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In this paper, we establish extensive form of the fractional kinetic equation involving generalized Galué type Struve function using
the technique of Laplace transforms. The results are expressed in terms of Mittag-Leffler function. Further, numerical values of the
results and their graphical interpretation are interpreted to study the behaviour of these solutions. The results obtained here are
quite general in nature and capable of yielding a very large number of known and (presumably) new results.

1. Introduction and Preliminaries

In the field of applied science, the significance of fractional
differential equations has gained more attention not only
in mathematical direction but also in mathematical physics,
dynamical systems, control systems, and engineering, to
generate the mathematical model of numerous physical
phenomena. Particularly, the kinetic equations define the
continuity of motion of substance and are the elementary
equations of mathematical physics and natural science. The
extension and generality of fractional kinetic equations and
various fractional operators with special functions were
found (Agarwal et al. [1], Amsalu and Suthar [2], Baleanu
et al. [3, 4], Chaurasia and Pandey [5], Choi and Agar-
wal [6, 7], Zaslavsky [8], Gupta and Parihar [9], Gupta
and Sharma [10], Haubold and Mathai [11], Kumar et al.
[12], Nisar et al. [13], Saxena et al. [14–16], Saichev and
Zaslavsky [17], Suthar et al. [18], and Tariboon et al. [19]).
In view of the effectiveness and a great significance of the
kinetic equation in some astrophysical problems the authors
develop a further generalized form of the fractional kinetic
equation involving generalized Galué type Struve func-
tion.

Recently, generalized form of Struve function so-called as
generalized Galué type Struve function (GTSF) is defined by
Nisar et al. [20], following as

𝛼𝑤𝜆,𝜇𝑝,𝛽,𝛾,𝜉 (𝑧)
= ∞∑
𝑘=0

(−𝛾)𝑘
Γ (𝜆𝑘 + 𝜇) Γ (𝛼𝑘 + 𝑝/𝜉 + (𝛽 + 2) /2) (𝑧2)

2𝑘+𝑝+1 , (1)

where 𝜆 > 0, 𝜉 > 0, 𝛼 ∈ N, 𝑝, 𝛽, 𝛾 ∈ C, and 𝜇 is an arbitrary
parameter.

For the description of the Struve function and its more
overview, the interested reader may refer to many papers
(Bhow-Mick [21, 22], Kanth [23], Nisar et al. [24], Singh [25],
and Suthar et al. [26]).

Special Cases. We have a number of special functions,
which can be expressed as follows:

1𝑤1,3/2𝑝,𝛽,𝛾,1 (𝑧) = 𝐻𝑝,𝛽,𝛾 (𝑧) , (2)

where 𝐻𝑝,𝛽,𝛾(𝑧) is generalized Struve function, which is
defined by Orhan and Yagmur [27].

1𝑤1,3/2𝑝,−1,1,1 (𝑧) = 𝐻𝑝 (𝑧) , (3)
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where 𝐻𝑝(𝑧) is Struve function of order 𝑝, which is defined
by Nisar et al. [20].

𝑞𝑤1,12V+2𝜆,−1,1,1 (𝑧) = (𝑧/2)
V Γ (𝜆 + 𝑛 + 1)Γ (𝑛 + 1) 𝐽𝑞V,𝜆 (𝑧) , (4)

where 𝐽𝑞V,𝜆(𝑧) is Bessel Maitland function (see [28]).

1𝑤1,1𝜐−1,2,1,1 (𝑧) = 𝐽V (𝑧) , (5)

where 𝐽V(𝑧) is Bessel function of first kind (see [29]).

𝑞𝑤1,1𝑝−1,1,−1,1 (𝑧) = 𝑞𝐼𝑝 (𝑧) , (6)

where 𝑞𝐼𝑝(𝑧) is the Galué type generalization of modified
Bessel function [30].

