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In this paper, radial basis functions (RBFs) method was used to solve a fractional Black-Scholes-Schrodinger equation in an option
pricing of financial problems. The RBFs method is applied in discretizing a spatial derivative process. The approximation of time
fractional derivative is interpreted in the Caputo’s sense by a simple quadrature formula. This RBFs approach was theoretically
proved with different problems of two numerical examples: time step arbitrage bubble case and time linear arbitrage bubble
case. Then, the numerical results were compared with the semiclassical solution in case of fractional order close to 1. As a result,

both numerical examples showed that the option prices from RBFs method satisfy the semiclassical solution.

1. Introduction

An option is one of the most important and popular financial
derivatives in financial market. There are various types of
mathematical model for option pricing. The Black-Scholes
equation, introduced by Black and Scholes [1], provided an
approximate description of underlying asset price behavior.
This equation becomes popular in various kinds of studies
such as economics, physics, and financial mathematics since
it can be simply solved with a short time in conversion into
the solutions. The Black-Scholes equation is a well-known
financial model in option pricing which is constructed under
strict assumptions. In fact, arbitrage exists in real financial
markets; however, one of the key assumptions in this equa-
tion has no arbitrage. Thus, Classical Black-Scholes equation
was extended for arbitrage possibilities by Contreras et al. [2].
The Black-Scholes equation with arbitrage can be interpreted
using quantum mechanic’s view point in a sense of an imag-
inary time from Schrodinger equation of a free particle.
Therefore, the Black-Scholes equation including arbitrage
possibilities was proposed by Contreras et al. [3] which the

equation was solved by the semiclassical method. Although
the Black-Scholes-Schrodinger equation can be used to
describe the analysis of option pricing in financial markets,
this equation cannot be completely described in the physical
meaning of the actual financial market.

For a decade, fractional differential equations (FDEs)
have been further used as a tool to describe the phenomena
in applied sciences and engineering. Problems related to biol-
ogy, chemistry, physics, mechanics, and engineering (e.g.,
surface and subsurface hydrology [4-6], finance [7, 8], epide-
miology [9], and ecology [10, 11]) were efficiently explained
by fractional differential and integral equations. As a result,
FDEs are more suitably compared to the integer-order
models [12]. Moreover, the fractional derivative can be used
to describe some occurrences that integer cannot. There are
many different types of fractional derivative. A most popular
of fractional derivatives was proposed by Caputo [13] that it
was deeply explained referred to Oldham and Spanier [14],
Miller and Ross [15], Podlubny [16], and Kilbas et al. [17].
Sometimes, FDEs are not suitable for some analytical
methods; the numerical methods that contribute to an
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abundance of approaches are used to overcome this disad-
vantage. Finite difference and meshless method are com-
monly applied in numerical methods. Cen and Le [18]
presented a numerical method based on central difference
spatial discretization for a generalized Black-Scholes equa-
tion for option pricing. Song and Wang [19] also solved the
put option pricing problem based on the fractional Black-
Scholes equation by finite difference method. The results
proved that applications of this technique are efficiency and
less requirement for computational work to solve the frac-
tional Black-Scholes equation. Kumar et al. [20] provide the
numerical algorithm called homotopy perturbation and
homotopy analysis method for time fractional Black-
Scholes equation to solve a European option problem. Phao-
choo et al. [21, 22] proposed a numerical method based on
the meshless local Petrov-Galerkin (MLPG) to solve a
Black-Scholes equation and fractional Black-Scholes equa-
tion via moving kriging interpolation for financial problems.
Likewise, Phramrung et al. [23] applied the numerical
method of meshless local Petrov-Galerkin (MLPG) to
approximate the problem of the fractional HIV model. In
addition, Cen et al. [24] applied the central difference spatial
discretization for time fractional Black-Scholes equation.
Chen et al. [25] introduced a new operator splitting method
for numerical approach in an American option under frac-
tional Black-Scholes model. Numerical scheme was also
operated by Uddin and Taufiq [26] using radial kernels and
Laplace transform to approximate the time fractional
Black-Scholes model governing European options.

