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We consider the initial value problem for the nonlinear Schrödinger equation satisfying the strong dissipative condition I𝜆 < 0
and |I𝜆| > ((𝑝 − 1)/2√𝑝)|R𝜆| in one space dimension. Our purpose in this paper is to study how the gain coefficient 𝜇(𝑡) and
strong dissipative nonlinearity 𝜆|V|𝑝−1V affect solutions to the nonlinear Schrödinger equation for large initial data. We prove global
existence of solutions and present some time decay estimates of solutions for large initial data.

1. Introduction and Main Results

We consider the Cauchy problem of nonlinear Schrödinger
equation:

𝑖𝜕𝑡V + 1
2𝜕2𝑥V = 𝜆 |V|𝑝−1 V + 𝑖𝜇 (𝑡) V,

V (0, 𝑥) = V0 (𝑥) ,
(1)

where V = V(𝑡, 𝑥) is a complex valued unknown function, 𝑡 ≥
0, 𝑥 ∈ R, 𝑝 > 1, the gain coefficient 𝜇(𝑡) is a real valued
function, and 𝜆 ∈ C. Equation (1) is applied in problems of
dispersion-managed optical fibers and soliton lasers (see [1]).
The coefficients 𝜆 and 𝜇(𝑡) are, respectively, nonlinearity and
amplification. In this work, we study the global existence and
investigate time decay estimates of solutions to (1) with the
gain coefficient 𝜇(𝑡) and the strong dissipative nonlinearity
𝜆|V|𝑝−1V satisfying I𝜆 < 0 and |I𝜆| > ((𝑝−1)/2√𝑝)|R𝜆| for
large initial data, where I𝜆 and R𝜆 are the imaginary and
real part of 𝜆, respectively.

Over the past few decades, the field of fiber optics has
made rapid progress. The damped Schrödinger equation

𝑖𝜕𝑡V + 1
2𝜕2𝑥V = 𝜆 |V|2 V + 𝑖𝜇V, (2)

where V = V(𝑡, 𝑥) is a complex valued unknown function,
𝑡 ∈ R, 𝑥 ∈ R, 𝜆, and 𝜇 ∈ C, is one of the simplest nonlinear

Schrödinger equations for studying cubic nonlinear effects
in optical fibers (see [1]). Equation (2) is applied in several
different aspects of optics (see, e.g., [2]). It has been studied
extensively in the context of solitons (see [1]). In the case of
𝜇(𝑡) ≡ 0, (1) is reduced to

𝑖𝜕𝑡V + 1
2𝜕2𝑥V = 𝜆 |V|𝑝−1 V,

V (0, 𝑥) = V0 (𝑥) ,
(3)

where 𝑡 ≥ 0, 𝑥 ∈ R, 𝑝 > 1, and 𝜆 ∈ C. The nonlinearity
𝜆|V|𝑝−1V with I𝜆 < 0 and |I𝜆| > ((𝑝 − 1)/2√𝑝)|R𝜆| is
called strong dissipative. In [3, 4], the large initial problem for
(3)with the strong dissipative nonlinearities was investigated.
The global solution V(𝑡, 𝑥) to (3) decays like 𝑡−1/2(log 𝑡)−1/2
in the sense of 𝐿∞ for 𝑡 > 1, when 𝑝 = 3. Moreover
‖V‖𝐿∞ ≤ 𝐶𝑡−1/(𝑝−1) for 𝑡 > 1, if 2.686 ≈ (5 + √33)/4 <
𝑝 < 3 in [3] and 2.586 ≈ (19 + √145)/12 < 𝑝 < 3 in [4],
respectively. To study the time decays of solutions to (3), the
estimate of ‖F𝑈(−𝑡)V‖𝐿∞ is useful. To get a better estimate
of ‖F𝑈(−𝑡)V‖𝐿∞ , the contradiction argument was used in [3]
and themethod of [5]was applied in [4]. In [6], the timedecay
estimates of global solutions to (3) with 1 + √2 < 𝑝 < 3 in
the sense of 𝐿2 were considered under the strong dissipative
condition. It showed that ‖V‖𝐿2 ≤ 𝐶𝑡−(1/(𝑝−1)−1/2)𝑞 for 𝑡 > 1,
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where 0 ≤ 𝑞 ≤ 2/3. In the case of I𝜆 > 0, the a priori 𝐿2-
bound for V is not satisfied, since

1
2 ‖V‖2𝐿2 − I𝜆∫𝑡

0
∫
R
|V|𝑝+1 𝑑𝑥𝑑𝜏 = 1

2
V02𝐿2 . (4)

There are some results about the lifespan of small solutions
to (3) with I𝜆 > 0 (see, e.g., [7]). When optical pluses
propagate inside a fiber, nonlinearities in (1) affect optical
pluses’ shapes. Some related nonlinear Schrödinger equations
have been studied (see, e.g., [8, 9]). In the case of 𝜇(𝑡) ≡ −𝑎 <
0 and 𝜆 = −1, (1) becomes

𝑖𝜕𝑡V + 1
2𝜕2𝑥V = − |V|𝑝−1 V − 𝑖𝑎V,

V (0, 𝑥) = V0 (𝑥)
(5)

in one space dimension, where 𝑡 ≥ 0, 𝑎 > 0, and 𝑝 > 1.
The question (5) has been studied by some mathematicians
from the mathematical point (see, e.g., [10, 11]). Let 𝐸1(𝑡) =
(1/2)‖𝜕𝑥V‖2𝐿2 −(2/(𝑝+1))‖V‖𝑝+1𝐿𝑝+1 . If𝐸1(0) ≤ 0, nonexistence of
global solutions to (5) was studied under some assumptions
in [10]. It showed that the damping term in (5) cannot prevent
blowing up of solutions. In [11], some blow up and global
existence of solutions to (5) was investigated. The authors
showed that the size of the damping coefficient 𝑎 affected the
solutions. As far as we know, there are not any results about
the time decay estimates of solutions to (1) for large initial
data.Our question is how the term 𝑖𝜇(𝑡)V and the nonlinearity
𝜆|V|𝑝−1V with strong dissipative condition affect solutions to
(1) for large initial data.

