ⋅ + (𝑚+1)𝑟𝑚 and deg(𝑀) are regarded
as the weight and degree of𝑀𝑟[𝑤], separately.

The differential polynomial 𝑃(𝑤, 𝑤, . . . , 𝑤(𝑚)) can be
defined as follows:

𝑃 (𝑤,𝑤, . . . , 𝑤(𝑚)) fl ∑
𝑟∈𝐼

𝑎𝑟𝑀𝑟 [𝑤] . (23)

In (23), 𝑎𝑟 are constants, and 𝐼 is a finite index set.
The total weight and degree of 𝑃(𝑤, 𝑤, . . . , 𝑤(𝑚))

are marked as 𝑊(𝑃) fl max𝑟∈𝐼{𝑝(𝑟)} and deg(𝑃) fl
max𝑟∈𝐼{deg(𝑀𝑟)}, separately.

Considering the complex, ordinary differential equations

𝑃 (𝑤,𝑤, . . . , 𝑤(𝑚)) = 𝑏𝑤𝑛 + 𝑐. (24)

In (24), 𝑏 ̸= 0, 𝑐 are constants, and 𝑛 ∈ N.
We take𝑝, 𝑞 ∈ N, andwe regard themeromorphic solutions𝑤 of (24) to have one or more poles. We can say that (24) is

satisfied the ⟨𝑝, 𝑞⟩ condition, where 𝑝means that the equation
has 𝑝 distinct meromorphic solutions and 𝑞 means that their
multiplicity of the pole at 𝑧 = 0 is 𝑞.

It is difficult for us to find the ⟨𝑝, 𝑞⟩ condition of (24), so
we need a method to find the weak ⟨𝑝, 𝑞⟩ condition showed as
follows.

To find out the weak ⟨𝑝, 𝑞⟩ condition of (24), we need to
substitute Laurent series

𝑤 (𝑧) = ∞∑
𝑘=−𝑞

𝑐𝑘𝑧𝑘, 𝑞 > 0, 𝑐−𝑞 ̸= 0 (25)

into (24); then we can find out the 𝑝 distinct Laurent singular
parts as below:

−1∑
𝑘=−𝑞

𝑐𝑘𝑧𝑘. (26)

Given two complex numbers 𝜔1, 𝜔2, and Im(𝜔1/𝜔2) > 0,𝐿 = 𝐿[2𝜔1, 2𝜔2] are discrete subset 𝐿[2𝜔1, 2𝜔2] = {𝜔 | 𝜔 =2𝑛𝜔1 + 2𝑚𝜔2, 𝑛, 𝑚 ∈ Z}, which is isomorphic toZ ×Z. Let
the discriminant Δ = Δ(𝑐1, 𝑐2) fl 𝑐31 − 27𝑐22 and

𝑠𝑛 = 𝑠𝑛 (𝐿) fl ∑
𝜔∈𝐿\{0}

1𝜔𝑛 . (27)

A meromorphic function 𝑤(𝑧) means that 𝑤(𝑧) is holo-
morphic in the complex plane C except for poles. ℘(𝑧, 𝑔2, 𝑔3)
is the Weierstrass elliptic function [43, 44] with invariants 𝑔2
and 𝑔3.

If 𝑓 is an elliptic function, or a rational function of𝑒𝛼𝑧, 𝛼 ∈ C, or a rational function of 𝑧, then we say that the
meromorphic function 𝑓 belongs to the class𝑊.

Weierstrass elliptic function ℘(𝑧) fl ℘(𝑧, 𝑔2, 𝑔3) is
a meromorphic function with double periods 𝜔1, 𝜔2 and
defined as

℘ (𝑧; 𝑤1, 𝑤2) fl 1𝑧2 + ∑
𝜇,]∈Z,𝜇2+]2 ̸=0

{ 1(𝑧 + 𝜇𝑤1 + ]𝑤2)2
− 1(𝜇𝑤1 + ]𝑤2)2} , (28)

which satisfies the following:

(℘ (𝑧))2 = 4℘ (𝑧)3 − 𝑔2℘ (𝑧) − 𝑔3, (29)

and in (29), 𝑔2 = 60𝑠4, 𝑔3 = 140𝑠6 and Δ(𝑔2, 𝑔3) ̸= 0.
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Or alternating (29) to the form

