
Research Article
Application of the Complex Variable Function Method to
SH-Wave Scattering Around a Circular Nanoinclusion

Hongmei Wu 1,2

1School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
2School of Science, Lanzhou University of Technology, Lanzhou, Gansu, China

Correspondence should be addressed to Hongmei Wu; wuhongmei0610@126.com

Received 13 December 2018; Revised 30 January 2019; Accepted 20 February 2019; Published 20 March 2019

Academic Editor: Zengtao Chen

Copyright © 2019 HongmeiWu.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper focuses on analyzing SH-wave scattering around a circular nanoinclusion using the complex variable function method.
The surface elasticity theory is employed in the analysis to account for the interface effect at the nanoscale. Considering the interface
effect, the boundary condition is given, and the infinite algebraic equations are established to solve the unknown coefficients of
the scattered and refracted wave solutions. The analytic solutions of the stress field are obtained by using the orthogonality of
trigonometric function. Finally, the dynamic stress concentration factor and the radial stress of a circular nanoinclusion are analyzed
with some numerical results. The numerical results show that the interface effect weakens the dynamic stress concentration but
enhances the radial stress around the nanoinclusion; further, we prove that the analytic solutions are correct.

1. Introduction

Because of scattering’s important role in understanding var-
ious wave propagation phenomena in engineering materials
and structures, elastic waves’ scattering by a cavity/inclusion
embedded in an elastic matrix currently is a popular topic
in wave motion. Through the methods of wave functions
expansion, integral equations, and integral transform, Mow
and Pao [1] discussed in detail a cavity/inclusion in an
elastic medium’ diffraction of elastic waves. Liu [2] stud-
ied dynamic stress concentration around a circular hole
attributable to SH-wave in anisotropic media using the
method of complex variable function. Subsequently, Liu et
al. [3] studied SH-waves’ scattering and dynamic stress con-
centration by interface cylindrical elastic inclusion. Recently,
Hei [4] modelled and analyzed the dynamic behavior of an
inhomogeneous continuum containing a circular inclusion,
while Mcarthur et al. [5] discussed a circular inclusion with
circumferentially inhomogeneous imperfect interface in har-
monic materials. Further, Jiang [6] studied a shallow circular
inclusion’s dynamic response under incident SH-waves in a
radially inhomogeneous half-space and analyzed it applying
complex function theory and the multipolar coordinate
system.

However, the research mentioned above was carried out
at the macroscale, and, thus, the surface/interface stress
effect was not taken into account. However, because of the
rapid development of nanoscience and nanotechnology, it
is essential to know nanomaterials and structures’ mechan-
ical behavior. At the nanoscale, the surface/interface effect
becomes significant because of the increasing ratio of the
surface to bulk volume [7]. Gurtin et al. [8] presented the
theory of surface elasticity that considers the surface or
interface elasticity, and Miller and Shenoy’s [9, 10] results
agreed well with direct atomic simulations. Therefore, the
surface elasticity theory has been applied widely to study
various mechanical behaviors at the nanoscale [11, 12]. Using
Gurtin’s surface elasticity theory, Wang et al. [13, 14] con-
sidered nanocavities’ diffraction by the P-wave, while Wang
[15] analyzed the surface effect of two circular cylindrical
holes’ multiple diffractions of the P-wave. Further, Ou [16]
discussed interface energy’s effects on plane elastic waves’s
scattering by a nanosized coated fiber. Ru et al. [17–19]
investigated elastic waves’ diffraction around a cylindrical
nanoinclusion and then studied the surface effect of vertical
shear wave’s scattering by a cluster of nanosized cylindrical
holes. Further,Wu [20] investigated the interface effect of SH-
waves’ scattering by a cylindrical nanoinclusion. However,
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most of these studies used the wave function expansion
method to discuss such problems, while very few have
used the complex variable function method to solve them.
Therefore, it is imperative to investigate such problems by the
complex variable function method.