Let 𝐿𝑞(R) denote the usual Lebesgue space with the norm
𝑓𝐿𝑞(R) = (∫

R

𝑓 (𝑥)𝑞 𝑑𝑥)
1/𝑞

(6)

if 1 ≤ 𝑞 < ∞ and
𝑓𝐿∞(R) = ess.sup

𝑥∈R

𝑓 (𝑥) . (7)

For 𝑚, 𝑠 ∈ R, weighted Sobolev space 𝐻𝑚,𝑠 is defined by

𝐻𝑚,𝑠 = {𝑓 ∈ 𝐿2 (R) ; 𝑓𝐻𝑚,𝑠

= (1 + |𝑥|2)𝑠/2 (1 − 𝜕2𝑥)𝑚/2 𝑓
𝐿2(R) < ∞} .

(8)

We write 𝐿𝑞(R) = 𝐿𝑞 for 1 ≤ 𝑞 ≤ ∞ and 𝐻𝑚,0 = 𝐻𝑚 for
simplicity.

Let us introduce some notations. We define the dilation
operator by

(𝐷𝑡𝜙) (𝑥) = 1
(𝑖𝑡)1/2𝜙 (𝑥

𝑡 ) (9)

and define 𝑀 = 𝑒(𝑖/2𝑡)𝑥2 for 𝑡 ̸= 0. Evolution operator 𝑈(𝑡) is
written as

𝑈 (𝑡) = 𝑀𝐷𝑡F𝑀, (10)

where the Fourier transform of 𝑓 is

(F𝑓) (𝜉) = 1
√2𝜋 ∫

R

𝑒−𝑖𝑥𝜉𝑓 (𝑥) 𝑑𝑥. (11)

We also have

𝑈 (−𝑡) = 𝑀−1F−1𝐷−1𝑡 𝑀−1, (12)

where the inverse Fourier transform of 𝑓 is

(F−1𝑓) (𝑥) = 1
√2𝜋 ∫

R

𝑒𝑖𝑥𝜉𝑓 (𝜉) 𝑑𝜉. (13)

We denote by the same letter 𝐶 various positive constants.
And we write V(𝑡) for the spatial function V(𝑡, ⋅).

The standard generator of Galilei transformations is given
as

𝐽 (𝑡) = 𝑈 (𝑡) 𝑥𝑈 (−𝑡) = 𝑥 + 𝑖𝑡𝜕𝑥. (14)

We have

𝐽2 (𝑡) = 𝑈 (𝑡) 𝑥2𝑈 (−𝑡) = 𝑀(−𝑡2𝜕2𝑥)𝑀−1. (15)

We also have commutation relations with 𝐽𝛽 and 𝐿 = 𝑖𝜕𝑡+(1/2)𝜕2𝑥 such that

[𝐿, 𝐽𝛽] = 0, (16)

where 𝛽 = 1, 2.
Before stating our main theorem, we introduce the func-

tion space

𝑋1,𝑇 = {𝑦; 𝑈 (−𝑡) 𝑦 ∈ 𝐶 ([0, 𝑇) ;𝐻1 ∩ 𝐻0,1) , 𝑦𝑋1,𝑇
< ∞} ,

(17)

where ‖𝑦‖𝑋1,𝑇 = sup0≤𝑡<𝑇‖𝑈(−𝑡)𝑦‖𝐻1∩𝐻0,1 and 𝑇 > 1. We
have the following global existence of solutions to (1) for large
initial data.

�eorem 1. Let 𝑝 > 1, I𝜆 < 0, |I𝜆| > ((𝑝 − 1)/2√𝑝)|R𝜆|,
and 𝜇(𝑡) ∈ 𝐶[0,∞). We assume that V0(𝑥) ∈ 𝐻0,1 ∩ 𝐻1. Then
(1) has a unique global solution V(𝑡, 𝑥) ∈ 𝐶([0,∞);𝐻0,1 ∩ 𝐻1)
satisfying V(𝑡, 𝑥) = 𝑒∫𝑡0 𝜇(𝜏)𝑑𝜏𝑢(𝑡, 𝑥), where 𝑢(𝑡, 𝑥) ∈ 𝑋1,∞ is the
solution to (19).

Let 𝐸0(𝑡) = ‖V(𝑡)‖2𝐿2 . Multiplying both sides of (1) by V,
integrating over R, and taking the imaginary parts, we have

𝑑
𝑑𝑡𝐸0 (𝑡) = 2I𝜆 ‖V (𝑡)‖𝑝+1𝐿𝑝+1 + 2𝜇 (𝑡) 𝐸0 (𝑡) . (18)

We could not ensure the sign of (𝑑/𝑑𝑡)𝐸0(𝑡) by the assump-
tions in Theorem 1. This case is interesting. We have the
equation

𝑖𝜕𝑡𝑢 + 1
2𝜕2𝑥𝑢 = 𝜆𝑒(𝑝−1) ∫𝑡0 𝜇(𝜏)𝑑𝜏 |𝑢|𝑝−1 𝑢,

𝑢 (0, 𝑥) = V0 (𝑥)
(19)
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from (1) by using the transformation 𝑢 = 𝑒− ∫𝑡0 𝜇(𝜏)𝑑𝜏V. A
straightforward calculation shows that V(𝑡, 𝑥) solves (1) if
and only if 𝑢(𝑡, 𝑥) solves (19). Thus the transformation 𝑢 =
𝑒−∫𝑡0 𝜇(𝜏)𝑑𝜏V provides an effective tool to study the global
existence of solutions to (1).