(℘ (𝑧))2 = 4 (℘ (𝑧) − 𝑒1) (℘ (𝑧) − 𝑒2) (℘ (𝑧) − 𝑒2) , (30)

in (30), 𝑒1 = ℘(𝜔1), 𝑒2 = ℘(𝜔2), 𝑒3 = ℘(𝜔1 + 𝜔2).
Contrarily, given two complex numbers 𝑔2 and 𝑔3 andΔ(𝑔2, 𝑔3) ̸= 0, then there will have double periods 𝜔1, 𝜔2

Weierstrass elliptic function ℘(𝑧) which the solutions will
possess.

In 2009, Eremenko [45] et al. investigated the 𝑚-order
Briot-Bouquet equation (BBEq) as follows:

𝐹 (𝑤,𝑤(𝑚)) = 𝑚∑
𝑗=0

𝐹𝑗 (𝑤) (𝑤(𝑚))𝑗 = 0. (31)

In (31), 𝐹𝑗(𝑤) are constant coefficients polynomials, 𝑚 ∈
N. For the 𝑚 order BBEq, there are the following lemmas.

Lemma 4 (see [39–42]). Let 𝑝, 𝑙, 𝑚, 𝑛 ∈ N, and deg𝑃(𝑤,𝑤(𝑚)) < 𝑛. Considering that a𝑚-order Briot-Bouquet equation

𝑃 (𝑤(𝑚), 𝑤) = 𝑏𝑤𝑛 + 𝑐 (32)

satisfies weak ⟨𝑝, 𝑞⟩ condition, then all the meromorphic
solutions 𝑤 will belong to the class 𝑊. For some values of
parameters, if the solution 𝑤 exists, then other meromorphic
solutions will form a one-parametric family𝑤(𝑧−𝑧0), 𝑧0 ∈ C.
Furthermore, it can be written as the following forms of each
elliptic solution with pole at 𝑧 = 0:
𝑤 (𝑧)
= 𝑙−1∑
𝑖=1

𝑞𝑖∑
𝑗=2

(−1)𝑗 𝑐−𝑖𝑗(𝑗 − 1)! 𝑑𝑗−2𝑑𝑧𝑗−2 (14 [℘ (𝑧) + 𝐵𝑖℘ (𝑧) − 𝐴 𝑖 ]
2 − ℘ (𝑧))

+ 𝑙−1∑
𝑖=1

𝑐−𝑖12 ℘ (𝑧) + 𝐵𝑖℘ (𝑧) − 𝐴 𝑖 +
𝑞𝑙∑
𝑗=2

(−1)𝑗 𝑐−𝑙𝑗(𝑗 − 1)! 𝑑𝑗−2𝑑𝑧𝑗−2℘ (𝑧)
+ 𝑐0.

(33)

In (33), 𝑐−𝑖𝑗 are given by equation (23), and 𝐵2𝑖 = 4𝐴3𝑖 −𝑔2𝐴 𝑖 − 𝑔3, Σ𝑙𝑖=1𝑐−𝑖1 = 0.
Each rational function solution 𝑤 fl 𝑅(𝑧) can be show as

the following form:

𝑅 (𝑧) = 𝑙∑
𝑖=1

𝑞∑
𝑗=1

𝑐𝑖𝑗(𝑧 − 𝑧𝑖)𝑗 + 𝑐0, (34)

with 𝑙(≤ 𝑝) distinct poles of multiplicity 𝑞.
Every simply periodic solution is a rational function 𝑅(𝜉) of𝜉 = 𝑒𝛼𝑧(𝛼 ∈ C). 𝑅(𝜉) has 𝑙(≤ 𝑝) distinct poles of multiplicity 𝑞

and can be show as the following form:

𝑅 (𝜉) = 𝑙∑
𝑖=1

𝑞∑
𝑗=1

𝑐𝑖𝑗(𝜉 − 𝜉𝑖)𝑗 + 𝑐0. (35)

Lemma 5 (see [43, 44]). Weierstrass elliptic functions ℘(𝑧) fl℘(𝑧, 𝑔2, 𝑔3) have two successive degeneracies and addition
formula:

(I) Degeneracy to simply periodic functions (i.e., rational
functions of one exponential 𝑒𝑘𝑧) according to