In this work, SH-waves’ scattering around a circular
nanoinclusion is studied within the framework of surface
elasticity, in which the analytical solutions of displacement
fields are expressed by employing the method of complex
variable function, and the numerical results of dynamic stress
concentration factor and the radial stress of a circular nanoin-
clusion are illustrated graphically. The paper is organized as
follows. A brief introduction to the theory of surface elasticity
is presented in Section 2. Section 3 describes the way the
complex variable function is adopted to derive the solutions
for the elastic fields that incident SH-wave induces around a
circular nanoinclusion and presents the governing equations
and boundary conditions for the problem. In Section 4, the
dynamic stress concentration factor and the radial stress
of a circular nanoinclusion are analyzed and the numerical
results are presented. Our concluding remarks are presented
in Section 5.

2. Basic Equations of Surface Elasticity

According to the surface elasticity theory, a surface is con-
sidered to be a negligible film that adheres to the matrix
without slipping. Classical elastic theory still applies to the
matrix, but the presence of surface stress leads to nonclassical
boundary conditions. The equilibrium equations and the
isotropic constitutive relations in the matrix are the same as
those in the classical elasticity theory:

𝜎𝑖𝑗,𝑗 = 𝜌𝜕
2𝑢𝑖𝜕𝑡2 (1)

𝜎𝑖𝑗 = 2𝜇(𝜀𝑖𝑗 + ]
1 − ]

𝜀𝑘𝑘𝛿𝑖𝑗) (2)

in which 𝑡 is time, 𝜌 is the material’s mass density, 𝜇 and ]
are the shear modulus and Poisson’s ratio, respectively, and𝜎𝑖𝑗 and 𝜀𝑖𝑗 are stress and strain tensors in the bulk material,
respectively. The strain tensor is related to the displacement
vector 𝑢𝑖 by

𝜀𝑖𝑗 = 1
2 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) (3)

The surface stress tensor 𝜎𝑠𝛼𝛽 is related to the surface
energy density 𝐺 by

𝜎𝑠𝛼𝛽 = 𝜏0𝛿𝛼𝛽 + 𝜕𝐺
𝜕𝜀𝛼𝛽 (4)

in which 𝜀𝛼𝛽 is the second-rank tensor of surface strain,
𝛿𝛼𝛽 is the Kronecker delta, and 𝜏0 is the residual surface
tension under unstrained condition. Einstein’s summation
convention is adopted for all repeated Latin indices (1, 2, 3)
and Greek indices (1, 2) throughout the paper.

Assume that the interface adheres perfectly to the matrix
material without slipping. By the generalized Young-Laplace
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Figure 1: The scattering of SH-wave around a circular nanoinclu-
sion.

equation, the equilibrium equations and the constitutive
relations on the surface are

(𝜎 − 𝜎𝐼) 𝑛 = −∇𝑠 ⋅ 𝜎𝑠 (5)

𝜎𝑠𝛼𝛽 = 𝜏0𝛿𝛼𝛽 + 2 (𝜇𝑠 − 𝜏0) 𝛿𝛼𝛾𝜀𝛾𝛽
+ (𝜆𝑠 + 𝜏0) 𝜀𝛾𝛾𝛿𝛼𝛽

(6)

in which 𝜎, 𝜎𝐼, 𝜎𝑠 are matrix, inclusion, and interface stress,
respectively, and ∇𝑠 ⋅ 𝜎𝑠 is the interface divergence. 𝑛 denotes
the normal vector of the surface, and 𝜇𝑠 and 𝜆𝑠 are two surface
constants.

3. Scattering of SH-Wave around
a Circular Nanoinclusion

Based on the surface elasticity theory, we discuss the scatter-
ing of SH-wave around a circular nanoinclusion embedded
in an infinite elastic medium, in which 𝜆, 𝜇, 𝜌, and 𝜆𝐼, 𝜇𝐼, 𝜌𝐼
are the matrix and inclusion’s parameters, respectively, andΓ is the interface between the inclusion and the matrix, as
illustrated in Figure 1.