Remark 2. Let 𝑝 > 1, I𝜆 < 0, |I𝜆| > ((𝑝 − 1)/2√𝑝)|R𝜆|,
𝜇(𝑡) ∈ 𝐶[0,∞), and 𝑒∫𝑡0 𝜇(𝜏)𝑑𝜏 ≤ 𝐶0 for all 𝑡 ≥ 0, where𝐶0 > 0.
We assume that V0(𝑥) ∈ 𝐻0,1 ∩ 𝐻1. Then (1) has a unique
global solution V(𝑡, 𝑥) ∈ 𝑋1,∞.
Example 3. We consider

𝑖𝜕𝑡V + 1
2𝜕2𝑥V = −𝑖 |V|𝑝−1 V + 𝑖 (1 + 𝑡)−2 V,

V (0, 𝑥) = V0 (𝑥)
(20)

in one space dimension, where 𝑡 ≥ 0 and 𝑝 > 1. Since
|I(−𝑖)| = 1 > 0 = ((𝑝 − 1)/2√𝑝)|R(−𝑖)|, and 𝑒∫𝑡0 (1+𝜏)−2𝑑𝜏 ≤ 𝑒
for 𝑡 ≥ 0, (20) has a unique global solution V(𝑡, 𝑥) ∈ 𝑋1,∞ if
V0(𝑥) ∈ 𝐻0,1 ∩ 𝐻1.

If 𝜇(𝑡) ≤ 0 for 𝑡 ≥ 0 and I𝜆 < 0, we have the result about
(1):

𝑑
𝑑𝑡𝐸0 (𝑡) = 2I𝜆 ‖V (𝑡)‖𝑝+1𝐿𝑝+1 + 2𝜇 (𝑡) ‖V (𝑡)‖2𝐿2 ≤ 0, (21)

where 𝐸0(𝑡) = ‖V(𝑡)‖2𝐿2 . Time decay estimates of solutions to
(1) for large initial data are shown as follows.

�eorem 4. Let 𝑝 > 1, 𝜇(𝑡) ≤ 0 for 𝑡 ≥ 0, 𝜇(𝑡) ∈ 𝐶[0,∞)
and the strong dissipative condition I𝜆 < 0, |I𝜆| > ((𝑝 −
1)/2√𝑝)|R𝜆| hold. We assume that V0(𝑥) ∈ 𝐻0,1 ∩ 𝐻1. Then
(1) has a unique global solution V(𝑡, 𝑥) ∈ 𝑋1,∞ satisfying the
following time decay estimates:

‖V (𝑡)‖𝐿∞ ≤ 𝐶𝑡−1/2𝑒∫𝑡0 𝜇(𝜏)𝑑𝜏 (22)

and

‖V (𝑡)‖𝐻1 ≤ 𝐶𝑒∫𝑡0 𝜇(𝜏)𝑑𝜏 (23)

for 𝑡 > 1.
FromTheorem 4, we obtain that the solution V(𝑡, 𝑥) to (1)

is global and bounded in𝑋1,∞ for large initial data.Moreover,
we show that 𝜇(𝑡) determines the time decay rate of the
solution, when 𝜇(𝑡) satisfies the assumptions in Theorem 4.
Then we consider a special situation ofTheorem 4. Let 𝜇(𝑡) ≡
𝜇 ≤ 0 in (1); we have the following equation:

𝑖𝜕𝑡V + 1
2𝜕2𝑥V = 𝜆 |V|𝑝−1 V + 𝑖𝜇V,

V (0, 𝑥) = V0 (𝑥) ,
(24)

where 𝑡 ≥ 0, 𝑝 > 1, 𝑥 ∈ R, 𝜇 ≤ 0, and 𝜆 ∈ C. By Theorem 4,
we have the time decay estimates to (24).

Corollary 5. Let 𝜇 ≤ 0 and 𝑝 > 1. We assume that V0(𝑥) ∈
𝐻0,1 ∩ 𝐻1 and the strong dissipative condition I𝜆 < 0 and
|I𝜆| > ((𝑝−1)/2√𝑝)|R𝜆| hold.Then (24) has a unique global
solution V(𝑡, 𝑥) ∈ 𝑋1,∞ satisfying the following time decay
estimates:

‖V (𝑡)‖𝐿∞ ≤ 𝐶𝑡−1/2𝑒𝜇𝑡 (25)

and

‖V (𝑡)‖𝐻1 ≤ 𝐶𝑒𝜇𝑡 (26)

for 𝑡 > 1.
In the last section, we consider the equation

𝑖𝜕𝑡V + 1
2𝜕2𝑥V = 𝜆 |V|𝑝−1 V + 𝑖 𝑎

(1 + 𝑡) (𝑝 − 1)V,
V (0, 𝑥) = V0 (𝑥) ,

(27)

where 𝑎 ≤ 0, 𝑝 > 1, I𝜆 < 0, |I𝜆| > ((𝑝 − 1)/2√𝑝)|R𝜆|, and
𝑡 ≥ 0. From (27), we have

𝑖𝜕𝑡𝑢 + 1
2𝜕2𝑥𝑢 = 𝜆 (1 + 𝑡)𝑎 |𝑢|𝑝−1 𝑢,

𝑢 (0, 𝑥) = V0 (𝑥) ,
(28)

by taking the variable change V(𝑡, 𝑥) = (1 + 𝑡)𝑎/(𝑝−1)𝑢(𝑡, 𝑥). A
similar nonlinear equation 𝑖𝜕𝑡𝑢 +Δ𝑢 = 𝜆(1 + 𝑏𝑡)(𝑛𝛼−4)/2|𝑢|𝛼𝑢,
where 𝑥 ∈ R𝑛, 𝑏 ∈ R, 𝛼 > 0, and 𝜆 ∈ R, was derived to
study the rapid decay solutions and scattering properties of
the equation 𝑖𝜕𝑡V + ΔV = 𝜆|V|𝛼V by letting 𝑢(𝑡, 𝑥) = (1 +
𝑏𝑡)−𝑛/2V(𝑡/(1 + 𝑏𝑡), 𝑥/(1 + 𝑏𝑡))𝑒𝑖(𝑏|𝑥|2/4(1+𝑏𝑡)) in [12].