Radial basis functions (RBFs), firstly introduced in 1971,
is a new technique for the numerical solution of partial differ-
ential equations (PDEs) in Hardy research [27]. The RBFs are
high-dimensional and highly accurate meshless computa-
tional algorithm with a number of distinct advantages. It is
widely applied in field of applied science and engineering
such as diffusion equations [28], reconstruction of corrupted
images [29, 30], and surface reconstruction [31]. The gener-
ation of a grid impacted is not required in the RBFs method
because it is particularly efficient in solving such kind of free
boundary and convection dominated problems [32]. Fur-
thermore, the RBFs approximation technique is based on col-
location in a set of scattered nodes. This method is
independent with respect to the dimension of the space.
However, there are few studies that applied the RBFs method
in option pricing. Hon and Mao [33] proposed a radial basis
functions (RBFs) method for solving options pricing model
with RBFs interpolation by converting Black-Scholes equa-
tion into a system of ordinary differential equations (ODEs).
Besides, Hon [34] combined the quasi-interpolation and
RBFs method, called a quasi-radial basis function method,
to solve the option pricing model. The result showed a high
accuracy in the computations for European and American
options. Zhang [35] applied a radial basis functions method
for valuing options with multinomial tree approach. The
study claimed that the RBFs method is highly efficient for
both European option and American option.

In this study, the fractional Black-Scholes-Schrodinger
equation is solved by using RBFs method for an option pric-
ing. Spatial derivative was discretized through this method,
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and the approximation of time fractional derivative is inter-
preted in the Caputo’s senses by a simple quadrature for-
mula. Then, numerical solution is compared with the
semiclassical solution. The procedure in this study was dem-
onstrated in Section 2, where the basic concept of the Black-
Scholes-Schrodinger equation was briefly described as a
problem formulation. Spatial discretization of the fractional
Black-Scholes-Schrodinger equation was analyzed by using
the RBFs method as it was shown in Section 3, and temporal
discretization of fractional Black-Scholes-Schrodinger equa-
tion was investigated with a simple quadrature formula in
Section 4. Then, the RBFs method was confirmed by stability
analysis to ensure the suitability of this method in Section 5.
After that, in Section 6, numerical solutions were examined
and discussed to validate the proposed method to summarize
the conclusion of this work in Section 7.

2. Problem Formulation

The Black-Scholes-Schrodinger equation is a quantum finan-
cial model which is used for analyzing fair prices of options in
real financial market. This equation interprets the Black-
Scholes equation with arbitrage possibilities in quantum
mechanic’s view point in the senses of the Schrodinger equa-
tion. The Black-Scholes equation with arbitrage possibilities
is transformed to the Black-Scholes-Schrodinger equation.
The Black-Scholes equation with arbitrage possibilities in
the domain (S,#) e Rx [0, T| is presented in the form of
Equation (1).

om  o® ,0'n  (o-(aflr)) (. on B
w3 ey U ) O

where 7(S, t) is the option price at underlying asset price S
with time #, S represents an underlying asset price, ¢ repre-
sents time variable, o represents the volatility of underlying
asset price, r is the risk free interest rate, T is the expiration
date, and the f(¢) is called the arbitrage bubble function. In
case of f =0, Equation (1) is reduced to the original Black-
Scholes equation with arbitrage possibilities. Consequently,
the degeneration will occur in approximation when S con-
verges to 0. In order to solve this problem, the changing
variable technique is applied by & = InS, to obtain

on . o?*n e o\ on . (r—a)f (on U W
ot 2 & 2)0t  o-f \o& e
(2)

In 2010, a new variable, x=&— (r—(0%/2))t and
m(x,t) =e Ty (x,t), is first introduced by Contreras
et al. [3]. Therefore, Equation (2) transforms to the

Black-Scholes-Schrodinger equation in the domain (x,f)
€ R x [0, T] as follows:

2 32
(=1 078 IZS; h, v(x, 1) <3W§i’ 0 w(x, t)) =0,

ot
(3)
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where y(x, f) represents a wave function at time ¢, v(x, t)

is a potential function, v(x,t) = (r —&)f (x,t)/(0 — f(x, 1)),
Fx, t) = f(et (@2t ) and x is called a space variable.

