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In this paper, a new three-parameter lifetime distribution is introduced; the new model is a generalization of the log-logistic (LL)
model, and it is called the alpha power transformed log-logistic (APTLL) distribution. The APTLL distribution is more flexible than
some generalizations of log-logistic distribution. We derived some mathematical properties including moments, moment-
generating function, quantile function, Rényi entropy, and order statistics of the new model. The model parameters are
estimated using maximum likelihood method of estimation. The simulation study is performed to investigate the effectiveness of
the estimates. Finally, we used one real-life dataset to show the flexibility of the APTLL distribution.

1. Introduction

Mahdavi and Kundu [1] introduced the alpha power trans-
formation (APT) method to add an additional parameter to
a family of distributions to increase flexibility (more applica-
ble) in the given family. The cumulative distribution function
(cdf) of an APT-G family is

F x ; αð Þ =
αG xð Þ − 1
α − 1

if α > 0, α ≠ 1,

G xð Þ if α = 1,

2
64 ð1Þ

and the corresponding probability density function (pdf) is

f x ; αð Þ =
ln α

α − 1
g xð ÞαG xð Þ if α > 0, α ≠ 1,

g xð Þ if α = 1:

2
4 ð2Þ

In literature, many distributions are generalized using
this generated family, for example, the APTWeibull distribu-
tion by Dey et al. [2], the APT generalized exponential distri-
bution by Dey et al. [3], the APT extended exponential
distribution by Hassan et al. [4], the alpha power inverted
exponential distribution by Unal et al. [5], the APT inverse-

Weibull distribution by Ramadan and Magdy [6], the APT
Lindley distribution by Dey et al. [7], the APT inverse-
Lindley distribution by Dey et al. [8], the APT power Lindley
studied by Hassan et al. [9], and the APT Pareto distribution
proposed in Ihtisham et al. [10].

The LL distribution is very popular and is used in many
areas like survival analysis, economics, actuarial science,
hydrology, geophysics (see [11]), and engineering. In some
cases, LL distribution is better than the log-normal distribu-
tion. The pdf and cdf of the LL distribution is given by

g x ; a, bð Þ = b
ab

xb−1 1 +
x
a

� �b� �−2
,  x > 0,

G x ; a, bð Þ = 1 − 1 +
x
a

� �b� �−1
,  x > 0,

ð3Þ

where a is a positive scale parameter and b is a positive shape
parameter.

The main goal of this article is to introduce a new flexible
and simple model called an APTLL distribution, and this
model is more flexible than some generalizations of log-
logistic distribution. The new model is discussed in Section
2. Various statistical properties of the APTLL distribution
are derived in Section 3 alongwithmore attractive expressions
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for quantile function, median, moments, Rényi entropy, and
order statistics. The estimation of parameters of the new
model using the maximum likelihood (ML) method of
parameter estimation is discussed in Section 4. The simula-
tion study is performed to investigate the effectiveness of
the estimates in Section 5. In Section 6, we deal with one
application to show the flexibility of the new model. Finally,
conclusions are discussed in Section 7.

2. The New APTLL Distribution

The random variable (r.v.) X is said to have the APTLL
model denoted by APTLL (a, b, α) with three parameters, if
the pdf of X for x ≥ 0 is

f xð Þ =

b ln αð Þ
ab α − 1ð Þ x

b−1 1 +
x
a

� �b� �−2
α1− 1+ x/að Þbð Þ−1 if α ≠ 1, a, b, α > 0,

b

ab
xb−1 1 +

x
a

� �b� �−2
if α = 1, a, b, α > 0,

8>>>><
>>>>:

ð4Þ

F xð Þ =
α1− 1+ x/að Þbð Þ−1 − 1
α − 1

if α ≠ 1,

1 − 1 +
x
a

� �b� �−1
if α = 1:

8>>>><
>>>>:

ð5Þ

The survival function (sf) and the hazard rate function
(hrf) for the APTLL distribution for x > 0 are in the following
forms:

S xð Þ = α − α1− 1+ x/að Þbð Þ−1

α − 1
,

h xð Þ =
a−bb ln αð Þxb−1 1 + x/að Þb

� �−2
α1− 1+ x/að Þbð Þ−1

α − α1− 1+ x/að Þbð Þ−1 :

ð6Þ

The reversed and cumulative hazard rate functions are
given by

τ xð Þ =
a−bb ln αð Þxb−1 1 + x/að Þb

� �−2
α1− 1+ x/að Þbð Þ−1

α1− 1+ x/að Þbð Þ−1 − 1
,

H xð Þ = −ln
α − α1− 1+ x/að Þbð Þ−1

α − 1

0
@

1
A:

ð7Þ

Figures 1 and 2 demonstrate the plots of pdf and hrf of
the APTLL model for different values of α, a, and b. Clearly,
the pdf of the APTLL model is a decreasing function, unim-
odal, and right skewed. The hrf of the APTLL model can be
decreasing, upside down, and J-shaped.

3. Fundamental Properties of the New
APTLL Model

This section deals with some statistical properties of the
APTLL distribution.

3.1. Quantile Function andMedian.We can generate random
samples from the APTLL model by inverting (5).

xq = a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln αu − u + 1ð Þ

ln α − ln αu − u + 1ð Þ
b

s
: ð8Þ

If U ~ ð0, 1Þ, then X ~ APTLL, the qth quantile function
of APTLL is given by

xq = a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln αu − u + 1ð Þ

ln α − ln αu − u + 1ð Þ
b

s
: ð9Þ

and the median can be obtained as

x0:5 = a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 0:5α + 0:5ð Þ

ln α − ln 0:5α + 0:5ð Þ
b

s
: ð10Þ

3.2. Important Expansions. Here, in this subsection, an
explicit expression for the APTLL pdf and cdf is given. By
using the next exponential series representation

zβ = 〠
∞

i=0

log zð Þi
i!

βi: ð11Þ

By inserting (11) in (4), we can rewrite (4) as

f xð Þ = b ln αð Þ
ab α − 1ð Þ〠

∞

i=0

log αð Þi
i!

xb−1 1 +
x
a

� �b� �−1

� 1 − 1 +
x
a

� �b� �−1
( )i

:

ð12Þ

By applying the binomial expansion

1 − zð Þβ−1 = 〠
∞

j=0
−1ð Þj

β − 1

j

 !
zj, ð13Þ

to the previous equation, we get

f xð Þ = 〠
∞

i,j=0
wi,j x

b−1 1 +
x
a

� �b� �−j−1
, ð14Þ

where

wi,j =
−1ð Þj i/jð Þb ln αð Þ log αð Þi

ab α − 1ð Þi! : ð15Þ

The expansion for ½FðxÞ�h is calculated, with h as the inte-
ger, by using the previous two expansions:
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Figure 1: Plots of the pdf of the APTLL distribution.
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Figure 2: Plots of the hrf of the APTLL distribution.
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F xð Þ½ �h 〠
∞

m=0
wm 1 +

x
a

� �b� �−m

, ð16Þ

where

wm = 1 − αð Þ−h 〠
h

i=0
〠
∞

j=0
−1ð Þi+m

h

i

 !
j

m

 !
ij log αð Þð Þj

j!

ð17Þ

3.3. Moments

Theorem 1. Let X be a r.v. from the APTLL distribution, then
its kth moment is

μ́k = 〠
∞

i,j=0
wi,j

ak−b

b
B

k
b
+ 1, j −

k
b

� �
: ð18Þ

Proof. Let X be a r.v. with pdf (4). The kth moments of the
APTLL model are calculated as

μ́k =
ð∞
0
xk f x ; a, b, αð Þdx =

ð∞
0

〠
∞

i,j=0
wi,jx

k+b−1 1 +
x
a

� �b� �−j−1
dx:

ð19Þ

Let y = ðx/aÞb, then

μ́k = 〠
∞

i,j=0
wi,j

ak+b

b

ð∞
0
yk/b 1 + yð Þ−j−1dy: ð20Þ

Then,

μ́k = 〠
∞

i,j=0
wi,j

ak+b

b
B

k
b
+ 1, j −

k
b

� �
: ð21Þ

The mean of the APTLL distribution is easily obtained by
putting k = 1 as

μ = μ́1 = E Xð Þ = 〠
∞

i,j=0
wi,j

a1+b

b
B

1
b
+ 1, j −

1
b

� �
: ð22Þ

The variance of the APTLL distribution is given by

σ2 = μ́2 − μ́1Þ2 = 〠
∞

i,j=0
wi,j

a2+b

b
B

1
b
+ 1, j −

2
b

� �
− μ́1Þ2:
� 

ð23Þ

Numerical values of the first four moments, variance
(σ2), skewness (SK), and kurtosis (KU) of the APTLL dis-
tribution for a = 2 and some choice values of b and α are
as follows: (1) (α = 0:2, b = 5), (2) (α = 0:2, b = 6), (3)
(α = 0:2, b = 10), (4) (α = 1:5, b = 5), (5) (α = 1:5, b = 6), (6)
(α = 1:5, b = 10), (7) (α = 0:5,  b = 5), (8) (α = 0:5, b = 6),

(9) (α = 0:5, b = 10), (10) (α = 2, b = 5), (11) (α = 2, b = 6),
and (12) (α = 2, b = 10) are displayed in Tables 1 and 2.

The moment generating function of X is obtained as

MX tð Þ = 〠
∞

k=0

tk

k!
μ́k = 〠

∞

k,i,j=0

tk

k!
wi,j

ak+b

b
B

k
b
+ 1, j −

k
b

� �
:

ð24Þ

3.4. The Probability Weighted Moments. For a r.v. X, the
probability-weighted moments (PWMs) are given by

τk,s = E XkF xð Þs
� �

=
ð∞
−∞

xkf xð ÞF xð Þsdx: ð25Þ

The PWMs of APTLL are obtained by substituting (14)
and (16) into (25) and replacing h with s, as follows:

τk,s =
ð∞
0

〠
∞

i,j,m=0
wi,j wmx

k+b−1 1 +
x
a

� �b� �−j−1
dx: ð26Þ

Then,

τk,s = 〠
∞

i,j,m=0
wi,j wm

ak+b

b
B

1
b
+ 1,m + j −

1
b

� �
: ð27Þ

3.5. Rényi Entropy. For a given pdf, the Rényi entropy is
defined by

IR δð Þ = 1
1 − δ

log
ð∞
0
f xð Þδdx, δ > 0, δ ≠ 1: ð28Þ

The function f ðxÞδ can be written as

f xð Þδ = bln α

ab α − 1ð Þ
� �δ

xδb−δ 1 +
x
a

� �b� �−2δ
αδ 1− 1+ x/að Þbð Þ−1
� �

:

ð29Þ

By applying the expansions (11) and (13), then, we can
rewrite the last equation as

f xð Þδ = 〠
∞

i,j=0
ti,j x

δb−δ 1 +
x
a

� �b� �−j−2δ
, ð30Þ

where

ti,j =
b ln α

ab α − 1ð Þ
� �δ δi ln αð Þi −1ð Þj

i!

h

j

 !
: ð31Þ
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Now, we will investigate the integral

I =
ð∞
0
f xð Þδdx = 〠

∞

i,j=0
ti,j

ð∞
0
xδb−δ 1 +

x
a

� �b� �−j−2δ
dx

= 〠
∞

i,j=0
ti,j

aδb−δ+1

b
B δ −

δ

b
+
1
b
, j + δ +

δ

b
−
1
b

� �
:

ð32Þ

Then, the Rényi entropy is

IR Rð Þ = 1
1 − δ

log 〠
∞

i,j=0
ti,j

aδb−δ+1

b
B δ −

δ

b
+
1
b
, j + δ +

δ

b
−
1
b

� �
:

ð33Þ

3.6. Order Statistics. Let X1, X2,⋯, Xn be the r.v. sample from
the APTLL model with order statistics Xð1Þ, Xð2Þ,⋯, XðnÞ.
The pdf of r.v. XðkÞ is calculated as

f X kð Þ
xð Þ = n!

