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This paper deals with Abel’s differential equation. We suppose that 𝑟 = 𝑟(𝑡) is a periodic particular solution of Abel’s differential
equation and, then, bymeans of the transformation method and the fixed point theory, present an alternativemethod of generating
the other periodic solutions of Abel’s differential equation.

1. Introduction

The nonlinear Abel type first-order differential equation

𝑑𝑥
𝑑𝑡 = 𝑎 (𝑡) 𝑥3 + 𝑏 (𝑡) 𝑥2 + 𝑐 (𝑡) 𝑥 + 𝑑 (𝑡) (1)

plays an important role in many physical and technical
applications [1, 2]. The mathematical properties of Equation
(1) have been intensively investigated in the mathematical
and physical literature [3–11]. S. S. Misthry, S. D. Maharaj,
and P. G. L. Leach [12] introduced a new transformation at
the boundary that leads to an Abel’s equation and showed
explicitly that a variety of exact solutions can be generated
from the Abel equation. R. Mohanlal, R. Narain, and S. D.
Maharaj [13] systematically studied the differential equations
that arise using the Lie symmetry infinitesimal generators and
showed that several nonlinear equations, including Bernoulli
equations and Abel equations of the second kind, in addition
to Riccati equations, are generated by assuming functional
relationships on the gravitational potentials. They demon-
strated that these equationsmay be solved exactly.Themodels
found admit a linear equation of state for the radial pressure
and the energy density. The energy conditions are satisfied
and the matter variables are well behaved. Mak et al. [14]
andMak andHarko [15] have presented a solution generating
technique for Abel’s type ordinary differential equation; both
suppose that 𝑦 = 𝑦1(𝑡) is a particular solution of Equation (1)
and then, by means of the transformation methods, present

an alternative method of generating the general solution of
the Abel’s differential Equation (1) from a particular one.

Stimulated by the works of [14, 15], in this paper, we
suppose that 𝑟 = 𝑟(𝑡) is a periodic particular solution of Abel’s
differential equation and then, by means of the transforma-
tion method, Equation (1) is turned into Bernoulli’s equation,
therebywe get twoother periodic solutions of Abel’s equation;
on the other hand, Equation (1) is turned into Abel’s type
equation; by using the fixed point theory, we obtain another
periodic solution of Abel’s equation.

The rest of the paper is arranged as follows: in Section 2,
we give four lemmas to be used later; in Section 3, we give four
theorems about the existence of a unique nonzero periodic
solution on Abel’s type differential equation; in Section 4,
suppose 𝑟 = 𝑟(𝑡) is a periodic particular solution of Abel’s
differential equation; we derive the existence of other periodic
solutions of Abel’s differential equation. We end this paper
with a brief discussion.

2. Some Lemmas and Abbreviations

Lemma 1 (see [16]). Consider the following:

𝑑𝑥
𝑑𝑡 = 𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) , (2)

where 𝑎(𝑡), 𝑏(𝑡) are 𝜔−periodic continuous functions; if
∫𝜔0 𝑎(𝑡)𝑑𝑡 ̸= 0, then Equation (2) has a unique 𝜔−periodic
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continuous solution 𝜂(𝑡), mod(𝜂) ⊂ mod(𝑎(𝑡), 𝑏(𝑡)), and 𝜂(𝑡)
can be written as follows:

𝜂 (𝑡) =
{{{{{{{
∫𝑡
−∞

𝑒∫𝑡𝑠 𝑎(𝜏)𝑑𝜏𝑏 (𝑠) 𝑑𝑠, ∫𝜔
0

𝑎 (𝑡) 𝑑𝑡 < 0
−∫+∞
𝑡

𝑒∫𝑡𝑠 𝑎(𝜏)𝑑𝜏𝑏 (𝑠) 𝑑𝑠, ∫𝜔
0

𝑎 (𝑡) 𝑑𝑡 > 0 (3)

Lemma 2 (see [17]). Suppose that an 𝜔−periodic sequence{𝑓𝑛(𝑡)} is convergent uniformly on any compact set of 𝑅, 𝑓(𝑡)
is an 𝜔−periodic function, and mod(𝑓𝑛) ⊂ mod(𝑓)(𝑛 =1, 2, ⋅ ⋅ ⋅ ); then {𝑓𝑛(𝑡)} is convergent uniformly on 𝑅.
Lemma 3 (see [18]). Suppose 𝑉 is a metric space and 𝐶 is a
convex closed set of 𝑉; its boundary is 𝜕𝐶; if 𝑇 : 𝑉 → 𝑉 is
a continuous compact mapping, such that 𝑇(𝜕𝐶) ⊂ 𝐶, then 𝑇
has a fixed point on 𝐶.

Consider one-dimensional periodic differential equation

𝑑𝑥
𝑑𝑡 = 𝑓 (𝑡.𝑥) , (4)

here,𝑓 : 𝑅×𝐼 → 𝑅 is a continuous function, and𝑓(𝑡+𝜔, 𝑥) =𝑓(𝑡, 𝑥), 𝜔 > 0, 𝐼 ⊂ 𝑅.
Lemma 4 (see [19]). If 𝑓(𝑡, 𝑥) has three-order continuous
partial derivatives on 𝑥, and 𝑓𝑥𝑥𝑥(𝑡, 𝑥) ̸= 0, then (4) has at
most three periodic continuous solutions.

For the sake of convenience, suppose that 𝑓(𝑡) is an 𝜔-
periodic continuous function on 𝑅; we denote

𝑓𝑀 = sup
𝑡∈[0,𝜔]

𝑓 (𝑡) ,
𝑓𝐿 = inf
𝑡∈[0,𝜔]

𝑓 (𝑡) , (5)

3. A Unique Nonzero Periodic Solution on
Abel’s Type Equation

In this section, we consider Abel’s type equation and give four
results about the existence and uniqueness of the nonzero
periodic solution on Abel’s type equation.