℘ (𝑧, 3𝑑2, −𝑑3) = 2𝑑 − 3𝑑2 coth2√3𝑑2 𝑧, (36)

if one root 𝑒𝑗 is double (Δ(𝑔2, 𝑔3) = 0).
(II) Degeneracy to rational functions of 𝑧 according to

℘ (𝑧, 0, 0) = 1𝑧2 , (37)

if one root 𝑒𝑗 is triple (𝑔2 = 𝑔3 = 0).
(III) Addition formula

℘ (𝑧 − 𝑧0) = −℘ (𝑧) − ℘ (𝑧0)
+ 14 [℘ (𝑧) + ℘ (𝑧0)℘ (𝑧) − ℘ (𝑧0) ]

2 . (38)

By the above lemma and results, we introduce complex
method to find exact solutions of some PDEs. The detailed five
steps are as follows:

(1) Put the transform 𝑇 : 𝑢(𝑥, 𝑡) → 𝑤(𝑧), (𝑥, 𝑡) → 𝑧
into a given PDE to produce a nonlinear ODE.

(2) Put (25) into (24) or (32) to find out the weak ⟨𝑝, 𝑞⟩
condition.

(3) By determinant relation equation (33)–(35) we will,
respectively, find the elliptic, rational and simply periodic
solutions 𝑢(𝑧) of (24) or (32) with pole at 𝑧 = 0.

(4) By Lemmas 3 and 4, we obtain meromorphic solutions
and the addition formula.

(5) Put the inverse transform 𝑇−1 into these meromorphic
solutions 𝑤(𝑧 − 𝑧0), all exact solutions 𝑢(𝑥, 𝑡) of the original
PDE will be found.

More details of complex method can be found in [46–50].

2.2. Introduction of exp(−𝜙(𝑧))-ExpansionMethod. Consider
that a nonlinear partial differential equation (PDE) in the
following form:

𝑃 (𝜇 , 𝜇𝑥, 𝜇𝑦, 𝜇𝑡, 𝜇𝑥𝑥, 𝜇𝑦𝑦, 𝜇𝑡𝑡 . . .) = 0 (39)

In (39), P is a polynomial with anunknown function𝜇(𝑥, 𝑦, 𝑡)
and its derivatives inwhichnonlinear terms and highest order
derivatives are involved. And it can be processed as follows.

Step 1. Insert the traveling wave transform 𝜇(𝑥, 𝑦, 𝑡) =𝑤(𝑧), 𝑧 = 𝑘𝑥+ 𝑙𝑦 + 𝑟𝑡 into (39) alternating it to the following
ordinary differential equation (ODE):

𝐾(𝑤,𝑤, 𝑤, 𝑤, . . .) = 0, (40)

and in (40), 𝐾 is a polynomial of 𝑤(𝑧) and its derivatives.
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Step 2. Regarding that (40) has the following traveling wave
solution:

𝑤 (𝑧) = 𝑛∑
𝑗=0

𝐶𝑗 (exp (−𝜙 (𝑧)))𝑗 , (41)

in (41), 𝐶𝑗 (0 ≤ 𝑗 ≤ 𝑛) are constants and will be determined
later and 𝐶𝑗 ̸= 0 and 𝜙 = 𝜙(𝑧) satisfies the ODE as follows:

𝜙 (𝑧) = exp (−𝜙 (𝑧)) + 𝜇 exp (𝜙 (𝑧)) + 𝛿, (42)

Equation (42) has different style solutions as follows:
If 𝛿2 − 4𝜇 > 0, 𝜇 ̸= 0, then

𝜙 (𝑧)
= ln(−√(𝛿2 − 4𝜇) tanh ((√(𝛿2 − 4𝜇)/2) (𝑧 + 𝑐) − 𝛿)2𝜇 ) , (43)

𝜙 (𝑧)
= ln(−√(𝛿2 − 4𝜇) coth ((√(𝛿2 − 4𝜇)/2) (𝑧 + 𝑐) − 𝛿)2𝜇 ) . (44)

If 𝛿2 − 4𝜇 < 0, 𝜇 ̸= 0, then
𝜙 (𝑧)
= ln(−√(4𝜇 − 𝛿2) tan ((√(4𝜇 − 𝛿2)/2) (𝑧 + 𝑐) − 𝛿)2𝜇 ) , (45)