k − 1ð Þ! n − kð Þ! F
k−1 xð Þf xð Þ 1 − F xð Þð Þn−k: ð34Þ

The pdf of XðkÞ can be expressed as

f X kð Þ
xð Þ = n!b ln αð Þ

k − 1ð Þ! n − kð Þ!ab α − 1ð Þn x
b−1Δ−2α1−Δ

−1

� α1−Δ
−1
− 1

� �k−1
α − α1−Δ

−1
� �n−k

,
ð35Þ

where ð1 + ðx/aÞbÞ = Δ . In particular, the pdf of the first and
largest order statistics can be derived as

f X 1ð Þ
xð Þ = nb ln αð Þ

ab α − 1ð Þn x
b−1Δ−2α1−Δ

−1
α − α1−Δ

−1
� �n−1

,

f X nð Þ
xð Þ = nb ln αð Þ

ab α − 1ð Þn x
b−1Δ−2α1−Δ

−1
α1−Δ

−1
− 1

� �n−1
,

ð36Þ

respectively.

4. ML Estimation

Let X1,⋯, Xn be the observed values from the APTLL distri-
bution. The maximum likelihood estimates (MLEs) of the
proposed model parameters a, b, and α are derived using
the log-likelihood function, say ℓ, which is given by

ln L = n ln b + n ln ln αð Þ − n ln α − 1ð Þ − nb ln a

+ b − 1ð Þ〠
n

i=1
lnxi − 2〠

n

i=1
ln 1 +

xi
a

� �b� �

+ ln α〠
n

i=1
1 − 1 +

xi
a

� �b� �−1
" #

:

ð37Þ

Table 1: First four moments, σ2, SK, and KU, of X for some choices of parameter values.

μk′ (1) (2) (3) (4) (5) (6)

μ1′ 1.823 1.835 1.879 2.226 2.166 2.075

μ2′ 3.806 3.689 3.645 5.725 5.17 4.451

μ3′ 9.541 8.284 7.311 17.859 13.881 9.897

μ4′ 33.943 21.868 15.224 80.098 44.152 22.898

σ2 0.484 0.323 0.113 0.771 0.48 0.147

SK 2.488 1.814 0.92 2.488 1.822 0.938

KU 30.457 15.17 6.673 29.638 14.806 6.527

Table 2: First four moments, σ2, SK, and KU of X for some choices of parameter values.

μk′ (7) (8) (9) (10) (11) (12)

μ1′ 1.994 1.977 1.964 2.289 2.217 2.104

μ2′ 4.59 4.303 3.988 6.047 5.414 4.577

μ3′ 12.799 10.524 8.39 19.365 14.858 10.316

μ4′ 51.228 30.469 18.361 89.074 48.284 24.19

σ2 0.614 0.396 0.131 0.81 0.499 0.15

SK 2.49 1.823 0.937 2.495 1.828 0.942

KU 29.77 14.867 6.552 29.798 14.885 6.561
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TheML equations of the APTLL distribution are given by

∂ ln L
∂a

=
−nb
a

+
2b
a
〠
n

i=1

xi/að Þb
1 + xi/að Þb

−
b ln α

a
〠
n

i=1
1 +

xi
a

� �b� �−2
,

∂ ln L
∂b

=
n
b
− n ln a + 〠

n

i=1
lnxi − 2〠

n

i=1

xi/að Þb ln xi/að Þ
1 + xi/að Þb

+ ln α〠
n

i=1
1 +

xi
a

� �b� �−2 xi
a

� �b
ln

xi
a

� �
,

∂ ln L
∂α

=
n

α ln α
−

n
α − 1

+
1
α
〠
n

i=1
1 − 1 +

xi
a

� �b� �−1
" #

: ð38Þ

Equating ∂ℓ/∂a, ∂ℓ/∂b, and ∂ℓ/∂α with zeros and solving
simultaneously, we obtain the ML estimators of a, b, and α.