Theorem 5. Consider Abel’s type equation:

𝑑𝑥
𝑑𝑡 = 𝑎 (𝑡) 𝑥3 + 𝑏 (𝑡) 𝑥2, (6)

where 𝑎(𝑡), 𝑏(𝑡) are 𝜔−periodic continuous functions; suppose
that the following conditions hold:

(𝐻1) 𝑎 (𝑡) < 0,
(𝐻2) 𝑏 (𝑡) > 0. (7)

ThenEquation (6) has a unique positive𝜔−periodic continuous
solution 𝛾(𝑡), and

−(𝑏
𝑎)𝑀 ≤ 𝛾 (𝑡) ≤ −(𝑏

𝑎)𝐿 . (8)

Proof. (1) Firstly, we prove the existence of a positive𝜔−periodic continuous solution of Equation (6).
Suppose

𝑆 = {𝜑 (𝑡) ∈ 𝐶 (𝑅, 𝑅) | 𝜑 (𝑡 + 𝜔) = 𝜑 (𝑡)} . (9)

Given any 𝜑(𝑡), 𝜓(𝑡) ∈ 𝑆, the distance is defined as follows:

𝜌 (𝜑, 𝜓) = sup
𝑡∈[0,𝜔]

𝜑 (𝑡) − 𝜓 (𝑡) . (10)

Thus (𝑆, 𝜌) is a complete metric space; take a convex closed
set of S as follows:

𝐵 = {𝜑 (𝑡) ∈ 𝐶 (𝑅, 𝑅) | 𝜑 (𝑡 + 𝜔) = 𝜑 (𝑡) , − (𝑏
𝑎)𝑀

≤ 𝜑 (𝑡) ≤ −(𝑏
𝑎)𝐿 , mod (𝜑) ⊂ mod (𝑎, 𝑏)} .

(11)

Given any 𝜑(𝑡) ∈ 𝐵, consider the following equation:
𝑑𝑥
𝑑𝑡 = 𝑎 (𝑡) 𝑥3 + 𝑏 (𝑡) 𝜑 (𝑡) 𝑥. (12)

since 𝑏(𝑡), 𝜑(𝑡) are 𝜔−periodic continuous functions, it fol-
lows that 𝑏(𝑡)𝜑(𝑡) is an 𝜔−periodic continuous function; let

𝑥−2 (𝑡) = 𝑢 (𝑡) . (13)

Then Equation (12) can be turned into

𝑑𝑢
𝑑𝑡 = −2𝑏 (𝑡) 𝜑 (𝑡) 𝑢 − 2𝑎 (𝑡) . (14)

By (11) and (𝐻2), it follows that
−2𝑏𝑀 (−(𝑏

𝑎)𝐿) ≤ −2𝑏 (𝑡) 𝜑 (𝑡) ≤ −2𝑏𝐿 (−(𝑏
𝑎)𝑀)

< 0.
(15)

That is

2𝑏𝑀 (𝑏
𝑎)𝐿 ≤ −2𝑏 (𝑡) 𝜑 (𝑡) ≤ 2𝑏𝐿 (𝑏

𝑎)𝑀 < 0. (16)

Thus it follows that

− 2
𝜔 ∫𝜔
0
𝑏 (𝑡) 𝜑 (𝑡) 𝑑𝑡 < 0. (17)

According to Lemma 1, Equation (14) has a unique𝜔−periodic continuous solution as follows:

𝜂 (𝑡) = −2∫𝑡
−∞

𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑎 (𝑠) 𝑑𝑠. (18)
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By (11),(16), and (18), we have

𝜂 (𝑡) = −2∫𝑡
−∞

𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑏 (𝑠) 𝑎 (𝑠)
𝑏 (𝑠) 𝑑𝑠

≥ −2 (𝑎
𝑏)𝑀∫𝑡

−∞
𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑏 (𝑠) 𝑑𝑠

≥ −2 (𝑎
𝑏)𝑀∫𝑡

−∞
𝑒2(𝑏/𝑎)𝐿 ∫𝑡𝑠 𝑏(𝜏)𝑑𝜏𝑏 (𝑠) 𝑑𝑠

= (𝑎/𝑏)𝑀(𝑏/𝑎)𝐿 [𝑒2(𝑏/𝑎)𝐿 ∫𝑡𝑠 𝑏(𝜏)𝑑𝜏]𝑡
−∞

= (𝑎/𝑏)𝑀(𝑏/𝑎)𝐿 [1 − 𝑒2(𝑏/𝑎)𝐿 ∫𝑡−∞ 𝑏(𝜏)𝑑𝜏]

≥ (𝑎/𝑏)𝑀(𝑏/𝑎)𝐿 [1 − 𝑒2(𝑏/𝑎)𝐿 ∫𝑡−∞ 𝑏𝐿𝑑𝜏] = (𝑎
𝑏)
2

𝑀
.

(19)

and

𝜂 (𝑡) = −2∫𝑡
−∞

𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑏 (𝑠) 𝑎 (𝑠)
𝑏 (𝑠)𝑑𝑠

≤ −2(𝑎
𝑏)𝐿 ∫

𝑡

−∞
𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑏 (𝑠) 𝑑𝑠

≤ −2(𝑎
𝑏)𝐿 ∫

𝑡

−∞
𝑒2(𝑏/𝑎)𝑀 ∫𝑡𝑠 𝑏(𝜏)𝑑𝜏𝑏 (𝑠) 𝑑𝑠

= (𝑎/𝑏)𝐿(𝑏/𝑎)𝑀 [𝑒2(𝑏/𝑎)𝑀 ∫𝑡𝑠 𝑏(𝜏)𝑑𝜏]𝑡
−∞

= (𝑎/𝑏)𝐿(𝑏/𝑎)𝑀 [1 − 𝑒2(𝑏/𝑎)𝑀 ∫𝑡−∞ 𝑏(𝜏)𝑑𝜏]

≤ (𝑎/𝑏)𝐿(𝑏/𝑎)𝑀 [1 − 𝑒2(𝑏/𝑎)𝑀 ∫𝑡−∞ 𝑏𝑀𝑑𝜏] = (𝑎
𝑏)
2

𝐿
.

(20)

Thus

(𝑎
𝑏)
2

𝑀
≤ 𝜂 (𝑡) ≤ (𝑎

𝑏)
2

𝐿
. (21)

By (13), we get that Equation (6) has a unique positive𝜔−periodic continuous solution as follows:

𝜁 (𝑡) = 1
√−2∫𝑡−∞ 𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑎 (𝑠) 𝑑𝑠

.
(22)

and we have

−(𝑏
𝑎)𝑀 ≤ 𝜁 (𝑡) ≤ −(𝑏

𝑎)𝐿 . (23)

Thus 𝜁(𝑡) ∈ 𝐵.
Define a mapping as follows:

(𝑇𝜑) (𝑡) = 𝜁 (𝑡) = 1
√−2∫𝑡−∞ 𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑎 (𝑠) 𝑑𝑠

.
(24)

Thus, if given any 𝜑(𝑡) ∈ 𝐵, then (𝑇𝜑)(𝑡) ∈ 𝐵; hence 𝑇 : 𝐵 →𝐵.
Now, we prove that the mapping 𝑇 is a compact operator.
Consider any sequence {𝜑𝑛(𝑡)} ⊂ 𝐵(𝑛 = 1, 2, ⋅ ⋅ ⋅ ); then it

follows that

− (𝑏
𝑎)𝑀 ≤ 𝜑𝑛 (𝑡) ≤ − (𝑏

𝑎)𝐿 ,
mod (𝜑𝑛) ⊂ mod (𝑎, 𝑏) , (𝑛 = 1, 2, ⋅ ⋅ ⋅ ) .