𝜙 (𝑧)
= ln(−√(4𝜇 − 𝛿2) cot((√(4𝜇 − 𝛿2)/2) (𝑧 + 𝑐) − 𝛿)2𝜇 ) . (46)

If 𝛿2 − 4𝜇 < 0, 𝜇 = 0, 𝛿 ̸= 0, then
𝜙 (𝑧) = − ln( 𝛿

exp (𝛿 (𝑧 + 𝑐) − 1)) . (47)

If 𝛿2 − 4𝜇 = 0, 𝜇 ̸= 0, 𝛿 ̸= 0, then
𝜙 (𝑧) = ln(−2 (𝛿 (𝑧 + 𝑐) + 2)𝛿2 (𝑧 + 𝑐) ) . (48)

If 𝛿2 − 4𝜇 = 0, 𝜇 = 0, 𝛿 = 0, then
𝜙 (𝑧) = ln (𝑧 + 𝑐) . (49)

In above equations, 𝐶𝑛 ̸= 0, 𝛿, and 𝜇 are constants and
will be determined later and 𝑐 is an arbitrary constant. We
consider the homogeneous balance between nonlinear terms
and highest order derivatives of (40), so we can find the
positive integer 𝑛.

Step 3. Putting (41) into (40) and accounting the function
exp(−𝜙(𝑧)), we get a polynomial of exp(−𝜙(𝑧)). Calculating
all the coefficients of the same power of exp(−𝜙(𝑧)) to zero
and then we get a set of algebraic equations. By solving the
algebraic equations, we get the values of 𝐶𝑛 ̸= 0, 𝛿, and 𝜇,
and then we put these into (34) along with(43)-(49) to get the
determination of the solutions of (39).

3. Proof of Theorems 1 and 2

3.1. Proof of Theorem 1. Putting (25) into (2), we have 𝑞 = 1,𝑝 = 2, 𝑐−1 = ±√−6𝛽𝑘2/𝜏, 𝑐0 = 0, 𝑐1 = 𝜛/𝑘𝜏𝑐−1, 𝑐2 = 𝑑/(𝛽𝑘3 −4𝑘𝜏), and 𝑐4 = −𝜛𝑑/24𝛽2𝑘6 and 𝑐3 is arbitrary constant.
Because (2) satisfies weak ⟨2, 1⟩ condition and is a two-

order mKdv equation, (2) satisfies the dominant condition.
By Lemma 4, we know that all meromorphic solutions of (2)
belong to𝑊. Now we will give the forms of all meromorphic
solutions of (2).

By (2), we infer the indeterminant rational solutions of (2)
with pole at 𝑧 = 0 that

𝑢𝑟 (𝑧) = 𝑐11𝑧 + 𝑐12𝑧 − 𝑧1 + 𝑐10. (50)

Putting 𝑢𝑟(𝑧) into (2), we get two classes: one is
𝑅1,1 (𝑧) = ±√−6𝛽𝑘2𝜏 1𝑧 , (51)

in (51), 𝜛 = 0, 𝑑 = 0.
And the other one is

𝑅1,2 (𝑧) = ±√−6 (𝛽𝑘3)𝑘𝜏𝑧21 (𝑧1𝑧 − 𝑧1𝑧 − 𝑧1 − 1) , (52)

in (52), 𝜛 = −6𝛽𝑘3/𝑧21 , 𝑑 = ∓(2/3)𝑘𝜏(−6𝛽𝑘2/𝜏𝑧21)3/2.
All rational solutions of (2) are as follows:

𝑤𝑟,1 (𝑧) = ±√−6𝛽𝑘2𝜏 1𝑧 − 𝑧0 , (53)

and

𝑤𝑟,2 (𝑧) = ±√−6𝛽𝑘2𝜏𝑧21 ( 𝑧1𝑧 − 𝑧0 − 𝑧1𝑧 − 𝑧0 − 𝑧1 − 1) . (54)