5. Simulation Study

The simulation study is required to compare theperformances
of the ML method of estimation mainly with respect to mean
square errors. 3000 random samples from different sample
sizes n = 30, 50, 100, 200, 300, and 500. Numerical results are
performed using Mathematica 9 software. Six different sets
of parameters are considered: set1(a = 0:5, b = 0:5, α = 0:7),
set2(a = 0:5, b = 0:5, α = 1:2), set3(a = 0:5, b = 0:5, α = 1:8),

set4(a = 0:5, b = 1, α = 1:5), set5(a = 0:5, b = 1:5, α = 1:5), and
set6(a = 0:5, b = 1:8, α = 1:5).

The MLEs and MSEs of a, b, and α are calculated.
Simulated outcomes are listed in Tables 3 and 4. We can
notice from Tables 3 and 4 that the MSEs decreased when
n increased.

6. Applications

In this section, we provide the effectiveness, importance, and
flexibility of the APTLL model by using one data set. These
data have been used by several authors to show the applica-
bility of other competing models. The data set is given by
Nichols and Padgett [12], and it is named the breaking stress
data. This data set consists of 100 observations of breaking
stress of carbon fibres (in Gba).

We also provide a formative evaluation of the goodness
of fit of the models and make comparisons with other distri-
butions. The measures of goodness of fit include the Akaike
information criterion (AIC), Bayesian information criterion
(BIC), Hannan-Quinn information criterion (HQIC), and
consistent Akaike information criterion (CAIC). More infor-
mation about the goodness of fit for stress-related studies can
be found in Misra and Li. In general, the smaller the values of
these statistics, the better the fit to the data. For this data, we
shall compare the fits of the APTLL model with other models
like the BXII, Zografos-Balakrishnan BXII (ZBBXII),
Marshall-Olkin BXII (MOBXII), five-parameter beta BXII
(FBBXII), BBXII, beta exponentiated BXII (BEBXII), five-

Table 3: The MLEs and MSEs of the APTLL model.

N
Set1 Set2 Set3

MLE MSE MLE MSE MLE MSE

30

0.562 0.2020 0.585 0.1610 0.685 0.215

0.529 8:23 × 10−3 0.524 7:93 × 10−3 0.531 7 × 10−3

0.784 0.0380 1.349 0.2090 1.766 0.576

50

0.516 0.0630 0.522 0.0580 0.681 0.191

0.514 3:13 × 10−3 0.517 5:88 × 10−3 0.509 3:6 × 10−3

0.729 0.0280 1.346 0.1540 1.648 0.426

100

0.52 0.0480 0.508 0.0340 0.628 0.105

0.506 1:6 × 10−3 0.502 1:83 × 10−3 0.497 1:86 × 10−3

0.74 0.0210 1.272 0.0670 1.621 0.127

200

0.489 0.0240 0.5 0.0160 0.571 0.03

0.507 8:23 × 10−4 0.501 1:05 × 10−3 0.503 1:01 × 10−3

0.756 0.0210 1.233 0.0220 1.657 0.123

300

0.479 0.0120 0.494 9:12 × 10−3 0.56 0.018

0.503 6:61 × 10−4 0.506 6:68 × 10−4 0.5 5:42 × 10−4

0.756 0.0180 1.236 0.0170 1.61 0.076

500

0.495 0.0120 0.502 7:68 × 10−3 0.577 0.016

0.504 3:91 × 10−4 0.501 3:71 × 10−4 0.5 4:31 × 10−4

0.747 0.0170 1.21 9:69 × 10−3 1.589 0.074
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parameter Kumaraswamy BXII (FKumBXII), Topp Leone
BXII (TLBXII), and KumBXII distributions (for more details
about the competitive models, see [13–16]).

Table 5 shows the ML estimates and SEs for the compet-
itive models. Also, Table 6 provides the numerical results of
some measures of goodness of fit for all competitive models.
Based on the values in Table 6, the APTLL model has the
smallest values for BIC, AIC, CAIC, and HQIC.

According to these criteria, we found that the APTPL
model is the best fitted model compared to the other compet-
itive models. The estimated pdf, cdf, sf, and pp plots are dis-
played in Figure 3. It is clear from Figure 3 that the APTPL
model provides a better fit to this data.