(25)

On the other hand, (𝑇𝜑𝑛)(𝑡) = 𝑥𝜑𝑛(𝑡) satisfies
𝑑𝑥𝜑𝑛 (𝑡)𝑑𝑡 = 𝑎 (𝑡) 𝑥3𝜑𝑛 (𝑡) + 𝑏 (𝑡) 𝜑𝑛 (𝑡) 𝑥𝜑𝑛 (𝑡) . (26)

Thus we have


𝑑𝑥𝜑𝑛 (𝑡)𝑑𝑡

 ≤ 𝑎𝐿 ((𝑏
𝑎)𝐿)

3 + 𝑏𝑀 (−(𝑏
𝑎)𝐿)

2 ,
mod (𝑥𝜑𝑛 (𝑡)) ⊂ mod (𝑎, 𝑏) .

(27)

Hence {𝑑𝑥𝜑𝑛(𝑡)/𝑑𝑡} is uniformly bounded; therefore, {𝑥𝜑𝑛(𝑡)}
is uniformly bounded and equicontinuous on 𝑅; by the
theorem of Ascoli-arzela, for any sequence {𝑥𝜑𝑛(𝑡)} ⊂ 𝐵,
there exists a subsequence (also denoted by {𝑥𝜑𝑛 (𝑡)}) such that{𝑥𝜑𝑛(𝑡)} is convergent uniformly on any compact set of𝑅; also
combined with Lemma 2, {𝑥𝜑𝑛(𝑡)} is convergent uniformly on𝑅; that is to say, 𝑇 is relatively compact on 𝐵.

Next, we prove that 𝑇 is a continuous operator.
Suppose {𝜑𝑘(𝑡)} ⊂ 𝐵, 𝜑(𝑡) ∈ 𝐵, and

𝜑𝑘 (𝑡) → 𝜑 (𝑡) , (𝑘 → ∞) . (28)

By (24), we have that

(𝑇𝜑𝑘) (𝑡) − (𝑇𝜑) (𝑡)

=


1
√−2∫𝑡−∞ 𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑𝑘(𝜏)𝑑𝜏𝑎 (𝑠) 𝑑𝑠

− 1
√−2∫𝑡−∞ 𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑎 (𝑠) 𝑑𝑠


=


− 1
2√(𝜉1)3

(−2∫𝑡
−∞

(𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑𝑘(𝜏)𝑑𝜏

− 𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏) 𝑎 (𝑠) 𝑑𝑠)
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=

− 1
2√(𝜉1)3

(−2∫𝑡
−∞

𝑒𝜉2 (−2∫𝑡
𝑠
𝑏 (𝜏)

⋅ (𝜑𝑘 (𝜏) − 𝜑 (𝜏)) 𝑑𝜏) 𝑎 (𝑠) 𝑑𝑠)

.

(29)

Here, 𝜉1 is between −2 ∫𝑡−∞ 𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑𝑘(𝜏)𝑑𝜏𝑎(𝑠)𝑑𝑠 and

−2∫𝑡−∞ 𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑎(𝑠)𝑑𝑠; thus 𝜉1 is between (𝑎/𝑏)2𝑀 and
(𝑎/𝑏)2𝐿; 𝜉2 is between −2∫𝑡𝑠 𝑏(𝜏)𝜑𝑘(𝜏)𝑑𝜏 and −2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏;
thus 𝜉2 is between 2𝑏𝑀(𝑏/𝑎)𝐿(𝑡 − 𝑠) and 2𝑏𝐿(𝑏/𝑎)𝑀(𝑡 − 𝑠), so
we have

(𝑇𝜑)𝑘 (𝑡) − (𝑇𝜑) (𝑡)

≤

− 1
2√((𝑎/𝑏)2𝑀)3

(−2∫𝑡
−∞

𝑒2𝑏𝐿(𝑏/𝑎)𝑀(𝑡−𝑠) (−2∫𝑡
𝑠
𝑏 (𝜏)

⋅ (𝜑𝑘 (𝜏) − 𝜑 (𝜏)) 𝑑𝜏) 𝑎 (𝑠) 𝑑𝑠)


≤ −2𝑏𝑀𝑎𝐿
√((𝑎/𝑏)2𝑀)3

(∫𝑡
−∞

𝑒2𝑏𝐿(𝑏/𝑎)𝑀(𝑡−𝑠) (𝑡

− 𝑠) 𝑑𝑠) 𝜌 (𝜑𝑘, 𝜑)

= −2𝑏𝑀𝑎𝐿
√((𝑎/𝑏)2𝑀)3 (2𝑏𝐿 (𝑏/𝑎)𝑀)2

𝜌 (𝜑𝑘, 𝜑) .

(30)

By (28), it follows that

(𝑇𝜑𝑘) (𝑡) → (𝑇𝜑) (𝑡) , (𝑘 → ∞) . (31)

Therefore, 𝑇 is continuous; by (24), it is easy to see that𝑇(𝜕𝐵) ⊂ 𝐵; according to Lemma 3, 𝑇 has at least a fixed point
on 𝐵; the fixed point is the 𝜔−periodic continuous solution𝛾(𝑡) of Equation (6), and

−(𝑏
𝑎)𝑀 ≤ 𝛾 (𝑡) ≤ −(𝑏

𝑎)𝐿 . (32)

(2) We prove that Equation (6) has exactly a unique
nonzero periodic solution 𝛾(𝑡).

Let

𝑓 (𝑡, 𝑥) = 𝑎 (𝑡) 𝑥3 + 𝑏 (𝑡) 𝑥2. (33)

Then

𝑓𝑥𝑥𝑥 (𝑡, 𝑥) = 6𝑎 (𝑡) < 0. (34)

By (34), according to Lemma4, Equation (6) has atmost three
periodic continuous solutions; we know that Equation (6) has
three periodic continuous solutions: 𝛾(𝑡) and double periodic
solutions 𝛾1(𝑡) = 𝛾2(𝑡) = 0; thus it follows that Equation (6)
has exactly a unique positive 𝜔−periodic continuous solution𝛾(𝑡), and

−(𝑏
𝑎)𝑀 ≤ 𝛾 (𝑡) ≤ −(𝑏

𝑎)𝐿 . (35)

This is the end of the proof of Theorem 5.