For the antiplane problem, we have

𝑢𝑥 = 𝑢𝑦 = 0,
𝑢𝑧 = 𝑤 (𝑥, 𝑦)

(7)

The antiplane governing equation in the matrix is

𝜕𝜎𝑥𝑧𝜕𝑥 + 𝜕𝜎𝑦𝑧𝜕𝑦 = 𝜌𝜕2𝑤𝜕𝑡2 (8)

in which 𝜎𝑥𝑧, 𝜎𝑦𝑧are the shear stresses in the bulk.
The relation between stress and displacement is

𝜎𝑥𝑧 = 𝜇𝜕𝑤𝜕𝑥 ,
𝜎𝑦𝑧 = 𝜇𝜕𝑤𝜕𝑦

(9)
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Substituting (9) into (8), we obtain the following equa-
tion:

𝜕2𝑤
𝜕𝑥2 +

𝜕2𝑤
𝜕𝑦2 =

𝜌
𝜇
𝜕2𝑤
𝜕𝑡2 (10)

For the steady-state response, the dependence on time
may be separated as𝑤 = 𝑊𝑒−𝑖𝜔𝑡, and then (10) can be written
as follows:

∇2𝑊+ 𝐾2𝑊 = 0 (11)

in which 𝑊 is the displacement function, 𝐾 = 𝜔/V is the
wave number, V = √𝜇/𝜌 is the media’s shear velocity, 𝜔 is the
circular frequency, and 𝜇 and 𝜌 are the matrix’ shear modulus
and mass density, respectively.

Based on the complex variable function theory, we intro-
duce complex variables 𝑧 = 𝑥 + 𝑖𝑦, 𝑧 = 𝑥 − 𝑖𝑦. Equations (11)
and (9) are

𝜕2𝑊
𝜕𝑧𝜕𝑧 +

1
4𝐾2𝑊 = 0 (12)

𝜎𝑥𝑧 = 𝜇(𝜕𝑊𝜕𝑧 + 𝜕𝑊
𝜕𝑧 ) ,

𝜎𝑦𝑧 = 𝑖𝜇 (𝜕𝑊𝜕𝑧 − 𝜕𝑊
𝜕𝑧 )

(13)

In the cylindrical coordinate system (𝑟, 𝜃, 𝑧), (13) can be
expressed as

𝜎𝑟𝑧 = 𝜇(𝜕𝑊𝜕𝑧 𝑒𝑖𝜃 +
𝜕𝑊
𝜕𝑧 𝑒−𝑖𝜃) ,

𝜎𝜃𝑧 = 𝑖𝜇 (𝜕𝑊𝜕𝑧 𝑒𝑖𝜃 −
𝜕𝑊
𝜕𝑧 𝑒−𝑖𝜃)

(14)

Assume that a harmonically plane SH-wave propagates in
the positive 𝑥-direction, as shown in Figure 1. According to
(12), the general solution of incident SH-wave function𝑊(𝐼𝑛𝑐)
is expressed as [1]:

𝑊(𝐼𝑛𝑐) = 𝑊0𝑒𝑖𝐾𝑥 = 𝑊0𝑒(𝑖𝐾/2)(𝑧+𝑧) (15)

The scattered wave function 𝑊(𝑆𝑐𝑎) in the curvilinear
coordinates is expressed as [1]:

𝑊(𝑆𝑐𝑎) = 1
2𝑊0
+∞∑
𝑛=0

𝐴𝑛𝐻(1)𝑛 [𝐾 |𝑧|] [( 𝑧
|𝑧|)
𝑛 + ( 𝑧

|𝑧|)
−𝑛] (16)

inwhich𝑊0 is the incident wave’s amplitude,𝐻(1)𝑛 (⋅) is the 𝑛th
order Hankel function of the first kind, and 𝐴𝑛 are unknown
coefficients the boundary conditions determined.

The displacement potential of the refracted wave in the
inclusion can be expressed as [1]:

𝑊(𝑅𝑒𝑓) = −12𝑊0
+∞∑
𝑛=0

𝐵𝑛𝐽𝑛 [𝐾𝐼 |𝑧|] [( 𝑧
|𝑧|)
𝑛 + ( 𝑧

|𝑧|)
−𝑛] (17)

in which 𝐽𝑛(⋅) is the 𝑛th order Bessel function of the first
kind, 𝐵𝑛 are unknown coefficients the boundary conditions
determined, 𝐾𝐼 = 𝜔/V𝐼 is the wave number of the inclusion,
V𝐼 = √𝜇𝐼/𝜌𝐼 is the inclusion’s shear velocity, and 𝜇𝐼 and 𝜌𝐼 are
the inclusion’ shear modulus and mass density, respectively.