Let I𝜆 < 0 and |I𝜆| > ((𝑝 − 1)/2√𝑝)|R𝜆|. Multiplying
both sides of (27) by V, integrating over R, and taking the
imaginary parts, we have

𝑑
𝑑𝑡𝐸0 (𝑡) = 2I𝜆 ‖V (𝑡)‖𝑝+1𝐿𝑝+1 + 2𝑎

(𝑝 − 1) (1 + 𝑡) ‖V (𝑡)‖2𝐿2
≤ 0,

(29)

where 𝐸0(𝑡) = ‖V(𝑡)‖2𝐿2 . We have global existence and time
decay estimates of solutions to (27) for large initial data by
Theorem 4. We show a better decay rate of solutions to (27)
inspired by the papers [4, 5].

�eorem 6. Let 𝑎 ≤ 0 and 𝑝 > 1. We assume that V0(𝑥) ∈
𝐻0,1 ∩ 𝐻1 and the strong dissipative condition I𝜆 < 0 and
|I𝜆| > ((𝑝−1)/2√𝑝)|R𝜆| hold.Then (27) has a unique global
solution V(𝑡, 𝑥) ∈ 𝑋1,∞ satisfying the following time decay
estimates:

‖V (𝑡)‖𝐿∞ ≤ 𝐶𝑡−1/2+𝑎/(𝑝−1) (30)

for 𝑡 > 1. Moreover, let 𝑝∗(𝑎) := 𝑎 + 5/4 + (1/
4)√16𝑎2 + 40𝑎 + 33, and if 𝑝∗(𝑎) ≤ 𝑝 < 2𝑎 + 3 and −1 <
𝑎 ≤ 0, we have

‖V (𝑡)‖𝐿∞ ≤ 𝐶𝑡−1/2+𝑎/(𝑝−1)−(2𝑎+3−𝑝)/2(𝑝−1) (31)

for 𝑡 > 1.
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When 𝑎 = 0, the exponent 𝑝∗(𝑎) coincides with (5 +
√33)/4, which is the lower bound given by Kita-Shimomura
[3] and Jin-Jin-Li [4]. Let 𝑝∗∗(𝑎) fl 𝑎 + 19/12 + (1/
12)√144𝑎2 + 264𝑎 + 145. Since 𝑝∗∗(𝑎) < 𝑝∗(𝑎) for −1/2 <
𝑎 ≤ 0, the lower bound 𝑝∗(𝑎) in Theorem 6 can be improved
by 𝑝∗∗(𝑎) in Theorem 7. The operator 𝐽2 plays an important
role in achieving the lower bound 𝑝∗∗(𝑎).
�eorem 7. Let −1/2 < 𝑎 ≤ 0, 𝑝∗∗(𝑎) fl 𝑎 + 19/12 + (1/
12)√144𝑎2 + 264𝑎 + 145, and 𝑝∗∗(𝑎) ≤ 𝑝 < 2𝑎 + 3. We
assume that V0(𝑥) ∈ 𝐻0,2 ∩ 𝐻1 and the strong dissipative
condition I𝜆 < 0 and |I𝜆| > ((𝑝 − 1)/2√𝑝)|R𝜆| hold. Then
(27) has a unique global solution V(𝑡, 𝑥) ∈ 𝑋1,∞ satisfying the
following time decay estimates:

‖V (𝑡)‖𝐿∞ ≤ 𝐶𝑡−1/2+𝑎/(𝑝−1)−(2𝑎+3−𝑝)/2(𝑝−1) (32)

for 𝑡 > 1.
If 𝑎 = 0, we have 𝑝∗∗(𝑎) = (19 + √145)/12, which is a

lower bound of 𝑝 shown in [4]. Theorems 6 and 7 say how
the strong dissipative nonlinearity and gain coefficient of the
nonlinear Schrödinger equation (27) affect decay estimates of
solutions under different initial conditions. The rest of this
paper is organized as follows. In Section 2, we give proofs of
Theorems 1 and 4. Theorems 6 and 7 are proven in Section 3.

2. Proofs of Theorems 1 and 4

2.1. Proof of Theorem 1. We have the equation

𝑖𝜕𝑡𝑢 + 1
2𝜕2𝑥𝑢 = 𝜆𝑒(𝑝−1) ∫𝑡0 𝜇(𝜏)𝑑𝜏 |𝑢|𝑝−1 𝑢 (33)

from (1) by using the variable change 𝑢 = 𝑒− ∫𝑡0 𝜇(𝜏)𝑑𝜏V and
𝑢(0, 𝑥) = V(0, 𝑥) = V0(𝑥).

Local existence of solutions 𝑢 ∈ 𝑋1,𝑇 to (33) can be shown
by the standard contractionmapping principle (see, e.g., [13]).
Therefore, we have local existence of solutions V ∈ 𝑋1,𝑇 to (1).

First, we consider the equation

𝑖𝜕𝑡𝑢 + 1
2𝜕2𝑥𝑢 = 𝜆𝐹 (𝑡) |𝑢|𝑝−1 𝑢, (34)

where 𝐹(𝑡) ≥ 0, 𝐹(𝑡) ∈ 𝐶1[0,∞), 𝜆 ∈ C, and 𝑝 > 1. The
following lemma is useful to study global existence and time
decay of solutions to (34).