Theorem 6. Consider Equation (6); 𝑎(𝑡), 𝑏(𝑡) are 𝜔−periodic
continuous functions; suppose that the following conditions
hold:

(𝐻1) 𝑎 (𝑡) < 0,
(𝐻2) 𝑏 (𝑡) < 0. (36)

Then Equation (6) has a unique negative 𝜔−periodic continu-
ous solution 𝛾(𝑡), and

−(𝑏
𝑎)𝑀 ≤ 𝛾 (𝑡) ≤ −(𝑏

𝑎)𝐿 . (37)

Proof. (1) Firstly, we prove the existence of a negative𝜔−periodic continuous solution of Equation (6).
Suppose

𝑆 = {𝜑 (𝑡) ∈ 𝐶 (𝑅, 𝑅) | 𝜑 (𝑡 + 𝜔) = 𝜑 (𝑡)} . (38)

Given any 𝜑(𝑡), 𝜓(𝑡) ∈ 𝑆, the distance is defined as follows:

𝜌 (𝜑, 𝜓) = sup
𝑡∈[0,𝜔]

𝜑 (𝑡) − 𝜓 (𝑡) . (39)

Thus (𝑆, 𝜌) is a complete metric space; take a convex closed
set of S as follows:

𝐵 = {𝜑 (𝑡) ∈ 𝐶 (𝑅, 𝑅) | 𝜑 (𝑡 + 𝜔) = 𝜑 (𝑡) , − (𝑏
𝑎)𝑀

≤ 𝜑 (𝑡) ≤ −(𝑏
𝑎)𝐿 , mod (𝜑) ⊂ mod (𝑎, 𝑏)} .

(40)

Given any 𝜑(𝑡) ∈ 𝐵, consider the following equation:
𝑑𝑥
𝑑𝑡 = 𝑎 (𝑡) 𝑥3 + 𝑏 (𝑡) 𝜑 (𝑡) 𝑥. (41)

Since 𝑏(𝑡), 𝜑(𝑡) are 𝜔−periodic continuous functions; it fol-
lows that 𝑏(𝑡)𝜑(𝑡) is an 𝜔−periodic continuous function; let

𝑥−2 (𝑡) = 𝑢 (𝑡) . (42)

Then (41) can be turned into

𝑑𝑢
𝑑𝑡 = −2𝑏 (𝑡) 𝜑 (𝑡) 𝑢 − 2𝑎 (𝑡) . (43)

By (40) and (𝐻2), it follows that
−2𝑏𝐿 (−(𝑏

𝑎)𝑀) ≤ −2𝑏 (𝑡) 𝜑 (𝑡) ≤ −2𝑏𝑀(−(𝑏
𝑎)𝐿)

< 0.
(44)
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That is

2𝑏𝐿 (𝑏
𝑎)𝑀 ≤ −2𝑏 (𝑡) 𝜑 (𝑡) ≤ 2𝑏𝑀 (𝑏

𝑎)𝐿 < 0. (45)

Thus it follows that

− 2
𝜔 ∫𝜔
0

𝑏 (𝑡) 𝜑 (𝑡) 𝑑𝑡 < 0. (46)

According to Lemma 1, Equation (43) has a unique𝜔−periodic continuous solution as follows:

𝜂 (𝑡) = −2∫𝑡
−∞

𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑎 (𝑠) 𝑑𝑠. (47)

By (40),(45), and (47), we have

𝜂 (𝑡) = −2∫𝑡
−∞

𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑏 (𝑠) 𝑎 (𝑠)
𝑏 (𝑠)𝑑𝑠

≥ −2(𝑎
𝑏)𝐿 ∫

𝑡

−∞
𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑏 (𝑠) 𝑑𝑠

≥ −2(𝑎
𝑏)𝐿 ∫

𝑡

−∞
𝑒2(𝑏/𝑎)𝑀 ∫𝑡𝑠 𝑏(𝜏)𝑑𝜏𝑏 (𝑠) 𝑑𝑠

= (𝑎/𝑏)𝐿(𝑏/𝑎)𝑀 [𝑒2(𝑏/𝑎)𝑀 ∫𝑡𝑠 𝑏(𝜏)𝑑𝜏]𝑡
−∞

= (𝑎/𝑏)𝐿(𝑏/𝑎)𝑀 [1 − 𝑒2(𝑏/𝑎)𝑀 ∫𝑡−∞ 𝑏(𝜏)𝑑𝜏]

≥ (𝑎/𝑏)𝐿(𝑏/𝑎)𝑀 [1 − 𝑒2(𝑏/𝑎)𝑀 ∫𝑡−∞ 𝑏𝑀𝑑𝜏] = (𝑎
𝑏)
2

𝐿
.

(48)

and

𝜂 (𝑡) = −2∫𝑡
−∞

𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑏 (𝑠) 𝑎 (𝑠)
𝑏 (𝑠)𝑑𝑠

≤ −2(𝑎
𝑏)𝑀∫𝑡

−∞
𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑏 (𝑠) 𝑑𝑠

≤ −2(𝑎
𝑏)𝑀∫𝑡

−∞
𝑒2(𝑏/𝑎)𝐿 ∫𝑡𝑠 𝑏(𝜏)𝑑𝜏𝑏 (𝑠) 𝑑𝑠

= (𝑎/𝑏)𝑀(𝑏/𝑎)𝐿 [𝑒2(𝑏/𝑎)𝐿 ∫𝑡𝑠 𝑏(𝜏)𝑑𝜏]𝑡
−∞

= (𝑎/𝑏)𝑀(𝑏/𝑎)𝐿 [1 − 𝑒2(𝑏/𝑎)𝐿 ∫𝑡−∞ 𝑏(𝜏)𝑑𝜏]

≤ (𝑎/𝑏)𝑀(𝑏/𝑎)𝐿 [1 − 𝑒2(𝑏/𝑎)𝐿 ∫𝑡−∞ 𝑏𝐿𝑑𝜏] = (𝑎
𝑏)
2

𝑀
.