Table 4: The MLEs and MSEs of the APTLL model.

n
Set4 Set5 Set6

MLE MSE MLE MSE MLE MSE

30

0.58 0.044 0.519 0.014 0.503 5:57 × 10−3

1.028 0.027 1.556 0.056 1.848 0.094

1.528 0.168 1.632 0.308 1.513 0.169

50

0.546 0.025 0.516 6:42 × 10−3 0.505 3:85 × 10−3

1.057 0.024 1.544 0.033 1.854 0.07

1.546 0.140 1.549 0.165 1.491 0.142

100

0.519 0.010 0.504 2:99 × 10−3 0.513 2:29 × 10−3

1.015 6:91 × 10−3 1.510 0.014 1.824 0.02

1.489 0.061 1.578 0.093 1.468 0.035

200

0.51 4:5 × 10−3 0.500 1:59 × 10−3 0.51 9:274 × 10−4

1.019 3:435 × 10−3 1.499 6:12 × 10−3 1.833 0.013

1.471 0.033 1.538 0.027 1.459 0.027

300

0.512 3:732 × 10−3 0.504 1:174 × 10−3 0.507 7:141 × 10−4

1 2:479 × 10−3 1.508 5:473 × 10−3 1.809 6:613 × 10−3

1.469 0.030 1.534 0.021 1.457 0.022

500

0.507 2:728 × 10−3 0.496 9:028 × 10−4 0.508 4:724 × 10−4

1.002 1:29 × 10−3 1.503 3:339 × 10−3 1.803 3:728 × 10−3

1.48 0.028 1.529 0.010 1.429 0.017

Table 5: Estimates and SE (in parentheses) for breaking stress data.

Distribution Estimates and SE (in parentheses)

APTLL (a, b,α) 2.485 (4.349) 4.145 (0.348) 1.015 (14.735)

BXII (α, β) 5.941 (1.279) 0.187 (0.044)

MOBXII (α, β, γ) 1.192 (0.952) 4.834 (4.896) 838.73 (229.34)

TLBXII (α, β, γ) 1.350 (0.378) 1.061 (0.384) 13.728 (8.400)

KwBXII (λ, θ, α, β) 48.103 (19.348) 79.516 (58.186) 0.351 (0.098) 2.730 (1.077)

BBXII (λ, θ, α, β) 359.683 (57.941) 260.097 (132.213) 0.175 (0.013) 1.123 (0.243)

BEBXII (λ, θ, α, β, γ) 0.381 (0.078) 11.949 (4.635) 0.937 (0.267) 33.402 (6.287) 1.705 (0.478)

FBBXII (λ, θ, α, β, γ) 0.421 (0.011) 0.834 (0.943) 6.111 (2.314) 1.674 (0.226) 3.450 (1.957)

FKwBXII (λ, θ, α, β, γ) 0.542 (0.137) 4.223 (1.882) 5.313 (2.318) 0.411 (0.497) 4.152 (1.995)

Table 6: Measures of goodness of fits for breaking stress data.

Distribution AIC BIC CAIC HQIC

APTLL 296.796 296.796 297.046 299.959

BXII 382.94 388.15 383.06 385.05

MOBXII 305.78 313.61 306.03 308.96

TLBXII 323.52 331.35 323.77 326.70

KwBXII 303.76 314.20 304.18 308.00

BBXII 305.64 316.06 306.06 309.85

BEBXII 305.82 318.84 306.46 311.09

FBBXII 304.26 317.31 304.89 309.56

FKwBXII 305.50 318.55 306.14 310.80
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7. Conclusions

In this research, we introduced and studied the APTLL
model. Some mathematical properties of the APTLL distri-
bution are investigated. Estimation of the population param-
eters is done by using the ML method of estimation. The
simulation study is performed to investigate the effectiveness
of the estimates. A real data set is used for the application to
show the flexibility of the APTLL model against the compet-
itive models.

Data Availability

In order to obtain the numerical dataset used to carry out the
analysis reported in the manuscript, please contact the
author Maha Aldahlan.
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