Lemma 8. Let 𝑝 > 1, 𝐹(𝑡) ≥ 0, 𝐹(𝑡) ∈ 𝐶1[0,∞), and
𝑢(𝑡, 𝑥) ∈ 𝑋1,𝑇 be the local solution of (34), where 𝑇 > 1.
And let the strong dissipative condition I𝜆 < 0 and |I𝜆| >
((𝑝 − 1)/2√𝑝)|R𝜆| be satisfied. Then we have

𝜕𝑡 (𝜕𝑥𝑢𝐿2 + ‖𝐽𝑢‖𝐿2 + ‖𝑢‖𝐿2) ≤ 0. (35)

Proof. Multiplying both sides of (34) by 𝜕𝑥𝑢 and taking the
imaginary parts, we have, by |𝑢|𝑝−1𝑢 = 𝑢(𝑝+1)/2𝑢(𝑝−1)/2 and
the assumptions of 𝐹(𝑡),

1
2𝜕𝑡 𝜕𝑥𝑢2𝐿2 = I(∫

R

𝜕𝑥 (𝜆𝐹 (𝑡) |𝑢|𝑝−1 𝑢) ⋅ 𝜕𝑥𝑢𝑑𝑥)

= I(𝜆𝑝 + 1
2 𝐹 (𝑡) ∫

R
|𝑢|𝑝−1 𝜕𝑥𝑢2 𝑑𝑥)

+ I (𝜆𝑝 − 1
2 𝐹 (𝑡) ∫

R
|𝑢|𝑝−3 𝑢2 (𝜕𝑥𝑢)2 𝑑𝑥)

≤ 𝐹 (𝑡) (I𝜆𝑝 + 1
2 + |𝜆| 𝑝 − 1

2 )∫
R
|𝑢|𝑝−1 𝜕𝑥𝑢2 𝑑𝑥.

(36)

By (36) and the strong dissipative condition I𝜆 < 0 and
|I𝜆| > ((𝑝 − 1)/2√𝑝)|R𝜆|, we obtain

1
2𝜕𝑡 𝜕𝑥𝑢2𝐿2 = I (∫

R

𝜕𝑥 (𝜆𝐹 (𝑡) |𝑢|𝑝−1 𝑢) ⋅ 𝜕𝑥𝑢𝑑𝑥)
≤ 0.

(37)

We note that

𝐽 (|𝑢|𝑝−1 𝑢) = 𝑝 + 1
2 |𝑢|𝑝−1 𝐽𝑢

− 𝑝 − 1
2 |𝑢|𝑝−3 𝑢2𝐽𝑢,

𝐽 (𝐹 (𝑡) |𝑢|𝑝−1 𝑢) = (𝑥 + 𝑖𝑡𝜕𝑥) (𝐹 (𝑡) |𝑢|𝑝−1 𝑢)
= 𝐹 (𝑡) 𝐽 (|𝑢|𝑝−1 𝑢) ,

(38)

and
1
2𝜕𝑡 ‖𝐽𝑢‖2𝐿2 = I (∫

R

𝐽 (𝜆𝐹 (𝑡) |𝑢|𝑝−1 𝑢) ⋅ 𝐽𝑢𝑑𝑥) . (39)

Calculating the right part of (39), we obtain

I(∫
R

𝐽 (𝜆𝐹 (𝑡) |𝑢|𝑝−1 𝑢) ⋅ 𝐽𝑢𝑑𝑥)

= I(𝜆𝑝 + 1
2 𝐹 (𝑡) ∫

R
|𝑢|𝑝−1 |𝐽𝑢|2 𝑑𝑥)

− 𝑝 − 1
2 I(𝜆𝐹 (𝑡) ∫

R
|𝑢|𝑝−3 𝑢2 (𝐽𝑢)2 𝑑𝑥)

≤ 𝐹 (𝑡) (I𝜆𝑝 + 1
2 + |𝜆| 𝑝 − 1

2 )∫
R
|𝑢|𝑝−1 |𝐽𝑢|2 𝑑𝑥

≤ 0

(40)

under the strong dissipative condition.
Multiplying both sides of (34) by 𝑢, we obtain

1
2𝜕𝑡 ‖𝑢‖2𝐿2 = I𝜆𝐹 (𝑡) ∫

R
|𝑢|𝑝+1 𝑑𝑥 ≤ 0 (41)

by the assumptions of 𝜆 and 𝐹(𝑡). Using (37), (40), and (41),
we have

𝜕𝑡 (𝜕𝑥𝑢𝐿2 + ‖𝐽𝑢‖𝐿2 + ‖𝑢‖𝐿2) ≤ 0. (42)
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By Lemma 8, we have

‖𝑢‖𝐿2 + 𝜕𝑥𝑢𝐿2 + ‖𝐽𝑢‖𝐿2
≤ V0 (𝑥)𝐿2 + 𝜕𝑥V0 (𝑥)𝐿2 + 𝑥V0 (𝑥)𝐿2 .

(43)

From (43), we obtain a unique global solution𝑢 ∈ 𝑋1,∞ to
(33). Since 𝑢 = 𝑒− ∫𝑡0 𝜇(𝜏)𝑑𝜏V, we have a unique global solution
V(𝑡, 𝑥) ∈ 𝐶([0,∞);𝐻0,1 ∩ 𝐻1) to (1).

2.2. Proof of Theorem 4. Using the transform 𝑢 = 𝑒− ∫𝑡0 𝜇(𝜏)𝑑𝜏V,
we get the equation about 𝑢 from (1):

𝑖𝜕𝑡𝑢 + 1
2𝜕2𝑥𝑢 = 𝜆𝑒(𝑝−1) ∫𝑡0 𝜇(𝜏)𝑑𝜏 |𝑢|𝑝−1 𝑢, (44)

where 𝑢(0, 𝑥) = V(0, 𝑥) = V0(𝑥). We have local existence of
solutions 𝑢 ∈ 𝑋1,𝑇 to (44) and V ∈ 𝑋1,𝑇 to (1), respectively
(see, e.g., [13]).

By Lemma 8 and the assumptions inTheorem 4, we have

‖𝑢‖𝐿2 + 𝜕𝑥𝑢𝐿2 + ‖𝐽𝑢‖𝐿2
≤ V0 (𝑥)𝐿2 + 𝜕𝑥V0 (𝑥)𝐿2 + 𝑥V0 (𝑥)𝐿2 .