(49)

Thus

(𝑎
𝑏)
2

𝐿
≤ 𝜂 (𝑡) ≤ (𝑎

𝑏)
2

𝑀
. (50)

By (42), we get that Equation (6) has a unique negative𝜔−periodic continuous solution as follows:

𝜁 (𝑡) = − 1
√−2 ∫𝑡−∞ 𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑎 (𝑠) 𝑑𝑠

.
(51)

and we have

−(𝑏
𝑎)𝑀 ≤ 𝜁 (𝑡) ≤ −(𝑏

𝑎)𝐿 . (52)

Thus 𝜁(𝑡) ∈ 𝐵.
Define a mapping as follows:

(𝑇𝜑) (𝑡) = 𝜁 (𝑡) = − 1
√−2∫𝑡−∞ 𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑎 (𝑠) 𝑑𝑠

.
(53)

Thus if given any 𝜑(𝑡) ∈ 𝐵, then (𝑇𝜑)(𝑡) ∈ 𝐵; hence 𝑇 : 𝐵 →𝐵.
Now, we prove that the mapping 𝑇 is a compact operator.
Consider any sequence {𝜑𝑛(𝑡)} ⊂ 𝐵(𝑛 = 1, 2, ⋅ ⋅ ⋅ ); then it

follows that

− (𝑏
𝑎)𝑀 ≤ 𝜑𝑛 (𝑡) ≤ − (𝑏

𝑎)𝐿 ,
mod (𝜑𝑛) ⊂ mod (𝑎, 𝑏) , (𝑛 = 1, 2, ⋅ ⋅ ⋅ ) .

(54)

On the other hand, (𝑇𝜑𝑛)(𝑡) = 𝑥𝜑𝑛(𝑡) satisfies

𝑑𝑥𝜑𝑛 (𝑡)𝑑𝑡 = 𝑎 (𝑡) 𝑥3𝜑𝑛 (𝑡) + 𝑏 (𝑡) 𝜑𝑛 (𝑡) 𝑥𝜑𝑛 (𝑡) . (55)

Thus we have


𝑑𝑥𝜑𝑛 (𝑡)𝑑𝑡

 ≤ −𝑎𝐿 ((𝑏
𝑎)𝑀)

3 − 𝑏𝐿 (−(𝑏
𝑎)𝑀)

2 ,
mod (𝑥𝜑𝑛 (𝑡)) ⊂ mod (𝑎, 𝑏) .

(56)

Hence {𝑑𝑥𝜑𝑛(𝑡)/𝑑𝑡} is uniformly bounded; therefore, {𝑥𝜑𝑛(𝑡)}
is uniformly bounded and equicontinuous on 𝑅; by the
theorem of Ascoli-arzela, for any sequence {𝑥𝜑𝑛(𝑡)} ⊂ 𝐵,
there exists a subsequence (also denoted by {𝑥𝜑𝑛 (𝑡)}) such that{𝑥𝜑𝑛(𝑡)} is convergent uniformly on any compact set of𝑅; also
combined with Lemma 2, {𝑥𝜑𝑛(𝑡)} is convergent uniformly on𝑅; that is to say, 𝑇 is relatively compact on 𝐵.
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Next, we prove that 𝑇 is a continuous operator.
Suppose {𝜑𝑘(𝑡)} ⊂ 𝐵, 𝜑(𝑡) ∈ 𝐵, and

𝜑𝑘 (𝑡) → 𝜑 (𝑡) , (𝑘 → ∞) . (57)
(𝑇𝜑𝑘) (𝑡) − (𝑇𝜑) (𝑡)

=

− 1
√−2 ∫𝑡−∞ 𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑𝑘(𝜏)𝑑𝜏𝑎 (𝑠) 𝑑𝑠

+ 1
√−2 ∫𝑡−∞ 𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑎 (𝑠) 𝑑𝑠


=

− 1
2√(𝜉1)3

(−2∫𝑡
−∞

(𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑𝑘(𝜏)𝑑𝜏

− 𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏) 𝑎 (𝑠) 𝑑𝑠)


=

− 1
2√(𝜉1)3

(−2∫𝑡
−∞

𝑒𝜉2 (−2∫𝑡
𝑠
𝑏 (𝜏)

⋅ (𝜑𝑘 (𝜏) − 𝜑 (𝜏)) 𝑑𝜏) 𝑎 (𝑠) 𝑑𝑠)

,

(58)

Here, 𝜉1 is between −2 ∫𝑡−∞ 𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑𝑘(𝜏)𝑑𝜏𝑎(𝑠)𝑑𝑠 and

−2∫𝑡−∞ 𝑒−2∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏𝑎(𝑠)𝑑𝑠; thus 𝜉1 is between (𝑎/𝑏)2𝐿 and
(𝑎/𝑏)2𝑀; 𝜉2 is between−2 ∫𝑡𝑠 𝑏(𝜏)𝜑𝑘(𝜏)𝑑𝜏 and−2 ∫𝑡𝑠 𝑏(𝜏)𝜑(𝜏)𝑑𝜏;
thus 𝜉2 is between 2𝑏𝐿(𝑏/𝑎)𝑀(𝑡 − 𝑠) and 2𝑏𝑀(𝑏/𝑎)𝐿(𝑡 − 𝑠), so
we have

(𝑇𝜑𝑘) (𝑡) − (𝑇𝜑) (𝑡)

≤

− 1
2√((𝑎/𝑏)2𝐿)3

(−2∫𝑡
−∞

𝑒2𝑏𝑀(𝑏/𝑎)𝐿(𝑡−𝑠) (−2∫𝑡
𝑠
𝑏 (𝜏)

⋅ (𝜑𝑘 (𝜏) − 𝜑 (𝜏)) 𝑑𝜏) 𝑎 (𝑠) 𝑑𝑠)


≤ 2𝑏𝐿𝑎𝐿
√((𝑎/𝑏)2𝐿)3

(∫𝑡
−∞

𝑒2𝑏𝑀(𝑏/𝑎)𝐿(𝑡−𝑠) (𝑡

− 𝑠) 𝑑𝑠) 𝜌 (𝜑𝑘, 𝜑)

= 2𝑏𝐿𝑎𝐿
√((𝑎/𝑏)2𝐿)3 (2𝑏𝑀 (𝑏/𝑎)𝐿)2

𝜌 (𝜑𝑘, 𝜑) .

(59)

By (57), it follows that
(𝑇𝜑𝑘) (𝑡) → (𝑇𝜑) (𝑡) , (𝑘 → ∞) . (60)

Therefore, 𝑇 is continuous, by (53), it is easy to see that𝑇(𝜕𝐵) ⊂ 𝐵; according to Lemma 3, 𝑇 has at least a fixed point
on 𝐵; the fixed point is the negative 𝜔−periodic continuous
solution 𝛾(𝑡) of Equation (6), and

−(𝑏
𝑎)𝑀 ≤ 𝛾 (𝑡) ≤ −(𝑏

𝑎)𝐿 . (61)

(2) We prove that Equation (6) has exacatly a unique
nonzero periodic solution 𝛾(𝑡).