Now, we recall the fractional differential equation
between rate of change of reaction𝑁 = 𝑁(𝑡), the destruction
rate 𝑑 = 𝑑(𝑁), and the production rate 𝑝 = 𝑝(𝑁) given by
Haubold and Mathai [11] as follows:

𝑑 (𝑁)𝑑𝑡 = −𝑑 (𝑁𝑡) + 𝑝 (𝑁𝑡) , (7)

where𝑁𝑡 is the function denoted by𝑁𝑡(𝑡∗) = 𝑁(𝑡− 𝑡∗), 𝑡∗ >0. Neglecting the inhomogeneity in the quantity 𝑁(𝑡), the
special case of (7) is

𝑑𝑁𝑖𝑑𝑡 = −𝑐𝑖𝑁𝑖 (𝑡) , (8)

with the initial condition 𝑁𝑖 (𝑡 = 0) = 𝑁0 which is the
number of density of species “𝑖” at time 𝑡 = 0.

The solution of equation (8) is expressed as

𝑁𝑖 (𝑡) = 𝑁0𝑒−𝑐𝑖𝑡. (9)

Alternatively, we can use

𝑁(𝑡) − 𝑁0 = 𝑐 0𝐷−1𝑡 𝑁(𝑡) , (10)

having in mind that 0𝐷−1𝑡 is the standard fractional integral
operator.The fractional generalization of the standard kinetic
equation (10) defined by Haubold and Mathai [11] has the
form

𝑁(𝑡) − 𝑁0 = 𝑐V 0𝐷−V𝑡 𝑁(𝑡) , (11)

where 0𝐷−V𝑡 is the most common Riemann-Liouville (R-L)
fractional integral operator. Further details of R-L are in the
studies by Oldham and Spanier [31] and Miller and Ross [32]
and it is defined as

0𝐷−V𝑡 𝑓 (𝑥) = 1Γ (V) ∫ (𝑡 − 𝑢)V−1 𝑓 (𝑢) 𝑑𝑢,
(𝑥 > 0,R (V) > 0) .

(12)

Haubold andMathai [11] have given the solution of (11) in the
form

𝑁(𝑡) = 𝑁0 ∞∑
𝑘=0

(−1)𝑘Γ (V𝑘 + 1) (𝑐𝑡)V𝑘 . (13)

Further, Saxena and Kalla [14] considered the following
fractional kinetic equation:

𝑁(𝑡) − 𝑁0𝑓 (𝑡) = −𝑐V ( 0𝐷−V𝑡 𝑁) (𝑡) , (R (V) > 0) , (14)

where𝑁(𝑡) denotes the number density of a given species at
time 𝑡, 𝑁0 = 𝑁(0)which is the number density of that species
at time 𝑡 = 0, 𝑐 that is a constant and 𝑓 ∈ 𝐿(0,∞).

Also we recall the Laplace transform of 𝑓(𝑡) defined by
Sneddon [33] as

𝐹 (𝑠) = 𝐿 {𝑓 (𝑡) ; 𝑠} = ∫∞
0
𝑒−𝑠𝑡𝑓 (𝑡) 𝑑𝑡. (15)

For 𝛼, 𝛽 ∈ C;R(𝛼) > 0;R(𝛽) > 0 the two-parameter Mittag-
Leffler function is defined by [34] as

𝐸𝛼,𝛽 (𝑧) = ∞∑
𝑘=0

𝑧𝑘Γ (𝛼𝑘 + 𝛽) (16)

The aim of this paper is to develop a new and further gen-
eralized solution of the fractional kinetic equation involving
generalizedGalué type Struve function using the technique of
Laplace transform.Themanifold generality of the generalized
Galué type Struve function is discussed in terms of the solu-
tion of the above fractional kinetic equation. Furthermore,
the results gained here are quite capable of yielding a very
huge number of known and (presumably) new results.

2. Solution of Generalized Fractional
Kinetic Equations

In this section, we solve the fractional kinetic equation
associated with generalized Galué type Struve function using
the method of Laplace transforms.