(45)

And

‖V‖𝐿2 + 𝜕𝑥V𝐿2 + ‖𝐽V‖𝐿2
≤ 𝑒∫𝑡0 𝜇(𝜏)𝑑𝜏 (V0 (𝑥)𝐿2 + 𝜕𝑥V0 (𝑥)𝐿2 + 𝑥V0 (𝑥)𝐿2) .

(46)

Thus, we obtain global-in-time existence of solutions 𝑢 ∈
𝑋1,∞ to (44) by (45) and V ∈ 𝑋1,∞ to (1) by (46), respectively.

We are now in a position to prove time decay estimates of
solutions to (1). By the Sobolev inequality

‖𝑢‖𝐿∞ ≤ 𝐶 ‖𝑢‖1/2𝐿2 𝜕𝑥𝑢1/2𝐿2 , (47)

the factorization formula𝑈(𝑡) = 𝑀𝐷𝑡F𝑀, and (45), we have

‖𝑢‖𝐿∞ ≤ 𝐶𝑡−1/2 ‖F𝑀𝑈(−𝑡) 𝑢‖𝐿∞
≤ 𝐶𝑡−1/2 ‖F𝑀𝑈(−𝑡) 𝑢‖1/2𝐿2 𝜕𝑥F𝑀𝑈(−𝑡) 𝑢1/2𝐿2
= 𝐶𝑡−1/2 ‖𝑢‖1/2𝐿2 ‖𝐽𝑢‖1/2𝐿2 ≤ 𝐶𝑡−1/2

(48)

for 𝑡 > 1. Using the transform 𝑢 = 𝑒− ∫𝑡0 𝜇(𝜏)𝑑𝜏V, we obtain

‖V‖𝐿∞ ≤ 𝐶𝑡−1/2𝑒∫𝑡0 𝜇(𝜏)𝑑𝜏 (49)

for 𝑡 > 1. By (46), we have

‖V‖𝐻1 ≤ 𝐶𝑒∫𝑡0 𝜇(𝜏)𝑑𝜏 (50)

for 𝑡 > 1.

3. Proofs of Theorems 6 and 7

3.1. Proof of Theorem 6. From Theorem 4, we have global
existence of solutions V ∈ 𝑋1,∞ to (27) and the time decay
estimates (30). To get a better decay estimates of solutions to
(27), we use the method of [4, 5]. Changing a variable such as
𝑢 = (1 + 𝑡)−𝑎/(𝑝−1)V, we have

𝑖𝜕𝑡𝑢 + 1
2𝜕2𝑥𝑢 = 𝜆 (1 + 𝑡)𝑎 |𝑢|𝑝−1 𝑢, (51)

and 𝑢(0, 𝑥) = V(0, 𝑥) = V0(𝑥).
Multiplying both sides of (51) byF𝑈(−𝑡), we get
F𝑈 (−𝑡) (𝜆 (1 + 𝑡)𝑎 |𝑢|𝑝−1 𝑢)

= 𝜆 (1 + 𝑡)𝑎F𝑀−1F−1𝐷−1𝑡 𝑀−1 |𝑢|𝑝−1 𝑢
= 𝜆 (1 + 𝑡)𝑎 𝑡−(𝑝−1)/2 |F𝑈 (−𝑡) 𝑢|𝑝−1F𝑈 (−𝑡) 𝑢

+ 𝜆𝑅 (𝑡) ,

(52)

where

𝑅 (𝑡) = (1 + 𝑡)𝑎 𝑡−(𝑝−1)/2
× (|F𝑀𝑈(−𝑡) 𝑢|𝑝−1F𝑀𝑈(−𝑡) 𝑢
− |F𝑈 (−𝑡) 𝑢|𝑝−1F𝑈 (−𝑡) 𝑢) + (1 + 𝑡)𝑎

⋅ 𝑡−(𝑝−1)/2F (𝑀−1 − 1)F−1 |F𝑀𝑈(−𝑡) 𝑢|𝑝−1
⋅F𝑀𝑈(−𝑡) 𝑢.

(53)

Therefore, we have

𝑖𝜕𝑡F𝑈 (−𝑡) 𝑢
= 𝜆 (1 + 𝑡)𝑎 𝑡−(𝑝−1)/2 |F𝑈 (−𝑡) 𝑢|𝑝−1F𝑈 (−𝑡) 𝑢

+ 𝜆𝑅 (𝑡) ,
(54)

where the remainder term 𝑅(𝑡) is given in (53). Substituting
F𝑈(−𝑡)𝑢 by 𝑓, we have the following equation about 𝑓:

𝑖𝜕𝑡𝑓 (𝑡) = 𝜆 (1 + 𝑡)𝑎 𝑡−(𝑝−1)/2 𝑓 (𝑡)𝑝−1 𝑓 (𝑡) + 𝜆𝑅 (𝑡) . (55)

We have the following estimates of𝑅(𝑡). Since the proof of
these estimates is similar to that in [4, 6], we omit the proof.

Lemma9. Let 𝑢(𝑡, 𝑥) be a solution of (51) in the function space
𝑋1,∞. Then, we have

‖𝑅 (𝑡)‖𝐿∞ ≤ 𝐶𝑡−(𝑝/2−1/4−𝑎) (‖F𝑀𝑈(−𝑡) 𝑢‖𝑝−1𝐿∞
+ ‖FU (−𝑡) 𝑢‖𝑝−1𝐿∞ ) ‖𝐽𝑢‖𝐿2

(56)

and

‖𝑅 (𝑡)‖𝐿2 ≤ 𝐶𝑡−𝑝/2+𝑎 ‖F𝑈 (−𝑡) 𝑢‖(𝑝−1)/2𝐿2 ‖𝐽𝑢‖(𝑝+1)/2𝐿2
(57)

for 𝑡 > 1.
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From (55), we obtain

𝜕𝑡 𝑓 (𝑡)2 = 2I𝜆 (1 + 𝑡)𝑎 𝑡−(𝑝−1)/2 𝑓 (𝑡)𝑝+1
+ 2I (𝜆𝑅 (𝑡) 𝑓 (𝑡)) .