In (53)-(54), 𝑧0 ∈ C, 𝜛 = 0, 𝑑 = 0, or in (54), 𝜛 =−6𝛽𝑘3/𝑧21 , 𝑑 = ∓(2/3)𝑘𝜏(−6𝛽𝑘2/𝜏𝑧21)3/2.
In order to get simply periodic solutions, we set 𝜉 =

exp(𝛼𝑧) and then put 𝑢 = 𝑢(𝜉) into (2). We get

𝛽𝑘3𝛼2 (𝜉𝑅 + 𝜉2𝑅) − 𝜛𝑅 + 𝑘𝜏3 𝑅3 + 𝑑 = 0. (55)

By putting

𝑢2 (𝜉) = 𝑐2𝜉 − 1 + 𝑐1𝜉 − 𝜉1 + 𝑐20 (56)
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into (55), we get

𝑅2,1 (𝜉) = 𝛼1 − 𝜉1
⋅ √−6𝛽𝑘2𝜏 (−2 (𝜉1 − 1) ( 1𝜉 − 1 − 1𝜉1 − 1)
+ (𝜉1 + 1)) ,

(57)

in (57), 𝜛 = −(1/2 + 6𝜉1/(1 − 𝜉1)2)𝛽𝑘3𝛼2, 𝑑 = (8𝑘𝜏𝜉1(𝜉1 +1)𝛼3/3(1 − 𝜉1)3)(−6𝛽𝑘2/𝜏𝑧21)3/2.
And the other solution is

𝑅2,2 (𝜉) = 𝛼√−6𝛽𝑘2𝜏 ( 1𝜉 − 1 + 1) , (58)

in (58), 𝜛 = −𝛽𝑘3𝛼2/2, 𝑑 = 0.
So for 𝑧 = 0, all simply periodic solutions of (2) are gotten,

which are

𝑤𝑠0,1 (𝑧) = 𝛼√−6𝛽𝑘2𝜏 (coth 𝛼2 𝑧 − coth 𝛼2 (𝑧 − 𝑧1)
− coth 𝛼2 𝑧1) ,

(59)

and

𝑤𝑠0,2 (𝑧) = 𝛼√−6𝛽𝑘2𝜏 tanh 𝛼2 𝑧. (60)

So all simply periodic solutions of (2) are gotten:

𝑤𝑠,1 (𝑧) = 𝛼√−6𝛽𝑘2𝜏 (coth 𝛼2 (𝑧 − 𝑧0)
− coth 𝛼2 (𝑧 − 𝑧0 − 𝑧1) − coth 𝛼2 𝑧1) ,

(61)

in (61), 𝑧0 ∈, 𝜛 = −𝛽𝑘3𝛼2(1/2 + (3/2 sinh2(𝛼/2)𝑧1)), 𝑑 =√−6𝛽𝑘2/𝜏 (tanh(𝛼/2)𝑧1/sinh2(𝛼/2)𝑧1), and 𝑧1 ̸= 0.
And the other solution is

𝑤𝑠,2 (𝑧) = 𝛼√−6𝛽𝑘2𝜏 tanh 𝛼2 (𝑧 − 𝑧0) , (62)

in (62), 𝜛 = −𝛽𝑘3𝛼2/2, 𝑑 = 0.
By (33) of Lemma 4, we have indeterminant relations of

elliptic solutions of (2) with the pole at 𝑧 = 0
𝑢𝑑0 (𝑧) = 𝑐−12 ℘ (𝑧) + 𝐹℘ (𝑧) − 𝐸 + 𝑐30, (63)

in (63), 𝐹2 = 4𝐸3 − 𝑔2𝐸 − 𝑔3. Applying the conclusion II
of Lemma 5 to 𝑢𝑑0(𝑧) and noting that the results of rational
solutions obtained above, we deduce that 𝑐30 = 0, 𝐸 = 𝐹 = 0,
and 𝑔3 = 0. Then we get that

𝑢𝑑0 (𝑧) = ±12√−6𝛽𝑘2𝜏 ℘ (𝑧)℘ (𝑧) , (64)

in (64), 𝑔3 = 0.
So all elliptic function solutions of (2) are

𝑢𝑑0 (𝑧) = ±12√−6𝛽𝑘2𝜏 ℘ (𝑧 − 𝑧0)℘ (𝑧 − 𝑧0) , (65)

in (65), 𝑧0 ∈ C, 𝑔3 = 0. Making use the addition of Lemma 5,
we can rewrite it to the form

𝑤𝑑 (𝑧) = ±12√−6𝛽𝑘2𝜏 (−℘ + 𝑐) (4℘𝑐2 + 4℘2𝑐 + 2℘𝑎 − ℘𝑔2 − 𝑐𝑔2)((12𝑐2 − 𝑔2) ℘ + 4𝑐3 − 3𝑐𝑔2) ℘ + (4℘3 + 12𝑐℘2 − 3𝑔2℘ − 𝑐𝑔2) 𝑑 , (66)

In (66), 𝑔3 = 0, 𝑎2 = 4𝑐3 − 𝑔2𝑐, and 𝑔2 and 𝑐 are arbitrary
constants.