�eorem 1. If 𝛼 > 0, 𝑑 > 0, V > 0, 𝛼 ∈ N, 𝑝, 𝛽, 𝛾 ∈ C, 𝜆 >0, 𝜉 > 0, and 𝜇 is an arbitrary parameter, then the solution of
the equation

𝑁(𝑡) − 𝑁0 𝛼𝑤𝜆,𝜇𝑝,𝛽,𝛾,𝜉 (𝑡) = −𝑑V 0𝐷−V𝑡 𝑁(𝑡) (17)

is given by the formula

𝑁(𝑡) = 𝑁0 ∞∑
𝑟=0

(−𝛾)𝑟 Γ (2𝑟 + 𝑝 + 2)
Γ (𝜆𝑟 + 𝜇) Γ (𝛼𝑟 + 𝑝/𝜉 + (𝛽 + 2) /2)

⋅ ( 𝑡2)
2𝑟+𝑝+1

EV,2𝑟+𝑝+2 (−𝑑V𝑡V) .
(18)

Proof. The Laplace transform of Riemann-Liouville frac-
tional integral operator is given by [35, 36] as follows:

𝐿 { 0𝐷−V𝑡 𝑓 (𝑡) ; 𝑠} = 𝑠−V𝐹 (𝑠) (19)

where 𝐹(𝑠) is defined in (15). Now, applying the Laplace
transform on both sides of (17) and using (1) and (19) lead
to

𝐿 [𝑁 (𝑡) ; 𝑠] = 𝑁0𝐿 [ 𝛼𝑤𝜆,𝜇𝑝,𝛽,𝛾,𝜉 (𝑡) ; 𝑠]
− 𝑑V𝐿 [ 0𝐷−V𝑡 𝑁(𝑡) ; 𝑠] .

(20)
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𝑁(𝑠)
= 𝑁0 ∫∞

0
𝑒−𝑠𝑡 ∞∑
𝑟=0

(−𝛾)𝑟
Γ (𝜆𝑟 + 𝜇) Γ (𝛼𝑟 + 𝑝/𝜉 + (𝛽 + 2) /2) ( 𝑡2)

2𝑟+𝑝+1 𝑑𝑡
− 𝑑V𝑠−V𝑁(𝑠) ,

(21)

𝑁(𝑠) + 𝑑V𝑠−V𝑁(𝑠)
= 𝑁0 ∞∑
𝑟=0

(−𝛾)𝑟
Γ (𝜆𝑟 + 𝜇) Γ (𝛼𝑟 + 𝑝/𝜉 + (𝛽 + 2) /2) (12)

2𝑟+𝑝+1

× ∫∞
0
𝑒−𝑠𝑡𝑡2𝑟+𝑝+1𝑑𝑡,

(22)

𝑁(𝑠) {1 + 𝑑V𝑠−V}
= 𝑁0 ∞∑
𝑟=0

(−𝛾)𝑟
Γ (𝜆𝑟 + 𝜇) Γ (𝛼𝑟 + 𝑝/𝜉 + (𝛽 + 2) /2) (12)

2𝑟+𝑝+1

× Γ (2𝑟 + 𝑝 + 2)𝑠(2𝑟+𝑝+2) ,
(23)

𝑁(𝑠)
= 𝑁0 ∞∑
𝑟=0

(−𝛾)𝑟 Γ (2𝑟 + 𝑝 + 2)
Γ (𝜆𝑟 + 𝜇) Γ (𝛼𝑟 + 𝑝/𝜉 + (𝛽 + 2) /2) (12)

2𝑟+𝑝+1

× 𝑠−(2𝑟+𝑝+2) ∞∑
𝑘=0

(1)𝑘
⋅ [− (𝑠/𝑑)−V]𝑘𝑘! ,

(24)

Taking inverse Laplace transform on both sides of (24) and
using 𝐿−1{𝑠−V} = 𝑡V−1/Γ(V) forR(V) > 0, we have
𝐿−1 (𝑁 (𝑠))
= 𝑁0 ∞∑
𝑟=0

(−𝛾)𝑟 Γ (2𝑟 + 𝑝 + 2)
Γ (𝜆𝑟 + 𝜇) Γ (𝛼𝑟 + 𝑝/𝜉 + (𝛽 + 2) /2) (12)

2𝑟+𝑝+1

× 𝐿−1{∞∑
𝑘=0

(−1)𝑘 𝑑V𝑘𝑠−(2𝑟+𝑝+2+V𝑘)} ,
(25)

and
𝑁(𝑡)
= 𝑁0 ∞∑
𝑟=0

(−𝛾)𝑟 Γ (2𝑟 + 𝑝 + 2)
Γ (𝜆𝑟 + 𝜇) Γ (𝛼𝑟 + 𝑝/𝜉 + (𝛽 + 2) /2) (12)

2𝑟+𝑝+1

× {∞∑
𝑘=𝑜

(−1)𝑘 𝑑V𝑘 𝑡(2𝑟+𝑝+1+V𝑘)Γ (V𝑘 + 2𝑟 + 𝑝 + 2)} ,
(26)

Interpreting the above result in (26) in the view of (16), we get
the required result (18).