(58)

Hence, we get

𝜕𝑡 𝑓 (𝑡) ≤ 2𝑎I𝜆𝑡−(𝑝−1)/2+𝑎 𝑓 (𝑡)𝑝 + 𝐶 ‖𝑅 (𝑡)‖𝐿∞ (59)

for 𝑡 > 1. By Lemmas 8 and 9, we obtain

𝜕𝑡 𝑓 (𝑡) ≤ 2𝑎I𝜆𝑡−𝑝/2+1/2+𝑎 𝑓 (𝑡)𝑝 + 𝐶𝑡−𝑝/2+1/4+𝑎 (60)

for 𝑡 > 1.
Multiplying both sides of the above by 𝑡𝛿, where 𝛿 > 0, we

have

𝑡𝛿𝜕𝑡 𝑓 (𝑡) ≤ 2𝑎I𝜆𝑡𝛿−𝑝/2+1/2+𝑎 𝑓 (𝑡)𝑝
+ 𝐶𝑡𝛿−𝑝/2+1/4+𝑎.

(61)

By the Young inequality, we have

𝜕𝑡 (𝑡𝛿 𝑓 (𝑡)) ≤ 𝛿𝑡𝛿−1 𝑓 (𝑡)
− 2𝑎 |I𝜆| 𝑡𝛿−𝑝/2+1/2+𝑎 𝑓 (𝑡)𝑝
+ 𝐶𝑡𝛿−𝑝/2+1/4+𝑎

≤ 𝑝 − 1
𝑝𝑝/(𝑝−1) ⋅

1
|2𝑎I𝜆|1/(𝑝−1)

⋅ 𝛿𝑝/(𝑝−1)𝑡𝛿−(1+2𝑎+𝑝)/2(𝑝−1)
+ 𝐶𝑡𝛿−𝑝/2+1/4+𝑎

(62)

for 𝑡 > 1. Let 𝛿 = (2𝑎 + 3− 𝑝)/2(𝑝− 1) for 1 < 𝑝 < 2𝑎 + 3 and
−1 < 𝑎 ≤ 0. Integrating in time from 1 to 𝑡, we get

𝑓 (𝑡) ≤ 𝐶𝑡−(2𝑎+3−𝑝)/2(𝑝−1) + 𝐶𝑡−(𝑝/2−5/4−𝑎) (63)

for 1 < 𝑝 < 2𝑎 + 3, 𝑝 > 5/2 + 2𝑎, −1 < 𝑎 ≤ 0, and 𝑡 > 1. To
guarantee that

0 < 2𝑎 + 3 − 𝑝
2 (𝑝 − 1) ≤ 𝑝

2 − 5
4 − 𝑎, (64)

we need
5
2 + 2𝑎 < 𝑝,
1 < 𝑝 < 2𝑎 + 3,
1 ≤ 𝑝 (2𝑝 − 4𝑎 − 5) .

(65)

Let𝑝∗(𝑎) = 𝑎+5/4+(1/4)√16𝑎2 + 40𝑎 + 33.Then, from (63),
we get

𝑓 (𝑡) ≤ 𝐶𝑡−(2𝑎+3−𝑝)/2(𝑝−1) (66)

for 𝑝∗(𝑎) ≤ 𝑝 < 2𝑎 + 3, −1 < 𝑎 ≤ 0, and 𝑡 > 1.

Since 𝑝∗(𝑎) ≤ 𝑝 < 2𝑎 + 3 and −1 < 𝑎 ≤ 0, we have
(2𝑎 + 3 − 𝑝)/2(𝑝 − 1) < 1/4. By (66), we have

‖𝑢‖𝐿∞ ≤ 𝐶𝑡−1/2 ‖F𝑈 (−𝑡) 𝑢‖𝐿∞
+ 𝑐𝑡−3/4 ‖𝑥𝑈 (−𝑡) 𝑢‖𝐿∞

≤ 𝐶𝑡−1/2−(2𝑎+3−𝑝)/2(𝑝−1)
(67)

for 𝑡 > 1. Using the transform V(𝑡, 𝑥) = (1 + 𝑡)𝑎/(𝑝−1)𝑢(𝑡, 𝑥),
we have our desired result.

3.2. Proof ofTheorem 7. Wehave global existence of solutions
V ∈ 𝑋1,∞ to (27) by Theorem 4. We consider the decay
estimates of solutions to (27) by using the method of [4, 5]
in the following steps.

Since [𝐽2, 𝑖𝜕𝑡 + (1/2)𝜕2𝑥] = 0 holds, from (51), we have

1
2𝜕𝑡 𝐽2𝑢

2

𝐿2

= I (𝜆∫
R

𝐽2 ((1 + 𝑡)𝑎 |𝑢|𝑝−1 𝑢) ⋅ 𝐽2𝑢𝑑𝑥) .
(68)

By the strong dissipative condition I𝜆 < 0 and |I𝜆| > ((𝑝 −
1)/2√𝑝)|R𝜆| and using ‖𝑢‖𝐿∞ ≤ 𝐶𝑡−1/2‖𝑢‖1/2𝐿2 ‖𝐽𝑢‖1/2𝐿2 for 𝑡 >
0, we have

I(𝜆∫
R

𝐽2 ((1 + 𝑡)𝑎 |𝑢|𝑝−1 𝑢) ⋅ 𝐽2𝑢𝑑𝑥)

≤ I(𝜆𝑝 + 1
2 ∫

R

(1 + 𝑡)𝑎 |𝑢|𝑝−1 𝐽2𝑢
2 𝑑𝑥)

+ I (𝜆𝑝 − 1
2 ∫

R

(1 + 𝑡)𝑎 |𝑢|𝑝−3 𝑢2 (𝐽2𝑢)2 𝑑𝑥)