However, the Black-Scholes-Schrodinger equation is not
completely consistent with the actual financial market.
Therefore, the fractional calculus is used to apply in the
Black-Scholes-Schrodinger equation to describe occurrences
in financial market especially in field of log-price probability
and to specify the variability in prices. The fractional
Black-Scholes-Schrodinger equation in the domain (x,f)
€ R X [0, T] can be expressed as

y(x,t)  o?y(xt)
a2 o

where « is a fractional order, O<a < 1. It is also considered
as a model parameter, in which each model will provide
its solution. Equation (4) is reduced to the original
Black-Scholes-Schrodinger equation when a=1. Further-
more, this study investigates the solution in each different
value of «, where it can be any number in (0, 1] and
examine how it affects the solution of the model.

3. Spatial Discretization

In this section, the radial basis functions (RBFs) method is
applied in the process of discretizing a space variable, because
the RBFs interpolation is stable and accurate [36]. The RBFs
interpolation formulation can be written as

R;(x)B;(t), (5)

where R;(x) is the RBFs, B;(t) is an unknown coefficient at

time, ¢, and N, is the number of support nodes in the inter-
polation domain of point x.

Firstly, Equation (5) is substituted into the fractional
Black-Scholes-Schrodinger equation (Equation (4)).

j=1 J=1
+v(x, t) (% (ZX: Rj(x)ﬁ](t)>
j=1
V(1) Y Ri(x)B; () =0,
j=1

3
Ny d*B. 2 N,
RN T 4 7 Ry B0
-1 =i
) R (x)B,(1)
j=1
v 1) Y Ri()B(1) =0,

_ _ N2 2
where R;(-) = 0R;(-)/0x and R, (-) = 0°R;(-)/0x* for each
node x;,i=1,2,---,N,

N

x d*“B.(t N, s 2
ZRj(xi) 5;0,( )"' Z(%Rj,xx(xi) +v(x;, DR, ((x;)

j=1 =1

~

)
- t)Rj<xi>)/3j<t> “o.

Secondly, Equation (7) can be written in the matrix
form as

AP g -0, (8)
de®
where
A= (4] 0 A5 = Ry(x)
2
B = [By] i By = o Ryael) + v R} () = v(x )R (),

B=[B] =18 Bo-en Byl fori= 1,2, Noandj= 1,2, N,

©)

From a spatial discretization of fractional Black-
Scholes-Schrodinger equation, the ordinary differential
equation system of each point in the space is obtained.
Therefore, these systems are in form of time-dependent
equation. In the next section, a simple quadrature formula
is applied for discretization of time variable.

4. Temporal Discretization

In this section, the systems of ODEs from previous sec-
tion will be discretized on time variable by a simple



quadrature formula. First of all, the time fractional derivative,
0"y (x, t)/0t" in Equation (4) is defined by Caputo’s view-
point of order & (0 < <1) as

My(x,t) 1 Jt oy (x, T)(

o T T(=a) t—1)dr, (10)

where I'(-) denote the gamma function.

The variable ¢, is defined as t, =nAt,n=0,1,2,---,N,,
where N, is a number of time step and At = T/N, is the step
size of a time variable. A simple quadrature formula from
[37] is applied as

¥ —oam Zw BT —B") + O(A),  (11)

where w](»“) =jl@

— a)(1/A1%).

Hence, d"f/dt* = >[5 +O(At), and the first-order
approximation method for the computation of Caputo’s frac-
tional derivative is given by

— (-1 and 6., = (UI(1-a))(1/1

_awa B/t — ). (12)

Applying Equation (12) in Equation (8),

M,Zw Bt — gy | +BpT=0.  (13)

AG p ) (B = B") = —AG, 5 Y @) (BT — ") — BP".
j=2

(14)

For n =1, Equation (13) can be rewritten as

(Aaa,Atwg“> + B) Bl = Aaa,Atwg“> BO’ (15)

and for n>2,
AG (o) B "_ AG (&) pn-1
aa,Atwl + ﬁ - oa,Atwl B
@) (Bn—jﬂ _ ﬁnfj).
(16)

n
- (
—AG Z w;
j=2

The formula in Equation (15) is applied to approximate
at the time level n=1 and also used in Equation (16) for
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n>2. Then, Equation (16) is substituted into Equation
(5) to obtain the solution at each time level n. Equation
(16) can be expressed as

p-G ( i

j=2

_]+1 —j)>, (17)