3.2. Proof of Theorem 2. Taking the homogeneous balance
between 𝑢 and 𝑢3 in (2) we get

𝑢 (𝑧) = 𝐶0 + 𝐶1 exp (−𝜙 (𝑧)) , (67)

in (67), 𝐶1 ̸= 0 and 𝐶0 are constants which need to be
determined, and 𝜙(𝑧) satisfies equation 𝜙(𝑧) = exp(−𝜙(𝑧)) +𝜇 exp(𝜙(𝑧)) + 𝛿, whereas 𝛿 and 𝜇 are arbitrary constants.

From (67), we insert 𝑢, 𝑢3, 𝑢 into (2) and sort out the
coefficients of exp(−𝜙(𝑧)) to zero, and then we obtain

c1 = ±√−6𝛽𝑘2𝜏 ,
c0 = ±12𝜆√−6𝛽𝑘2𝜏 ,

(68)

in (68), 𝜆 = ±√2(2𝛽𝑘3𝜇 − 𝜛)/𝛽𝑘3 and 𝑑 = 0.
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By putting (68) into (67), we get

𝑢1 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏 exp (−𝜙 (𝑧)) , (69)

or

𝑢2 (𝑧) = −12𝜆√−6𝛽𝑘2𝜏 − √−6𝛽𝑘2𝜏 exp (−𝜙 (𝑧)) . (70)

We apply (43)–(49) into (69) and (70), respectively, to
obtain traveling wave solutions of the mKdV equation as
follows.

If 𝛿2 − 4𝜇 > 0, 𝜇 ̸= 0,
𝑢11 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏

⋅ 2𝜇√(𝛿2 − 4𝜇) tanh ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) ,
(71)

𝑢12 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏
⋅ 2𝜇√(𝛿2 − 4𝜇) coth ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) ,

(72)

𝑢21 (𝑧) = −12𝜆√−6𝛽𝑘2𝜏 − √−6𝛽𝑘2𝜏
⋅ 2𝜇√(𝛿2 − 4𝜇) tanh ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) ,

(73)

𝑢22 (𝑧) − 12𝜆√−6𝛽𝑘2𝜏 − √−6𝛽𝑘2𝜏
⋅ 2𝜇√(𝛿2 − 4𝜇) coth ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) .

(74)

If 𝛿2 − 4𝜇 < 0, 𝜇 ̸= 0,
𝑢13 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏

⋅ 2𝜇√(𝛿2 − 4𝜇) tanh ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) ,
(75)

𝑢14 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏
⋅ 2𝜇√(𝛿2 − 4𝜇) coth ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) ,

(76)

𝑢23 (𝑧) = −12𝜆√−6𝛽𝑘2𝜏 − √−6𝛽𝑘2𝜏
⋅ 2𝜇√(𝛿2 − 4𝜇) tanh ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) ,

(77)

𝑢24 (𝑧) = −12𝜆√−6𝛽𝑘2𝜏 − √−6𝛽𝑘2𝜏
⋅ 2𝜇√(𝛿2 − 4𝜇) coth ((√𝛿2 − 4𝜇/2) (𝑧 + 𝑐) + 𝛿) .