The total wave function in the elastic medium and the
nanoinclusion are determined by

𝑊(𝑀) = 𝑊(𝐼𝑛𝑐) +𝑊(𝑆𝑐𝑎),
𝑊(𝐼) = 𝑊(𝑅𝑒𝑓) (18)

Substituting (15)-(17) into (14) and according to the
following formulae:

𝜕
𝜕𝑧 [𝐻(1)𝑛 (𝐾 |𝑧|) ( 𝑧

|𝑧|)
𝑛] = 𝐾

2 𝐻(1)𝑛−1 (𝐾 |𝑧|) (
𝑧
|𝑧|)
𝑛−1

𝜕
𝜕𝑧 [𝐻(1)𝑛 (𝐾 |𝑧|) ( 𝑧

|𝑧|)
𝑛]

= −𝐾2 𝐻(1)𝑛+1 (𝐾 |𝑧|) (
𝑧
|𝑧|)
𝑛+1

(19)

we can obtain

𝜎(𝐼𝑛𝑐)𝑟𝑧 = 𝑖𝜇𝐾𝑊02 (𝑒𝑖𝜃 + 𝑒−𝑖𝜃) 𝑒(𝑖𝐾/2)(𝑧+𝑧) (20)

𝜎(𝐼𝑛𝑐)𝜃𝑧 = −𝜇𝐾𝑊02 (𝑒𝑖𝜃 − 𝑒−𝑖𝜃) 𝑒(𝑖𝐾/2)(𝑧+𝑧) (21)

𝜎(𝑆𝑐𝑎)𝑟𝑧 = 𝜇𝐾𝑊04
+∞∑
𝑛=0

𝐴𝑛 [𝐻(1)𝑛−1 (𝐾 |𝑧|) − 𝐻(1)𝑛+1 (𝐾 |𝑧|)]

⋅ [( 𝑧
|𝑧|)
𝑛 + ( 𝑧

|𝑧|)
−𝑛]

(22)

𝜎(𝑆𝑐𝑎)𝜃𝑧 = 𝑖𝜇𝐾𝑊04
+∞∑
𝑛=0

𝐴𝑛 [𝐻(1)𝑛−1 (𝐾 |𝑧|) + 𝐻(1)𝑛+1 (𝐾 |𝑧|)]

⋅ [( 𝑧
|𝑧|)
𝑛 − ( 𝑧

|𝑧|)
−𝑛]

(23)

𝜎(𝑅𝑒𝑓)𝑟𝑧 = −𝜇𝐼𝐾𝐼𝑊04
⋅ +∞∑
𝑛=0

𝐵𝑛 [𝐽𝑛−1 (𝐾𝐼 |𝑧|) − 𝐽𝑛+1 (𝐾𝐼 |𝑧|)]

⋅ [( 𝑧
|𝑧|)
𝑛 + ( 𝑧

|𝑧|)
−𝑛]

(24)

𝜎(𝑅𝑒𝑓)
𝜃𝑧

= −𝑖𝜇𝐼𝐾𝐼𝑊04
⋅ +∞∑
𝑛=0

𝐵𝑛 [𝐽𝑛−1 (𝐾𝐼 |𝑧|) + 𝐽𝑛+1 (𝐾𝐼 |𝑧|)]

⋅ [( 𝑧
|𝑧|)
𝑛 − ( 𝑧

|𝑧|)
−𝑛]

(25)
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The corresponding stresses are

𝜎(𝑀)𝑟𝑧 = 𝜎(𝐼𝑛𝑐)𝑟𝑧 + 𝜎(𝑆𝑐𝑎)𝑟𝑧 ,
𝜎(𝑀)𝜃𝑧 = 𝜎(𝐼𝑛𝑐)𝜃𝑧 + 𝜎(𝑆𝑐𝑎)𝜃𝑧 ,
𝜎(𝐼)𝑟𝑧 = 𝜎(𝑅𝑒𝑓)𝑟𝑧 ,
𝜎(𝐼)𝜃𝑧 = 𝜎(𝑅𝑒𝑓)𝜃𝑧