-1

)L
where G" = (I+ (A&a,mwg >) B)

5. Stability Analysis

In this section, we analyze the stability of the RBFs method.
Let " =p" — B be a small perturbation at the time level 7,

where B" is the exact solution and Bn is an approximate solu-
tion. Therefore, the equation of error e” can be written as

n
e'=G" (en—l _ L) Zw§“> (en—j+1 _ en—j)> ) (18)

w; " j=2

Equation (17) would be stable if boundary of n in e” is
increased indefinitely by n exists as a positive number, M that
|G"| <M, then |[e"|| < M]|e’]|. Hence, |le"|| <[|G"[[[le"],
Vn € N. Consider Equation (18) in the case of n=1 and
n>2, which|le!]| < [|e’] if |G'||<1 for n=1. In case of
n>2, this equation can be done by mathematical induc-
tion technique. Equation (18) is first rearranged as follows:

Take the norm on both sides of Equation (19) and
then apply the triangle inequality to get

1 _
le"]| < 16" ((1 - wé””) le*|
1

(0‘)
N o P ||e°||)-
“’1

(20)
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Wave function by RBF method: Red dot represents computational node

Wave function

FIGURE 1: The wave function is solved by RBFs method for « =0.99.

Option price by RBF method (blue dot) and semiclassical method (mesh)

Option price
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FiGure 2: The option price is solved by RBFs method and semiclassical method for a = 0.99.

For n=2, the first step, base case, of mathematical  ger. Supposed that ||e”| < ||G™||||€°||,¥m >2 and a term of
induction intends to give le™*t|| < ||G™||||e°]| is obtained. From an inequality
(Equation (20)), it can be written as

(a) (a)
le <l (1= 22 )] + 2 °n
()
wl wl m+1 m+1 g“) m
2 R . et <l { 1= 225 ) fle”]
<lle{ (1= % | lc'l[le H+ H 1 A\
1 o — m
A O I S RE TX)
<A (1= el = e
e <||G’"“H<<1 S

[\/]s

which is obviously fulfilled. The second step, the inductive .
case, is proved that |le"|| <|/G"||||e°|| for any positive inte- Y

1
[S)

- ( )1
(w9 - ) e ] + S He°u)
“-’1
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FIGURE 3: The option price is solved by RBFs method for & = 0.99.
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1 w w,,

T Z(wj‘a) _“)1(?1) 1G]] + <;)1 HCOH>
Wy " j=2 w;

w

>

=[]l

(22)

which completes the proof. The proof from Equation (22)
shows that the errors made at each time level of calcula-
tion will be no more than the errors made in the initial

step as long as ||G"||<1. Since G" contains a part of
matrix A and B, their parameter was chosen to satisfy
the condition of ||G"|| < 1.

6. Numerical Experiments and Results

This section consists of a time step arbitrage bubble and
time linear arbitrage bubble cases obtained from [3]. Both
cases are represented for confirming the accuracy of the
proposed numerical method, since the fractional Black-
Scholes-Schrodinger equation has no analytical solution.
Therefore, the solution of fractional Black-Scholes-
Schrodinger equation is verified by comparing with the
semiclassical solution given by [3]. The semiclassical
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FIGURE 4: The option price is solved by RBFs method for « =0.9, 0.8, 0.5, and 0.2.

solution in the presence of a time-dependent arbitrage
bubble f = f (¢) can be computed as

1
T (S, 1) = (T B (ep(t’m& t) , (23)

where 7(S, t) is the arbitrage-free Black-Scholes solution
for the specific option with contract, @(S), and p(¢, T) is
the p factor. The arbitrage bubble function, f, takes part
of the p function. In this way, the function p(t, T) renor-
malizes the bare arbitrage-free Black-Scholes solution. The
pure Black-Scholes solution 7r,¢(S, t) is given by

m5,(S, 1) =TI [1 = N(dy (S, 1)), (24)

where N(x) is the normal distribution function and d,

(S,t)=(In (S/K) + (r = (6%/2))(T - t))/o\/(T - t), with a

strike price, K. The contract function, @(S), is given by

1, 0<S<K,
D(S) =
0, K<S.