+ 𝐶∫
R

(1 + 𝑡)𝑎 |𝑢|𝑝−2 |𝐽𝑢|2 𝐽2𝑢 𝑑𝑥 ≤ (1 + 𝑡)𝑎

⋅ (I𝜆𝑝 + 1
2 + |I𝜆| 𝑝 − 1

2 )∫
R
|𝑢|𝑝−1 𝐽2𝑢

2 𝑑𝑥
+ 𝐶 (1 + 𝑡)𝑎 ‖𝑢‖𝑝−2𝐿∞ ‖𝐽𝑢‖𝐿∞ 𝐽2𝑢𝐿2 ‖𝐽𝑢‖𝐿2
≤ 𝐶𝑡−(𝑝−1)/2+𝑎 ‖𝑢‖(𝑝−2)/2𝐿2 ‖𝐽𝑢‖3/2+(𝑝−2)/2𝐿2

𝐽2𝑢
3/2

𝐿2

(69)

for 𝑡 > 0. Thus, we obtain
𝐽2𝑢𝐿2 ≤ V0𝐻0,2 + 𝐶𝑡−𝑝+3+2𝑎 (70)

for 𝑡 > 0.
By using a similar method to that in [4], we have the

estimate of 𝑅(𝑡) as follows. Here we omit the proof.

Lemma 10. Let 𝑢 be a solution of (51) in the function space
𝑋1,∞. Then, we have

‖𝑅 (𝑡)‖𝐿∞ ≤ 𝐶𝑡−(𝑝/2+1/4−𝑎) V0𝑝−1𝐻0,1 𝐽2𝑢𝐿2 (71)

for 𝑡 > 1.
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(58) shows

𝜕𝑡 𝑓 (𝑡)2 = 2I𝜆 (1 + 𝑡)𝑎 𝑡−(𝑝−1)/2 𝑓 (𝑡)𝑝+1
+ 2I (𝜆𝑅 (𝑡) 𝑓 (𝑡)) ,

(72)

where 𝑓 = F𝑈(−𝑡)𝑢. Let 3 − 𝑝 + 2𝑎 > 0. By Lemma 10 and
(58), we get

𝜕𝑡 𝑓 (𝑡) ≤ 2𝑎I𝜆𝑡−(𝑝−1)/2+𝑎 𝑓 (𝑡)𝑝 + 𝐶𝑡−3𝑝/2+11/4+3𝑎 (73)

for 𝑡 > 1. Multiplying both sides of the above by 𝑡𝜌, where
𝜌 > 0, we have

𝑡𝜌𝜕𝑡 𝑓 (𝑡) ≤ 2𝑎I𝜆𝑡𝜌−𝑝/2+1/2+𝑎 𝑓 (𝑡)𝑝
+ 𝐶𝑡𝜌−3𝑝/2+11/4+3𝑎.

(74)

By the Young inequality, we have

𝜕𝑡 (𝑡𝜌 𝑓 (𝑡)) ≤ 𝜌𝑡𝜌−1 𝑓 (𝑡)
− 2𝑎 |I𝜆| 𝑡𝜌−𝑝/2+1/2+𝑎 𝑓 (𝑡)𝑝
+ 𝐶𝑡𝜌−3𝑝/2+11/4+3𝑎

≤ 𝑝 − 1
𝑝𝑝/(𝑝−1) ⋅

1
|2𝑎I𝜆|1/(𝑝−1)

⋅ 𝜌𝑝/(𝑝−1)𝑡𝜌−(1+2𝑎+𝑝)/2(𝑝−1)
+ 𝐶𝑡𝜌−3𝑝/2+11/4+3𝑎

(75)

for 𝑡 > 1. Let 𝜌 = (2𝑎+ 3− 𝑝)/2(𝑝− 1) for 1 < 𝑝 < 2𝑎+ 3 and
−1 < 𝑎 ≤ 0. Integrating in time from 1 to 𝑡, we get

𝑓 (𝑡) ≤ 𝐶𝑡−(2𝑎+3−𝑝)/2(𝑝−1) + 𝐶𝑡−(3𝑝/2−15/4−3𝑎) (76)

for 1 < 𝑝 < 2𝑎 + 3, 𝑝 > 2𝑎 + 13/6, −1 < 𝑎 ≤ 0, and 𝑡 > 1. To
obtain

0 < 2𝑎 + 3 − 𝑝
2 (𝑝 − 1) ≤ 3𝑝

2 − 15
4 − 3𝑎, (77)

we need

1 < 𝑝 < 2𝑎 + 3,
𝑝 > 2𝑎 + 13

6 ,
6𝑝2 − (12𝑎 + 19) 𝑝 + (8𝑎 + 9) ≥ 0.

(78)

Let 𝑝∗∗(𝑎) š 𝑎 + 19/12 + (1/12)√144𝑎2 + 264𝑎 + 145.Then,
from (76), we get

𝑓 (𝑡) ≤ 𝐶𝑡−(2𝑎+3−𝑝)/2(𝑝−1) (79)

for 𝑝∗∗(𝑎) ≤ 𝑝 < 2𝑎 + 3, −1 < 𝑎 ≤ 0, and 𝑡 > 1.

When 𝑝∗∗(𝑎) ≤ 𝑝 < 2𝑎 + 3 and −1/2 < 𝑎 ≤ 0, we have
(2𝑎 + 3 − 𝑝)/2(𝑝 − 1) < 1/4. By (79), we have

‖𝑢‖𝐿∞ ≤ 𝐶𝑡−1/2 ‖F𝑈 (−𝑡) 𝑢‖𝐿∞
+ 𝑐𝑡−3/4 ‖𝑥𝑈 (−𝑡) 𝑢‖𝐿∞

≤ 𝐶𝑡−1/2−((2𝑎+3−𝑝)/2(𝑝−1))
(80)

for 𝑡 > 1. By using the relation V(𝑡, 𝑥) = (1 + 𝑡)𝑎/(𝑝−1)𝑢(𝑡, 𝑥),
we have our desired result.
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