�eorem 2. If 𝑑 > 0, V > 0, 𝛼 ∈ N, 𝑝, 𝛽, 𝛾 ∈ C, 𝜆 > 0, 𝜉 >0, and 𝜇 is an arbitrary parameter, then the solution of the
equation

𝑁(𝑡) − 𝑁0 𝛼𝑤𝜆,𝜇𝑝,𝛽,𝛾,𝜉 (𝑑V𝑡V) = −𝑑V 0𝐷−V𝑡 𝑁(𝑡) (27)

is given by the formula
𝑁(𝑡)

= 𝑁0 ∞∑
𝑟=0

(−𝛾)𝑟 Γ ((2𝑟 + 𝑝 + 1) V + 1)
Γ (𝜆𝑟 + 𝜇) Γ (𝛼𝑟 + 𝑝/𝜉 + (𝛽 + 2) /2) (𝑑

V𝑡V2 )2𝑟+𝑝+1 EV,(2𝑟+𝑝+1)V+1 (−𝑑V𝑡V) .
(28)

Proof. Detail proof of Theorem 2 is parallel to that of
Theorem 1; therefore we omit the details.

�eorem 3. If 𝑎 > 0, 𝑑 > 0, V > 0, 𝛼 ∈ N, 𝑝, 𝛽, 𝛾 ∈ C, 𝜆 >0, 𝜉 > 0, 𝑎 ̸= 𝑑, and 𝜇 is an arbitrary parameter, then the
solution of the equation

𝑁(𝑡) − 𝑁0 𝛼𝑤𝜆,𝜇𝑝,𝛽,𝛾,𝜉 (𝑑V𝑡V) = −𝑎V 0𝐷−V𝑡 𝑁(𝑡) (29)

is given by the formula

𝑁(𝑡)

= 𝑁0 ∞∑
𝑟=0

(−𝛾)𝑟 Γ ((2𝑟 + 𝑝 + 1) V + 1)
Γ (𝜆𝑟 + 𝜇) Γ (𝛼𝑟 + 𝑝/𝜉 + (𝛽 + 2) /2) (𝑑

V𝑡V2 )2𝑟+𝑝+1 EV,(2𝑟+𝑝+1)V+1 (−𝑎V𝑡V) ,
(30)

Proof. Detail proof of Theorem 3 is parallel to that of
Theorem 1; therefore we omit the details.

3. Special Cases

(i) Setting 𝛼 = 𝜆 = 𝜉 = 1 and 𝜇 = 3/2 the generalized Galué
type Struve function is reduced into the following form:

1𝑤1,3/2𝑝,𝛽,𝛾,1 (𝑧)
= ∞∑
𝑘=0

(−𝛾)𝑘
Γ (𝑘 + 3/2) Γ (𝑘 + 𝑝 + (𝛽 + 2) /2) (𝑧2)

2𝑘+𝑝+1

= 𝐻𝑝,𝛽,𝛾 (𝑧) .
(31)

The formula (31) is obtained by suitable settings in
Theorem 1-Theorem 3 that are used for the Corollaries 4–6,
respectively.

Corollary 4. If 𝑑 > 0, V > 0, 𝑝, 𝛽, 𝛾 ∈ C then the solution of
the equation

𝑁(𝑡) − 𝑁0𝐻𝑝,𝛽,𝛾 (𝑡) = −𝑑V 0𝐷−V𝑡 𝑁(𝑡) (32)

is given by the following formula:

𝑁(𝑡)

= 𝑁0 ∞∑
𝑟=0

(−𝛾)𝑟 Γ (2𝑟 + 𝑝 + 2)
Γ (𝑟 + (3/2)) Γ (𝑟 + 𝑝 + (𝛽 + 2) /2) ( 𝑡2)

2𝑟+𝑝+1

EV,2𝑟+𝑝+2 (−𝑑V𝑡V) .
(33)