The fractional Black-Scholes-Schrodinger equation in
the domain (x,¢) e Rx [0, T] is considered as

(25)

9"y (x. 1)
ot*

o? azw(x, t)
* 2 ox2 *

v(x, 1) (a"’(x’ )

3 y(x, t)) =0.

(26)
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FIGURE 6: The option price is solved by RBFs method and semiclassical method for a = 0.99.

The initial and boundary conditions can be obtained
by changing variables of the contract function (Equation
(25)) and the analytical solution (Equation (23)). There-
fore, the initial and boundary conditions are as follows:

1
1, —-oo<x<InK- <r— 502> T,

y(xT)=

1
0, InK- (r——02>T<x.
2 (27)

W(xh t) _ er(T—t)n,sc (ex1+(r—(1/2)gl)t’ t) ,
W(xNX’ t) _ er(T—t)ﬂSC (exNer(r—(uz)gzy) t),

where x; and xy_are the end points boundary of the
spatial domain.

Example 1. Consider the following time step arbitrage bubble
case of

0, 0<t<Ty,
f()=< H, T,<t<T, (28)
0, T,<t<T,

with p factor condition is determined by

(r—-a)H
T,-T))——, 0<t<T,,
(T,-T,) o—H <E< 1y
t,T)= - a)H 29
p(LT) Ufﬁg?%r, r<t<t, &
0, T,<t<T.

In this paper, a binary put option is analyzed. Since the
semiclassical solution is an analytical solution, the result
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F1GURE 7: The option price is solved by RBFs method for a = 0.99.

can be computed from any point on a mesh. However, the
aim of this paper is to compare the RBFs solution with
semiclassical solution. Accordingly, semiclassical solution
that is on the same node with RBFs solution was chosen.
A set of node is defined as N, =100 and N, =100 where
N, is the number of support nodes in the interpolation
domain of point x, and N, is a number of time step. In
Example 1, the parameter values area=0.99, 0=0.5, r=
0.01, @a=-0.6, T,=03, T,=0.6, T=1, and H=0.1o,
respectively. Figure 1 shows the wave function solved by
RBFs method, where dots on x direction represent compu-
tational node, t direction represents a time level, and ver-
tical direction represent a wave function. Figure 2 shows
the option price solved by RBFs method and semiclassical

method, where S direction represents an underlying asset
price, t direction represents a time level, and vertical direc-
tion represents the option price. The option price from
RBFs method is shown as dots, while the semiclassical
solution is shown as a mesh. As it is shown in Figure 2,
the dots almost overlapped with the mesh; as a result,
the option price of fractional Black-Scholes-Schrodinger
equation (in case of « close to 1) from RBFs method sat-
isfied the semiclassical solution. On the other hand,
Figure 3(a) only shows the option price solved by RBFs
method with the initial and boundary conditions; a graph
of option price remains steady at the initial time. The
option price decrease continuously over time in each time
step and remains steady in the final of the graph. In
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F1GURE 8: The option price is solved by RBFs method for « =0.8, 0.6, 0.4, and 0.2.

Figure 3(b), the option price plotted at time 1.0, 0.9, 0.8, In the following example, the option price of the frac-

0.7, and 0.6 shows no difference compared with the graph  tional model by RBFs method for time linear arbitrage bubble
at time 0.5, 0.4, and 0.3 which show a huge different.  case is examined.