Let

𝑓 (𝑡, 𝑥) = 𝑎 (𝑡) 𝑥3 + 𝑏 (𝑡) 𝑥2. (62)

Then

𝑓𝑥𝑥𝑥 (𝑡, 𝑥) = 6𝑎 (𝑡) < 0. (63)

By (63), according to Lemma4, Equation (6) has atmost three
periodic continuous solutions; we know that Equation (6) has
three periodic continuous solutions: 𝛾(𝑡) and double periodic
solutions 𝛾1(𝑡) = 𝛾2(𝑡) = 0; thus it follows that Equation (6)
has exactly a unique negative𝜔−periodic continuous solution𝛾(𝑡), and

−(𝑏
𝑎)𝑀 ≤ 𝛾 (𝑡) ≤ −(𝑏

𝑎)𝐿 . (64)

This is the end of the proof of Theorem 6.

Similar to the proofs of Theorems 5 and 6, we can get the
following.

Theorem 7. Consider Equation (6); 𝑎(𝑡), 𝑏(𝑡) are 𝜔−periodic
continuous functions; suppose that the following conditions
hold:

(𝐻1) 𝑎 (𝑡) > 0,
(𝐻2) 𝑏 (𝑡) > 0. (65)

Then Equation (6) has a unique negative 𝜔−periodic continu-
ous solution 𝛾(𝑡), and

−(𝑏
𝑎)𝑀 ≤ 𝛾 (𝑡) ≤ −(𝑏

𝑎)𝐿 . (66)

Theorem 8. Consider Equation (6); 𝑎(𝑡), 𝑏(𝑡) are 𝜔−periodic
continuous functions; suppose that the following conditions
hold:

(𝐻1) 𝑎 (𝑡) > 0,
(𝐻2) 𝑏 (𝑡) < 0. (67)

ThenEquation (6) has a unique positive𝜔−periodic continuous
solution 𝛾(𝑡), and
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−(𝑏
𝑎)𝑀 ≤ 𝛾 (𝑡) ≤ −(𝑏

𝑎)𝐿 . (68)

4. Existence of Periodic Solutions
on Abel’s Equation

In this section, we discuss the existence of periodic solutions
on Abel differential equation.

We suppose that 𝑟 = 𝑟(𝑡) is an 𝜔− periodic continuous
particular solution of Equation (1) and, then, by means of
the transformation method, present an alternative method
of generating the other 𝜔− periodic continuous solutions
(solution) of Equation (1) from a particular one.

Theorem 9. Consider Equation (1); 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑑(𝑡) are all𝜔−periodic continuous functions and 𝑟1 = 𝑟1(𝑡) is an 𝜔−
periodic continuous particular solution of Equation (1); suppose
that the following conditions hold:

(𝐻1) 𝑟1 (𝑡) = − 𝑏 (𝑡)
3𝑎 (𝑡) ,

(𝐻2) 𝑎 (𝑡) < 0,
(𝐻3) 𝑐 (𝑡) − 𝑏2 (𝑡)

3𝑎 (𝑡) > 0.
(69)

Then Equation (1) has other two 𝜔−periodic continuous solu-
tions as follows:

𝛾2 (𝑡) = 1
√−2∫𝑡−∞ 𝑒−2∫𝑡𝑠 [𝑐(𝜏)−𝑏2(𝜏)/3𝑎(𝜏)]𝑑𝜏𝑎 (𝑠) 𝑑𝑠
− 𝑏 (𝑡)

3𝑎 (𝑡) ,
(70)

and

𝛾3 (𝑡) = 1
−√−2 ∫𝑡−∞ 𝑒−2∫𝑡𝑠 [𝑐(𝜏)−𝑏2(𝜏)/3𝑎(𝜏)]𝑑𝜏𝑎 (𝑠) 𝑑𝑠
− 𝑏 (𝑡)

3𝑎 (𝑡) .
(71)

Proof. Let

𝑦 (𝑡) = 𝑥 (𝑡) − 𝑟1 (𝑡) , (72)

where𝑥(𝑡) is the unique solution with the initial value 𝑥(𝑡0) =𝑥0 of Equation (1); differentiating both sides of (72) along the
solution of Equation (1), we get

𝑑𝑦
𝑑𝑡 = 𝑑𝑥

𝑑𝑡 − 𝑑𝑟1𝑑𝑡 = 𝑎 (𝑡) [𝑥3 (𝑡) − 𝑟31 (𝑡)]
+ 𝑏 (𝑡) [𝑥2 (𝑡) − 𝑟21 (𝑡)] + 𝑐 (𝑡) [𝑥 (𝑡) − 𝑟1 (𝑡)]
= 𝑎 (𝑡) (𝑥 (𝑡) − 𝑟1 (𝑡))3
+ [𝑏 (𝑡) + 3𝑎 (𝑡) 𝑟1 (𝑡)] (𝑥 (𝑡) − 𝑟1 (𝑡))2
+ [2𝑏 (𝑡) 𝑟1 (𝑡) + 𝑐 (𝑡) + 3𝑎 (𝑡) 𝑟21 (𝑡)] (𝑥 (𝑡) − 𝑟1 (𝑡))
= 𝑎 (𝑡) 𝑦3 + [𝑏 (𝑡) + 3𝑎 (𝑡) 𝑟1 (𝑡)] 𝑦2
+ [2𝑏 (𝑡) 𝑟1 (𝑡) + 𝑐 (𝑡) + 3𝑎 (𝑡) 𝑟21 (𝑡)] 𝑦 = 𝑎 (𝑡) 𝑦3
+ [2𝑏 (𝑡) 𝑟1 (𝑡) + 𝑐 (𝑡) + 3𝑎 (𝑡) 𝑟21 (𝑡)] 𝑦 = 𝑎 (𝑡) 𝑦3

+ [𝑐 (𝑡) − 𝑏2 (𝑡)
3𝑎 (𝑡)] 𝑦.

(73)

Let

𝑦−2 (𝑡) = 𝑢 (𝑡) . (74)

Equation (73) is turned into

𝑑𝑢
𝑑𝑡 = −2[𝑐 (𝑡) − 𝑏2 (𝑡)

3𝑎 (𝑡)] 𝑢 − 2𝑎 (𝑡) . (75)

By (𝐻3), according to Lemma 1, Equation (75) has a unique𝜔−periodic continuous solution as follows:

𝜁 (𝑡) = −2∫𝑡
−∞

𝑒−2∫𝑡𝑠 [𝑐(𝜏)−𝑏2(𝜏)/3𝑎(𝜏)]𝑑𝜏𝑎 (𝑠) 𝑑𝑠. (76)

By (𝐻2) and (76), it follows that

𝜁 (𝑡) > 0. (77)

By (74), it follows that Equation (73) has two 𝜔−periodic
continuous solutions as follows:

𝜂1 (𝑡) = 1
√−2 ∫𝑡−∞ 𝑒−2∫𝑡𝑠 [𝑐(𝜏)−𝑏2(𝜏)/3𝑎(𝜏)]𝑑𝜏𝑎 (𝑠) 𝑑𝑠

.
(78)

and

𝜂2 (𝑡) = 1
−√−2∫𝑡−∞ 𝑒−2∫𝑡𝑠 [𝑐(𝜏)−𝑏2(𝜏)/3𝑎(𝜏)]𝑑𝜏𝑎 (𝑠) 𝑑𝑠

.
(79)

By (72), it follows that Equation (1) has other two 𝜔−periodic
continuous solutions as follows:

𝛾2 (𝑡) = 1
√−2 ∫𝑡−∞ 𝑒−2∫𝑡𝑠 [𝑐(𝜏)−𝑏2(𝜏)/3𝑎(𝜏)]𝑑𝜏𝑎 (𝑠) 𝑑𝑠
− 𝑏 (𝑡)

3𝑎 (𝑡) ,
(80)

and
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𝛾3 (𝑡) = 1
−√−2 ∫𝑡−∞ 𝑒−2∫𝑡𝑠 [𝑐(𝜏)−𝑏2(𝜏)/3𝑎(𝜏)]𝑑𝜏𝑎 (𝑠) 𝑑𝑠
− 𝑏 (𝑡)

3𝑎 (𝑡) .
(81)

This is the end of the proof of Theorem 9.

Similar to the proof of Theorem 9, we can get the
following.

Theorem 10. Consider Equation (1); 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑑(𝑡) are
all 𝜔−periodic continuous functions and 𝑟1 = 𝑟1(𝑡) is an𝜔−periodic continuous particular solution of Equation (1);
suppose that the following conditions hold:

(𝐻1) 𝑟1 (𝑡) = − 𝑏 (𝑡)
3𝑎 (𝑡) ,

(𝐻2) 𝑎 (𝑡) > 0,
(𝐻3) 𝑐 (𝑡) − 𝑏2 (𝑡)

3𝑎 (𝑡) < 0.
(82)

Then Equation (1) has other two 𝜔−periodic continuous solu-
tions as follows:

𝛾2 (𝑡) = 1
√2∫+∞𝑡 𝑒2 ∫𝑡𝑠 [𝑏2(𝜏)/3𝑎(𝜏)−𝑐(𝜏)]𝑑𝜏𝑎 (𝑠) 𝑑𝑠
− 𝑏 (𝑡)

3𝑎 (𝑡) ,
(83)

and

𝛾3 (𝑡) = 1
−√2∫+∞𝑡 𝑒2 ∫𝑡𝑠 [𝑏2(𝜏)/3𝑎(𝜏)−𝑐(𝜏)]𝑑𝜏𝑎 (𝑠) 𝑑𝑠
− 𝑏 (𝑡)

3𝑎 (𝑡) .
(84)

Theorem 11. Consider Equation (1); 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑑(𝑡) are
all 𝜔−periodic continuous functions and 𝑟1 = 𝑟1(𝑡) is an𝜔−periodic continuous particular solution of Equation (1);
suppose that the following conditions hold:

(𝐻1) 𝑟1 (𝑡) = −𝑏 (𝑡) + √𝑏2 (𝑡) − 3𝑎 (𝑡) 𝑐 (𝑡)
3𝑎 (𝑡) ,

(𝐻2) 𝑎 (𝑡) < 0,
(𝐻3) 𝑏2 (𝑡) − 3𝑎 (𝑡) 𝑐 (𝑡) > 0.

(85)

Then Equation (1) has another nonzero 𝜔−periodic continuous
solution 𝛾2(𝑡).
Proof. Let

𝑦 (𝑡) = 𝑥 (𝑡) − 𝑟1 (𝑡) , (86)

where𝑥(𝑡) is the unique solution with the initial value 𝑥(𝑡0) =𝑥0 of Equation (1); differentiating both sides of (86) along the
solution of Equation (1), we get

𝑑𝑦
𝑑𝑡 = 𝑑𝑥

𝑑𝑡 − 𝑑𝑟1𝑑𝑡 = 𝑎 (𝑡) [𝑥3 (𝑡) − 𝑟31 (𝑡)]
+ 𝑏 (𝑡) [𝑥2 (𝑡) − 𝑟21 (𝑡)] + 𝑐 (𝑡) [𝑥 (𝑡) − 𝑟1 (𝑡)]
= 𝑎 (𝑡) (𝑥 (𝑡) − 𝑟1 (𝑡))3
+ [𝑏 (𝑡) + 3𝑎 (𝑡) 𝑟1 (𝑡)] (𝑥 (𝑡) − 𝑟1 (𝑡))2
+ [2𝑏 (𝑡) 𝑟1 (𝑡) + 𝑐 (𝑡) + 3𝑎 (𝑡) 𝑟21 (𝑡)] (𝑥 (𝑡) − 𝑟1 (𝑡))
= 𝑎 (𝑡) 𝑦3 + [𝑏 (𝑡) + 3𝑎 (𝑡) 𝑟1 (𝑡)] 𝑦2
+ [2𝑏 (𝑡) 𝑟1 (𝑡) + 𝑐 (𝑡) + 3𝑎 (𝑡) 𝑟21 (𝑡)] 𝑦 = 𝑎 (𝑡) 𝑦3
+ √𝑏2 (𝑡) − 3𝑎 (𝑡) 𝑐 (𝑡)𝑦2.

(87)

By (𝐻2), (𝐻3), Equation (87) satisfies all the conditions of
Theorem 5; according to Theorem 5, Equation (87) has a
unique nonzero𝜔−periodic continuous solution 𝜁(𝑡); by (86),
it follows that Equation (1) has another nonzero 𝜔−periodic
continuous solution 𝛾2(𝑡) = 𝜁(𝑡) + 𝛾1(𝑡).

This is the end of the proof of Theorem 11.

Theorem 12. Consider Equation (1); 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑑(𝑡) are
all 𝜔−periodic continuous functions and 𝑟1 = 𝑟1(𝑡) is an 𝜔−
periodic continuous particular solution of Equation (1); suppose
that the following conditions hold:

(𝐻1) 𝑟1 (𝑡) = −𝑏 (𝑡) − √𝑏2 (𝑡) − 3𝑎 (𝑡) 𝑐 (𝑡)
3𝑎 (𝑡) ,

(𝐻2) 𝑎 (𝑡) < 0,
(𝐻3) 𝑏2 (𝑡) − 3𝑎 (𝑡) 𝑐 (𝑡) > 0.