Corollary 5. If 𝑑 > 0, V > 0, 𝑝, 𝛽, 𝛾 ∈ C then the solution of
the equation

𝑁(𝑡) − 𝑁0𝐻𝑝,𝛽,𝛾 (𝑑V𝑡V) = −𝑑V 0𝐷−V𝑡 𝑁(𝑡) (34)

is given by the following formula:

𝑁(𝑡)

= 𝑁0 ∞∑
𝑟=0

(−𝛾)𝑟 Γ ((2𝑟 + 𝑝 + 1) V + 1)
Γ (𝑟 + (3/2)) Γ (𝑟 + 𝑝 + (𝛽 + 2) /2) (𝑑

V𝑡V2 )2𝑟+𝑝+1 EV,(2𝑟+𝑝+1)V+1 (−𝑑V𝑡V) .
(35)

Corollary 6. If 𝑑 > 0, V > 0, 𝑝, 𝛽, 𝛾 ∈ C, 𝑎 ̸= 𝑑, then solution
of the equation

𝑁(𝑡) − 𝑁0𝐻𝑝,𝛽,𝛾 (𝑑V𝑡V) = −𝑎V 0𝐷−V𝑡 𝑁(𝑡) (36)
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is given by the formula
𝑁(𝑡)

= 𝑁0 ∞∑
𝑟=0

(−𝛾)𝑟 Γ ((2𝑟 + 𝑝 + 1) V + 1)
Γ (𝑟 + (3/2)) Γ (𝑟 + 𝑝 + (𝛽 + 2) /2) (𝑑

V𝑡V2 )2𝑟+𝑝+1 EV,(2𝑟+𝑝+1)V+1 (−𝑎V𝑡V) .
(37)

(ii) On setting 𝛼 = 𝜆 = 𝜉 = 𝛾 = 1, 𝛽 = −1 and 𝜇 = 3/2 the
generalized Galué type Struve function is reduced into Struve
function of the following form:

1𝑤1,3/2𝑝,−1,1,1 (𝑧)
= ∞∑
𝑘=0

(−1)𝑘Γ (𝑘 + 3/2) Γ (𝑘 + 𝑝 + 1/2) (𝑧2)
2𝑘+𝑝+1

= 𝐻𝑝 (𝑧) .
(38)

The formula (38) is obtained by suitable settings inTheorem 1
to Theorem 3 that are used for the Corollaries 7–9, respec-
tively.

Corollary 7. If 𝑑 > 0, V > 0, 𝑝 ∈ C then the solution of the
equation

𝑁(𝑡) − 𝑁0𝐻𝑝 (𝑡) = −𝑑V 0𝐷−V𝑡 𝑁(𝑡) (39)

is given by the following formula:

𝑁(𝑡)
= 𝑁0 ∞∑
𝑟=0

(−1)𝑟 Γ (2𝑟 + 𝑝 + 2)
Γ (𝑟 + (3/2)) Γ (𝑟 + 𝑝 + (1/2)) ( 𝑡2)

2𝑟+𝑝+1

⋅ EV,2𝑟+𝑝+2 (−𝑑V𝑡V) .
(40)

Corollary 8. If 𝑑 > 0, V > 0, 𝑝 ∈ C then the solution of the
equation

𝑁(𝑡) − 𝑁0𝐻𝑝 (𝑑V𝑡V) = −𝑑V 0𝐷−V𝑡 𝑁(𝑡) (41)

is given by the following formula:
𝑁(𝑡)

= 𝑁0 ∞∑
𝑟=0

(−1)𝑟 Γ ((2𝑟 + 𝑝 + 1) V + 1)
Γ (𝑟 + (3/2)) Γ (𝑟 + 𝑝 + (1/2)) (𝑑

V𝑡V2 )2𝑟+𝑝+1 EV,(2𝑟+𝑝+1)V+1 (−𝑑V𝑡V) .
(42)

Corollary 9. If 𝑑 > 0, V > 0, 𝑝 ∈ C, 𝑎 ̸= 𝑑, then the solution
of the equation

𝑁(𝑡) − 𝑁0𝐻𝑝 (𝑑V𝑡V) = −𝑎V 0𝐷−V𝑡 𝑁(𝑡) (43)

is given by the formula
𝑁(𝑡)