(78)

If 𝛿2 − 4𝜇 > 0, 𝜇 = 0, 𝛿 ̸= 0,
𝑢15 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏 𝛿

exp (𝛿 (𝑧 + 𝑐)) − 1 , (79)

𝑢25 (𝑧) = −12𝜆√−6𝛽𝑘2𝜏
− √−6𝛽𝑘2𝜏 𝛿

exp (𝛿 (𝑧 + 𝑐)) − 1 .
(80)

If 𝛿2 − 4𝜇 = 0, 𝜇 ̸= 0, 𝛿 ̸= 0,
𝑢16 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏 𝛿2 (𝑧 + 𝑐)2 (𝛿 (𝑧 + 𝑐) + 2) , (81)

𝑢26 (𝑧) = −12𝜆√−6𝛽𝑘2𝜏 − √−6𝛽𝑘2𝜏 𝛿2 (𝑧 + 𝑐)2 (𝛿 (𝑧 + 𝑐) + 2) . (82)

If 𝛿2 − 4𝜇 = 0, 𝜇 = 0, 𝛿 = 0,
𝑢17 (𝑧) = 12𝜆√−6𝛽𝑘2𝜏 + √−6𝛽𝑘2𝜏 1𝑧 + 𝑐 , (83)

𝑢27 (𝑧) = −12𝜆√−6𝛽𝑘2𝜏 − √−6𝛽𝑘2𝜏 1𝑧 + 𝑐 . (84)

4. Computer Simulations

In this section, we will show some computer simulation
pictures to illustrate some results. Considering 𝑘 = 1, 𝑙 = 1,𝑟 = 1, the simply periodic solutions are shown in Figure 1,
and the rational function solutions𝑤𝑟,1 are shown in Figure 2.
And through the exp(-𝜙(𝑧))-expansion method, we get some
other simply periodic solutions. We take the solutions 𝑢𝑠,11(𝑧)
to further analyze their properties by Figure 3.

4.1.ThePhysical Significance of the Figures. Figures 1, 2, and 3
shows Waveform Graphs of several functions at different
times. We can see that there will be some distinct generation
poles shown in Figures.



8 Advances in Mathematical Physics

4

2

0

−2

−4

w

x y64
20−2−4

4
2

0
−2

−4

−6

4

2

0

−2

−4

w

x y64
20−2−4 42

0−2−4

−6

w

xy 4
2

0
−2

−4
4

2
0

−2
−4

−6

−4

−2

0

2

4

Figure 1: The solution of mKdV equation corresponding to 𝑤𝑠,1, take 𝛼 = 2, √−6𝛽𝑘2/𝜏 = 1, and 𝑧0 = 1, 𝑧1 = 2; from left to right, 𝑡 take the
following three different values: (a) 𝑡 = −5, (b) 𝑡 = 0, and (c) 𝑡 = 5.
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Figure 2:The solution of mKdV equation corresponding to𝑤𝑟,1, take 6𝛽𝑘2/𝜏 = 1; from left to right, 𝑡 take the following three different values:
(a) 𝑡 = −5, (b) 𝑡 = 0, and (c) 𝑡 = 5.
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Figure 3: The solution of mKdV equation corresponding to 𝑢𝑠,11, take 𝜆 = 2, 𝛽𝑘2/𝜏 = −1/6, 𝜇 = 2, and 𝛿2 − 𝜇 = 2; from left to right, 𝑡 take
the following three different values: (a) 𝑡 = −5, (b) 𝑡 = 0, and (c) 𝑡 = 5.
5. Conclusions

It can be seen from the above analysis that the complex
method and exp(−𝜙(𝑧))-expansion method are powerful
tools for solving the exact solutions of nonlinear evolution
equations. The general meromorphic solutions of (2+1)-
dimensional mKdV equation are obtained by the complex
method, and we found eight solutions of (2+1)-dimensional
mKdV equation. Using exp(−𝜙(𝑧))-expansion method, we

also find fourteen solutions of (2+1)-dimensional mKdV
equation. By comparing with the two methods, we find more
solutions by exp(−𝜙(𝑧))-expansion method, while we can say
that the solutions of the elliptic function are only obtained by
the complex method.
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related to Painlevé equation III,” House Journal of Mathematics,
vol. 43, no. 4, pp. 1045–1055, 2017.

[47] Y.Gu,W.Yuan,N.Aminakbari, andQ. Jiang, “Exact solutions of
theVakhnenko-Parkes equationwith complexmethod,” Journal
of Function Spaces, vol. 2017, Article ID 6521357, 6 pages, 2017.

[48] Y. Gu,W. Yuan, N. Aminakbari, and J. Lin, “Meromorphic solu-
tions of some algebraic differential equations related Painlevé
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