(88)

Then Equation (1) has another nonzero 𝜔−periodic continuous
solution 𝛾2(𝑡).
Proof. Let

𝑦 (𝑡) = 𝑥 (𝑡) − 𝑟1 (𝑡) , (89)

where𝑥(𝑡) is the unique solution with the initial value 𝑥(𝑡0) =𝑥0 of Equation (1); differentiating both sides of (89) along the
solution of Equation (1), we get

𝑑𝑦
𝑑𝑡 = 𝑑𝑥

𝑑𝑡 − 𝑑𝑟1𝑑𝑡 = 𝑎 (𝑡) [𝑥3 (𝑡) − 𝑟31 (𝑡)]
+ 𝑏 (𝑡) [𝑥2 (𝑡) − 𝑟21 (𝑡)] + 𝑐 (𝑡) [𝑥 (𝑡) − 𝑟1 (𝑡)]
= 𝑎 (𝑡) (𝑥 (𝑡) − 𝑟1 (𝑡))3
+ [𝑏 (𝑡) + 3𝑎 (𝑡) 𝑟1 (𝑡)] (𝑥 (𝑡) − 𝑟1 (𝑡))2
+ [2𝑏 (𝑡) 𝑟1 (𝑡) + 𝑐 (𝑡) + 3𝑎 (𝑡) 𝑟21 (𝑡)] (𝑥 (𝑡) − 𝑟1 (𝑡))
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= 𝑎 (𝑡) 𝑦3 + [𝑏 (𝑡) + 3𝑎 (𝑡) 𝑟1 (𝑡)] 𝑦2
+ [2𝑏 (𝑡) 𝑟1 (𝑡) + 𝑐 (𝑡) + 3𝑎 (𝑡) 𝑟21 (𝑡)] 𝑦 = 𝑎 (𝑡) 𝑦3
− √𝑏2 (𝑡) − 3𝑎 (𝑡) 𝑐 (𝑡)𝑦2.

(90)

By (𝐻2), (𝐻3), Equation (90) satisfies all the conditions of
Theorem 6; according to Theorem 6, Equation (90) has a
unique nonzero𝜔−periodic continuous solution 𝜁(𝑡); by (89),
it follows that Equation (1) has another nonzero 𝜔−periodic
continuous solution 𝛾2(𝑡) = 𝜁(𝑡) + 𝛾1(𝑡).

This is the end of the proof of Theorem 12.

Remark 13. InTheorems 11 and 12, if 𝑎(𝑡) > 0, it is not difficult
for us to get similar results; we omit them here.

5. Discussion

In this paper, firstly, we consider Abel’s type differential
equation:

𝑑𝑥
𝑑𝑡 = 𝑎 (𝑡) 𝑥3 + 𝑏 (𝑡) 𝑥2. (91)

Here, 𝑎(𝑡), 𝑏(𝑡) are both 𝜔−periodic continuous functions on𝑅; by using fixed point theory, we get that if

𝑎 (𝑡) 𝑏 (𝑡) < 0, (92)

then Equation (91) has a unique positive nonzero 𝜔−periodic
continuous solution; if

𝑎 (𝑡) 𝑏 (𝑡) > 0, (93)

then Equation (91) has a unique negative nonzero𝜔−periodic
continuous solution. A simple method for judging the exis-
tence and uniqueness of nonzero periodic solution of Abel’s
type equation (91) is given.

Then, consider the following Abel’s differential equation:

𝑑𝑥
𝑑𝑡 = 𝑎 (𝑡) 𝑥3 + 𝑏 (𝑡) 𝑥2 + 𝑐 (𝑡) 𝑥 + 𝑑 (𝑡) , (94)

where 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑑(𝑡) are all𝜔−periodic continuous func-
tions on𝑅, and 𝑎(𝑡), 𝑏(𝑡) are derivable on𝑅; by using transfor-
mation method, we get other periodic solutions of nonlinear
Abel differential equations with a particular periodic solu-
tion.When the four coefficients of the equation satisfy certain
conditions, there does exist a particular periodic solution; for
example, in Theorems 9 and 10, if

𝑑 (𝑡) = 𝑏3 (𝑡)
27𝑎2 (𝑡) + 𝑏 (𝑡)

3𝑎 (𝑡) (𝑐 (𝑡) − 𝑏2 (𝑡)
3𝑎 (𝑡))

− 𝑑
𝑑𝑡 (

𝑏 (𝑡)
3𝑎 (𝑡)) ,

(95)

then Equation (94) has an 𝜔−periodic continuous solution𝛾1(𝑡) = −𝑏(𝑡)/3𝑎(𝑡).

In Theorem 11, if

𝑑 (𝑡) = −(𝑏 (𝑡) + √𝑏2 (𝑡) − 3𝑎 (𝑡) 𝑐 (𝑡))3
27𝑎2 (𝑡)

− √𝑏2 (𝑡) − 3𝑎 (𝑡) 𝑐 (𝑡) (𝑏 (𝑡) + √𝑏2 (𝑡) − 3𝑎 (𝑡) 𝑐 (𝑡))2
9𝑎2 (𝑡)

+ 𝑑
𝑑𝑡 (

𝑏 (𝑡) + √𝑏2 (𝑡) − 3𝑎 (𝑡) 𝑐 (𝑡)
3𝑎 (𝑡) ) ,

(96)

then Equation (94) has an 𝜔−periodic continuous solution
𝛾1(𝑡) = (−𝑏(𝑡) − √𝑏2(𝑡) − 3𝑎(𝑡)𝑐(𝑡))/3𝑎(𝑡).

In Theorem 12, if

𝑑 (𝑡) = (−𝑏 (𝑡) + √𝑏2 (𝑡) − 3𝑎 (𝑡) 𝑐 (𝑡))3
27𝑎2 (𝑡)

− √𝑏2 (𝑡) − 3𝑎 (𝑡) 𝑐 (𝑡)

⋅ (−𝑏 (𝑡) + √𝑏2 (𝑡) − 3𝑎 (𝑡) 𝑐 (𝑡))2
9𝑎2 (𝑡)

− 𝑑
𝑑𝑡 (

−𝑏 (𝑡) + √𝑏2 (𝑡) − 3𝑎 (𝑡) 𝑐 (𝑡)
3𝑎 (𝑡) ) ,

(97)

then Equation (94) has an 𝜔−periodic continuous solution
𝛾1(𝑡) = (−𝑏(𝑡) + √𝑏2(𝑡) − 3𝑎(𝑡)𝑐(𝑡))/3𝑎(𝑡).

This is very important for Abel’s differential equation,
which plays an important role in the fields of science,
technology, and physics. When the coefficients are periodic
functions, it is very meaningful and interesting to judge the
number of periodic solutions of the equation.
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