= 𝑁0 ∞∑
𝑟=0

(−1)𝑟 Γ ((2𝑟 + 𝑝 + 1) V + 1)
Γ (𝑟 + (3/2)) Γ (𝑟 + 𝑝 + (1/2)) (𝑑

V𝑡V2 )2𝑟+𝑝+1 EV,(2𝑟+𝑝+1)V+1 (−𝑎V𝑡V) .
(44)

(iii) On setting 𝛼 = 𝜆 = 𝜉 = 𝛾 = 𝜇 = 1, 𝛽 = 2 and𝑝 = 𝑙−1 the generalizedGalué type Struve function is reduced
into Bessel function of first kind as follows:

1𝑤1,1𝑙−1,2,1,1 (𝑧) =
∞∑
𝑘=0

(−1)𝑘𝑘!Γ (𝑘 + 𝑙 + 1) (𝑧2)
2𝑘+𝑙 = 𝐽𝑙 (𝑧) . (45)

The formula (45) is obtained by suitable settings inTheorem 1
to Theorem 3 that are used for the Corollaries 10–12, respec-
tively.

Corollary 10. If 𝑑 > 0, V > 0, 𝑙, 𝑡 ∈ C,R(𝑙) > −1 then for the
solution of the equation

𝑁(𝑡) − 𝑁0𝐽𝑙 (𝑡) = −𝑑V 0𝐷−V𝑡 𝑁(𝑡) (46)

there holds the formula

𝑁(𝑡) = 𝑁0 ∞∑
𝑟=0

(−1)𝑟 Γ (2𝑟 + 𝑙 + 1)𝑟!Γ (𝑟 + 𝑙 + 1) ( 𝑡2)
2𝑟+𝑙

⋅ EV,2𝑟+𝑙+1 (−𝑑V𝑡V) .
(47)

Corollary 11. If 𝑑 > 0, V > 0, 𝑙, 𝑡 ∈ C,R(𝑙) > −1, then for the
solution of the equation

𝑁(𝑡) − 𝑁0𝐽𝑙 (𝑑V𝑡V) = −𝑑V 0𝐷−V𝑡 𝑁(𝑡) (48)

there holds the formula

𝑁(𝑡) = 𝑁0 ∞∑
𝑟=0

(−1)𝑟 Γ ((2𝑟 + 𝑙) V + 1)Γ (𝑟 + 1) Γ (𝑟 + 𝑙 + 1) (𝑑
V𝑡V2 )2𝑟+𝑙

⋅ EV,(2𝑟+𝑙)V+1 (−𝑑V𝑡V) .
(49)

Corollary 12. If 𝑑 > 0, V > 0, 𝑙, 𝑡 ∈ C,R(𝑙) > −1, 𝑎 ̸= 𝑑, then
the solution of the equation

𝑁(𝑡) − 𝑁0𝐽V (𝑑V𝑡V) = −𝑎V 0𝐷−V𝑡 𝑁(𝑡) (50)

is given by the formula

𝑁(𝑡) = 𝑁0 ∞∑
𝑟=0

(−1)𝑟 Γ ((2𝑟 + 𝑙) V + 1)Γ (𝑟 + 1) Γ (𝑟 + 𝑙 + 1) (𝑑
V𝑡V2 )2𝑟+𝑙

⋅ EV,(2𝑟+𝑙)V+1 (−𝑎V𝑡V) ,
(51)

Remark. The special cases forTheorem 1 toTheorem 3 can be
developed on similar lines to the above, but we do not state
them here due to lack of space.

4. Graphical Interpretation

Here, we are going to illustrate a tabular and graphical
expression of the results in Theorem 1 to Theorem 3 with
different and suitable assignments of the parameters there.
Figure 1(a) is the graphical solution of Theorem 1 using the
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Table 1: The numerical results of Theorem 1 for the parameters listed in Figure 1(a).