(26)

According to the continuity of displacements, on the
interface (𝑟 = 𝑎), we have

𝑊(𝑀) = 𝑊(𝐼) (27)

On the nanoinclusion interface, the strain component 𝜀𝜃𝑧
can be obtained from (2):

𝜀𝜃𝑧 = 𝜎𝜃𝑧2𝜇 (28)

The surface stress 𝜎𝑠𝜃𝑧 can be obtained from (6)

𝜎𝑠𝜃𝑧 = 2𝜇𝑠𝜀𝜃𝑧 (29)

Substituting (28) into (29) leads to

𝜎𝑠𝜃𝑧 = 𝜇𝑠
𝜇 𝜎𝜃𝑧 (30)

According to (5), we can obtain the boundary conditions
on the interface (𝑟 = 𝑎):

𝜎(𝑀)𝑟𝑧 − 𝜎(𝐼)𝑟𝑧 = −1𝑎
𝜕𝜎𝑠𝜃𝑧𝜕𝜃 (31)

Substituting (30) into (31), we have the following bound-
ary condition:

𝜎(𝑀)𝑟𝑧 − 𝜎(𝐼)𝑟𝑧 = −𝑠𝜕𝜎𝜃𝑧𝜕𝜃 (32)

in which 𝑠 = 𝜇𝑠/𝜇𝑎, which is a dimensionless parameter
that reflects the interface effect at the nanoscale. For a
macroscope, 𝑠 ≪ 1, and thus we can ignore the interface
effect. However, when the radius of the inclusion is reduced to
the nanoscale, 𝑠 becomes appreciable and the interface effect
should be taken into consideration [17, 21, 22].

Substituting (20)-(26) into (27) and (32), we have

𝑒𝑖𝐾𝑎 cos 𝜃 + 12
+∞∑
𝑛=0

𝐴𝑛𝐻(1)𝑛 (𝐾𝑎) (𝑒𝑖𝑛𝜃 + 𝑒−𝑖𝑛𝜃) = −12
⋅ +∞∑
𝑛=0

𝐵𝑛𝐽𝑛 (𝐾𝐼𝑎) (𝑒𝑖𝑛𝜃 + 𝑒−𝑖𝑛𝜃)
(33)

2𝑖𝐾𝜇 (1 − 𝑠) (𝑒𝑖𝜃 + 𝑒−𝑖𝜃) 𝑒𝑖𝐾𝑎 cos 𝜃 + 𝐾2𝜇𝑎𝑠 (𝑒2𝑖𝜃 + 𝑒−2𝑖𝜃

− 2) 𝑒𝑖𝐾𝑎 cos 𝜃 = 𝐾𝜇+∞∑
𝑛=0

𝐴𝑛 [(𝑛𝑠 − 1)𝐻(1)𝑛−1 (𝐾𝑎)
+ (𝑛𝑠 + 1)𝐻(1)𝑛+1 (𝐾𝑎)] (𝑒𝑖𝑛𝜃 + 𝑒−𝑖𝑛𝜃)
− 𝐾𝐼𝜇𝐼

+∞∑
𝑛=0

𝐵𝑛 [𝐽𝑛−1 (𝐾𝐼𝑎) − 𝐽𝑛+1 (𝐾𝐼𝑎)] (𝑒𝑖𝑛𝜃

+ 𝑒−𝑖𝑛𝜃)

(34)

Both sides of (33) and (34) are multiplied by 𝑒−𝑖𝑚𝜃 at
the same time, then integral from 0 to 2𝜋, and then use the
following formula:

∫2𝜋
0
𝑒𝑖𝐾𝑎 cos 𝜃𝑒−𝑖𝑚𝜃𝑑𝜃 =

{{{{{{{{{

2𝜋𝐽0 (𝐾𝑎) 𝑚 = 0
2𝜋𝑖𝑚𝐽𝑚 (𝐾𝑎) 𝑚 > 0
2𝜋𝑖−𝑚𝐽−𝑚 (𝐾𝑎) 𝑚 < 0

(35)

thus, the coefficients 𝐴𝑛, 𝐵𝑛 can be determined as

𝐴𝑛 = −𝜀𝑛𝑖𝑛 𝜇𝐾𝐽𝑛 (𝐾𝐼𝑎)𝑀1 + 𝜇𝐼𝐾𝐼𝐽𝑛 (𝐾𝑎)𝑀3𝜇𝐾𝐽𝑛 (𝐾𝐼𝑎)𝑀2 + 𝜇𝐼𝐾𝐼𝐻(1)𝑛 (𝐾𝑎)𝑀3 ,
(𝑛 = 0, 1, 2, ⋅ ⋅ ⋅ )