Figure 4 shows the option price from RBFs method when

the « values are varied. The result shows that the option = Example 2. Consider the following time linear arbitrage bub-
price decrease more rapidly with the lower « values; for  ble case

example, the option price at « =0.2 decrease with higher

slope than the option price at a=0.5. Moreover, the L?

relative error was analyzed in this paper. The values of 0, 0<t<T,

the L? relative error between the RBFs solution of frac- H

tional Black-Scholes-Schrodinger equation with the semi- ft)= (T,—T)) (t=Ty), Ty<t<T, (30)
classical solution is 9.8544 x 107>, It was found that the 2t

numerical result agrees as the semiclassical solution. 0, T,<t<T,
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with p factor condition is determined by
-a)(T,-T
U= T [ (2) - a1, 0<t<T,
H oc—H
p(t, T)=¢ (r—a)(T,-T)) oln H(t-T,)-o(T,-T,)\ H(T,-t) T, <t<T, (31)
H (T,-T,)(H-o0) T,-T,
0, T,<t<T.

According to Example 1, a set of node is defined as
N, =100 and N, = 100 where N, is the number of support
nodes in the interpolation domain of point x, and N, is a
number of time step. In Example 2, the parameter values
area=0.99, 0=0.5, r=0.01, «=-0.6, T, =0.3, T, =0.6,
T=1, and H =0.10, respectively. Figure 5 shows the wave
function solved by RBFs method, where dot on x direction
represents computational nodes, t direction represents a
time level, and vertical direction represents a wave func-
tion. Figure 6 shows the option price graph solved by
RBFs method and semiclassical method, where S direction
represents an underlying asset price, ¢ direction represents
a time level, and vertical direction represents the option
price which is shown as dots and mesh similar to the
graph in previous example. According to Example 1, the
dots and mesh almost overlap. Therefore, the option prices
of fractional Black-Scholes-Schrodinger equation (in case
of « close to 1) by using RBFs method satisfied the semi-
classical solution. In contrast, Figure 7(a) only shows the
option price solved by RBFs method, a graph of option
price remains steady at the initial time. The option price
decrease continuously over time in each time step and
remains steady in the final of the graph. Figure 7(b) shows
that the option price at times 1.0, 0.9, 0.8, 0.7, and 0.6 is
almost no difference in each time, while at time 0.5and 0.4,
the option price drops considerably. At time 0.5 and 0.4,
the option price fall slightly at time 0.3, 0.2, 0.1, and 0.
Figure 8 shows the option price in different values of a.
When, « value decreases, the option price changes dramati-
cally. In other hand, the option price changes slightly when
the values of « increases. According to Example 1, the values
of the L? relative error between the RBFs solution of frac-
tional Black-Scholes-Schrodinger equation with the semi-
classical solution is 7.9318 x 107>, It was found that the
numerical result agrees as the semiclassical solution.

From previous examples, it concluded that the results
from RBFs method (in case of « close to 1) satisfied the semi-
classical solution. The results of the fractional model for var-
ious « values show that when « value is decreased, the option
price is changing rapidly while when « value increases close
to 1, the solutions are changing slowly.

7. Conclusion

The numerical method in solving the fractional Black-
Scholes-Schrodinger equation based on the radial basis func-

tions (RBFs) method is successfully developed. The spatial
derivative is discretized by the RBFs method. A simple quad-
rature formula is applied in terms of time fractional deriva-
tive discretizing. The Gaussian function is selected as a
radial basis function in RBFs method. The numerical solu-
tions of fractional Black-Scholes-Schrodinger equation based
on RBFs method in case of fractional order close to 1 is com-
pared with the semiclassical solution. The results presented
as time step arbitrage bubble case and time linear arbitrage
bubble case, which show that the option price from RBFs
method satisfied the semiclassical solution. Therefore, RBFs
method can be used to solve the fractional Black-Scholes-
Schrodinger equation. Because the effect in changing the
value of alpha on the fractional model is considered, the
option price changes rapidly when the value of alpha is
decreased. On the other hands, when alpha was increasing
close to 1, the option price changed slowly. Therefore, it
can be concluded that the varying fractional order affected
to the model solutions. The value of the L? relative error
between the RBFs solution of fractional Black-Scholes-
Schrodinger equation with the semiclassical solution was
analyzed in both example cases. It shows that the numerical
result agrees as the semiclassical solution. Furthermore, the
RBFs method is verified by the stability analysis. The results
of solving the fractional Black-Scholes-Schrodinger equation
by applied RBFs method can be ensured by stability analysis.
Thus, this study provided an alternative useful approach in
solving the fractional Black-Scholes-Schrodinger equation.
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