t v=0.1 v=0.5 v=0.9 v=1.2 v=1.5
0 0 0 0 0 0
0.2 0.019 0.0441 0.0184 0.0068 0.0022
0.4 0.018 0.0679 0.0553 0.0334 0.0172
0.6 0.0175 0.0811 0.0974 0.08 0.055
0.8 0.0184 0.0867 0.1361 0.1408 0.1209
1 0.0222 0.0866 0.1648 0.2053 0.2122
1.2 0.0319 0.082 0.1786 0.2599 0.3163
1.4 0.0523 0.0738 0.174 0.2888 0.4083
1.6 0.0897 0.0627 0.149 0.2765 0.4516
1.8 0.1533 0.0493 0.1028 0.2091 0.4016
2 0.2549 0.0339 0.0361 0.0768 0.2122
2.2 0.4094 0.0171 -0.0494 -0.124 -0.1524
2.4 0.6357 -0.0008 -0.1509 -0.3887 -0.7033
2.6 0.9564 -0.0196 -0.2644 -0.7039 -1.4121
2.8 1.3989 -0.0391 -0.3856 -1.0465 -2.1988
3 1.9954 -0.0589 -0.5093 -1.3848 -2.9279
3.2 2.7837 -0.079 -0.63 -1.6802 -3.4181
3.4 3.8072 -0.099 -0.7422 -1.8905 -3.4683
3.6 5.1159 -0.119 -0.8404 -1.9738 -2.9004
3.8 6.7663 -0.1387 -0.9194 -1.8937 -1.6143
4 8.8224 -0.158 -0.9745 -1.6238 0.3559
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t

(a) The solution of Theorem 1 for t=0:0.2:4
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(b) The solution of Theorem 1 for t=0:0.05:1

Figure 1: Solution of fractional kinetic equation (18).

assignment on the parameters 𝑁0 = 1; 𝑐 = 1; 𝑞 = 1;𝜆 = 1; 𝜇 = 1;𝑚 = 1; 𝜂 = 1; 𝑏 = 1; 𝑑 = 1.The numerical results
ofTheorem 1 for the parameters listed in Figure 1(a) are given
in Table 1. And also Figure 1(b) is based on assignment for the
parameters 𝑁0 = 10; 𝑐 = 1; 𝑞 = 2; 𝜆 = 7; 𝜇 = 7;𝑚 = 4; 𝜂 =7; 𝑏 = 7; 𝑑 = 3.

Figure 2(a) is the graphical solution of Theorem 2 using
the assignment on the parameters 𝑁0 = 1, 𝑐 = 1, 𝑞 = 1,

𝜆 = 1, 𝜇 = 1,𝑚 = 1, 𝜂 = 1, 𝑏 = 1, 𝑑 = 1. And also
Figure 2(b) is based on assignment for the parameters 𝑁0 =10, 𝑐 = 1, 𝑞 = 2, 𝜆 = 7, 𝜇 = 7,𝑚 = 4, 𝜂 = 7, 𝑏 = 7,𝑑 = 3.

Figure 3(a) is the graphical solution of Theorem 3 using
the assignment on the parameters 𝑁0 = 1, 𝑐 = 1, 𝑞 = 1, 𝜆 =1, 𝜇 = 1,𝑚 = 1, 𝜂 = 1, 𝑏 = 1, 𝑎 = 2, 𝑑 = 1. And
also Figure 3(b) is based on assignment for the parameters
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(a) The solution of Theorem 2 for t=0:0.2:4
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(b) The solution ofTheorem 2 for t=0:0.05:1

Figure 2: Solution of fractional kinetic equation (28).
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(a) The solution of Theorem 3 for t=0:0.05:1

Ｐ1=0.1
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(b) The solution ofTheorem 3 for t=0:0.2:4

Figure 3: Solution of fractional kinetic equation (30).

𝑁0 = 10, 𝑐 = 1, 𝑞 = 2, 𝜆 = 7, 𝜇 = 7,𝑚 = 4, 𝜂 = 7, 𝑏 = 7,𝑎 = 2, 𝑑 = 3.
5. Concluding Remarks

In this paper, we derived a new fractional generalization of
the kinetic equation on Theorem 1 to Theorem 3 and their
related corollaries. It is not difficult to obtain several further
analogous fractional kinetic equations and their solutions as
shown by main results. For various other special cases we
refer to [12, 13, 37, 38] and we left results for the interested
readers. Also, regarding the graphical and tabular expressions

in Section 3, it is easy to observe and conclude that 𝑁(𝑡) has
both positive and negative results for different values of the
parameters at different time intervals.
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