𝐵𝑛 = −𝜀𝑛𝑖𝑛 𝐽𝑛 (𝐾𝑎) + 𝐴𝑛𝐻
(1)
𝑛 (𝐾𝑎)

𝐽𝑛 (𝐾𝐼𝑎) ,
(𝑛 = 0, 1, 2, ⋅ ⋅ ⋅ )

(36)

in which

𝑀1 = (𝑛𝑠 − 1) 𝐽𝑛−1 (𝐾𝑎) + (𝑛𝑠 + 1) 𝐽𝑛+1 (𝐾𝑎)
𝑀2 = (𝑛𝑠 − 1)𝐻(1)𝑛−1 (𝐾𝑎) + (𝑛𝑠 + 1)𝐻(1)𝑛+1 (𝐾𝑎)
𝑀3 = 𝐽𝑛−1 (𝐾𝐼𝑎) − 𝐽𝑛+1 (𝐾𝐼𝑎)

𝜀𝑛 = {{{
1, 𝑛 = 0
2, 𝑛 ≥ 1.

(37)

When the interface effect is neglected (𝑠 = 0), our results
for𝐴𝑛,𝐵𝑛 are consistent with Pao andMow’s [1] results.Thus,
it can be determined that our results are correct, and the
elastic scattering fields the SH-wave induces can be obtained.
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Figure 2: Comparison of the present and [1]’s results for the DSCF.
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Figure 3: Comparison of the present and [1]’s results for the radial
stress.

4. Numerical Results and Discussions

It is important to investigate the nanoinclusion’s effects
on the elastic wave-induced dynamic stress concentration,
particularly at the nanoscale. Herein, the SH-wave-induced
DSCF is calculated as

DSCF = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜎𝜃 𝑧𝜎0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (38)

in which 𝜎𝜃 𝑧 is the bulk stress in the medium along the
interface, and 𝜎0 = 𝜇𝐾𝑊0 is the stress intensity in the SH-
waves’ propagation direction. From the expressions of𝐴𝑛 and𝐵𝑛, it can be seen that when the interface effect is taken into
account, the DSCF and radical stress depend not only on the
wave number but also on the interface elasticity parameter.

In what follows, we investigate the influence of the
interface effect and nanoinclusion on theDSCF and the radial
stress.

To verify the formulation of the present paper, we com-
pare our numerical results with those of Pao’s, as shown in
Figures 2 and 3. It can be seen that these results for the
DSCF and the radial stress around a circular nanoinclusion
are consistent with the Pao’s results [1]. On the other hand,
we can see that as the circular inclusion’s hardness increases,
the DSCF decreases and the radial stress increases.
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Figure 4: Effect of interface effect on the DSCF with 𝐾𝐼/𝐾 = 0.2.
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Figure 5: Effect of interface effect on the DSCF with 𝐾𝐼/𝐾 = 𝜋.

For a softer nanoinclusion i.e., 𝜇𝐼/𝜇 = 0.2, the DSCF’s
distributions on the interface for different values of 𝑠 with𝐾𝐼/𝐾 = 0.2 are shown in Figure 4, which indicates
clearly the interface’s significant effect on the dynamic stress
concentration near the inclusion. As 𝑠 increases, the DSCF
decreases continuously. Similarly, theDSCF’s distributions on
the interface for different values of 𝑠with𝐾𝐼/𝐾 = 𝜋 are shown
in Figure 5, which also demonstrates clearly the interface’s
significant effect on the dynamic stress concentrationnear the
nanoinclusion. Again, as 𝑠 increases, the DSCF decreases in
most regions.

To examine the effect of soft and hard nanoinclusions,
the DSCF near the nanoinclusion for various ratios of shear
modulus 𝜇𝐼/𝜇 with 𝐾𝐼/𝐾 = 0.2 and 𝑠 = 0.5 are shown
in Figure 6. For a soft inclusion (𝜇𝐼/𝜇 < 1), the stress
concentration is much larger than that for a hard inclusion(𝜇𝐼/𝜇 > 1). Similarly, The DSCF near the nanoinclusion for
various ratios of shear modulus 𝜇𝐼/𝜇 with 𝐾𝐼/𝐾 = 𝜋 and𝑠 = 0.5 are shown in Figure 7, and the results are the same
as those for 𝐾𝐼/𝐾 = 0.2.
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Figure 6: Effect of 𝜇𝐼/𝜇 on the DSCF with 𝐾𝐼/𝐾 = 0.2.
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Figure 7: Effect of 𝜇𝐼/𝜇 on the DSCF with 𝐾𝐼/𝐾 = 𝜋.

For a softer nanoinclusion, i.e., 𝜇𝐼/𝜇 = 0.2, the radial
stress’ distributions on the interface for different values of𝑠 with 𝐾𝐼/𝐾 = 0.2 are shown in Figure 8, which indicates
clearly the interface’s significant effect on the radial stress
near the inclusion. As 𝑠 increases, the radial stress increases
continuously. Similarly, the DSCF’s distributions on the
interface for different values of 𝑠 with 𝐾𝐼/𝐾 = 𝜋 are shown
in Figure 9 and demonstrate clearly the interface’s significant
effect on the radial stress near the inclusion. As 𝑠 increases, the
radial stress increases in most regions. However, when 𝜃 = 0,
the radial stress decreases as 𝑠 increases.

The radial stress near the nanoinclusion for various ratios
of shearmodulus𝜇𝐼/𝜇with𝐾𝐼/𝐾 = 0.2 and 𝑠 = 0.5 are shown
in Figure 10. For a soft nanoinclusion (𝜇𝐼/𝜇 < 1), the radial
stress is much smaller than that for a hard nanoinclusion(𝜇𝐼/𝜇 > 1). Similarly, the radial stress near the nanoinclusion
for various ratios of shear modulus 𝜇𝐼/𝜇 with 𝐾𝐼/𝐾 = 𝜋 and𝑠 = 0.5 are shown in Figure 11, and the results are the same
as those for 𝐾𝐼/𝐾 = 0.2 in most regions. The figures show
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Figure 8: Effect of interface effect on the radial stress with 𝐾𝐼/𝐾 =0.2.
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Figure 9: Effect of interface effect on the radial stress with 𝐾𝐼/𝐾 =𝜋.
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Figure 10: Effect of 𝜇𝐼/𝜇 on the radial stress with 𝐾𝐼/𝐾 = 0.2.
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Figure 11: Effect of 𝜇𝐼/𝜇 on the radial stress with 𝐾𝐼/𝐾 = 𝜋.

that the distribution of the radial stress differs from that of
the DSCF.

The numerical results show that the interface effect has
a significant influence on the stress concentration and the
radial stress. At the same time, they clearly are affected
differentially by soft and hard nanoinclusions.

5. Conclusion

In this paper, themethod of complex variable function is used
to study SH-waves’ scattering by a circular nanoinclusion.
Based on the classical elasticity and the surface elasticity
theories, the analytical solution of the stress field is obtained
by the orthogonality of trigonometric functions. Finally, the
influence of the interface effect 𝑠 and the ratios of shear
modulus 𝜇𝐼/𝜇 on the DSCF and the radial stress around
the nanoinclusion are analyzed to obtain numerical results.
From these results, we can see that the conclusion obtained
by using the complex function method is similar to what
previous scholars have obtained by other methods.Therefore,
our research method has clear theoretical value. The results
show that (1) the interface effect weakens the dynamic
stress concentration around the nanoinclusion, and when
the radius is sufficiently large, the interface effect can be
neglected; (2) the interface effect enhances the radial stress’s
effect. When the other variables are fixed, the radials stress
gets larger as the inclusion radius decreases; (3) as the shear
modulus ratios increases, the DSCF decreases, while the
radial stress increases.
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