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In this paper, we equip Cn with an indefinite scalar product with a specific Hermitian matrix, and our aim is to develop some block
Krylov methods to indefinite mode. In fact, by considering the block Arnoldi, block FOM, and block Lanczos methods, we design
the indefinite structures of these block Krylov methods; along with some obtained results, we offer the application of this methods
in solving linear systems, and as the testifiers, we design numerical examples.

1. Introduction

First of all, we are going to introduce the inner product
space that our work is scheduled to be done in that.
Recall that the indefinite inner product [.,.] in Cn has
the all features of a standard inner product except that
it may be nonpositive. In the other words, that is linear
in the first argument, antisymmetry, and nondegenerate.
The latter means that if ½x, y� = 0 for every y ∈ Cn, then
x = 0. This kind of inner product may be applied in some
areas of sciences and is commonly defined as ½x, y� = y ∗ Jx
where J ∈ Cn×n is a nonsingular Hermitian matrix, and even
in some specific scientific areas such as the theory of relativity
or in the research of the polarized light, it may be exclusively
as follows:

J = diag j1,⋯, jnð Þ, jk ∈ −1,+1f g: ð1Þ

With this particular J , the indefinite inner product [.,.] is
referred to as hyperbolic and take the form

x, y½ � = y∗ Jx = 〠
n

i=1
jiixi�yi: ð2Þ

In [1] and [2], by considering Cn with the indefinite sca-
lar product (2), a number of the Krylov subspace methods

have been reviewed and restructured. These methods are
indefinite Arnoldi, indefinite full orthogonalization, and
indefinite Lanczos. In this paper, we extend these indefinite
Krylov methods to their indefinite block versions which will
be discussed more in the subsequence sections.

Considering J as (1), we will need to consider the follow-
ing definitions:

A subspaceM is said to be nondegenerate, with respect to
the indefinite inner product [.,.] if x ∈M and ½x, y� = 0 for all
y ∈M imply that x = 0. OtherwiseM is degenerate. For exam-
ple, the indefinite inner product [.,.] ensures that ℂn itself is
always nondegenerate.

If M is any nondegenerate nonzero subspace of ℂn, then
the basis x1,⋯, x1 forM is said to be an orthogonal basis with
respect to the indefinite inner product [.,.], if ½xi, xj� = 0 for
i ≠ j, and is said to be an orthonormal basis if in addition
to orthogonality, ½xi, xi� = ±1 for i = 1,⋯, k. If the indefi-
nite inner product [.,.] in this definition is the special
indefinite inner product presented in (2), then the above
definitions of orthogonal basis and orthonormal basis are
called J-orthogonal and J-orthonormal bases, respectively.

A matrix A is said to be J-symmetric when A = JAT J and
we write A = A½T�.

This paper is classified such that the next section is
devoted to recounting the basic definitions and the block
Arnoldi and block Arnoldi-Ruhe’s variant. In the third

Hindawi
Advances in Mathematical Physics
Volume 2020, Article ID 2439801, 9 pages
https://doi.org/10.1155/2020/2439801

https://orcid.org/0000-0002-6248-697X
https://orcid.org/0000-0001-5788-0078
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2439801


section, the indefinite versions of its previous section algo-
rithms are designed and the use of these methods in solving
linear systems is discussed. The fourth section offers the
indefinite version of the block Lanczos method and its
application in solving linear systems with J-symmetric coef-
ficient matrices, and finally, the numerical examples are
given in the fifth chapter.

2. Block FOM Method

In some areas of computational sciences, there may be a need
to solve large sparse linear systems with several right-hand
sides that are given at once. A nonsingular linear systems
with p right-hand sides can written as

AX = B, ð3Þ

with A ∈ Cn × n and X, B ∈ Cn×p. Generally, we call such n × p
matrices block vectors. Block Krylov methods are iterative
methods that have been designed for such problems. Note
that for A ∈ Cn×n and X ∈ Cn×p, the block Krylov subspaces
KnðA, XÞ generated by A from X are

Kn A, Xð Þ≔ block span X, AX,⋯, An−1X
� �

⊂Cn×p, ð4Þ

where “block span” is defined such that

Kn A, Xð Þ = 〠
n−1

k=0
AkXγk;γk ∈ C

pxpγ, k = 0,⋯, n − 1ð Þ
( )

: ð5Þ

In general, a block Krylov subspace method acts in
the same manner as a Krylov subspace method, but at
each iteration, the operator is applied to a block of vec-
tors instead of just one. Most Krylov methods can be
generalized to block Krylov space solvers (for example,
see [3–7]). Specifically, we recall the algorithms of the
three block Krylov methods where our paper is focused
on, i.e., the block Arnoldi, block FOM, and block Lanczos
algorithms.

The outcome of Algorithm 1 is an orthogonal basis for
the block Krylov subspace KnðA, V1Þ ≡ fV1,AV1,⋯, An−1

V1g and also a band upper Hessenberg matrix with p
subdiagonals.

The second algorithm which is the resulting of A. Ruhe’s
[8] efforts as shown in Algorithm 2.

Especially, the case p = 1 coincides with the usual
Arnoldi process. According to the algorithm, the vector
w satisfies the relation

w = Aυk − 〠
j

i=1
hikυi, ð6Þ

where k = j − p + 1. By line 9, w = hj+1,kvj+1 which yields

Aυk = 〠
k+p

i=1
hikυi: ð7Þ

Thus,

AVm =Vm+p �Hm, ð8Þ

in which the matrix �Hm is of size ðm + pÞ ×m and V j rep-
resents the n × j matrix with columns v1,⋯, vj.

Another issue on which we will work in the indefinite
mode is the solving of linear systems with multiple right-
hand sides. The block generalization of FOM and Lanczos
methods is defined in straightforward ways to solve linear
systems which are defined in spaces with definite inner prod-
ucts. As a short reminder, consider the linear systems

Ax ið Þ = b ið Þ, i = 1,⋯, p, ð9Þ

or in matrix notation

AX = B, ð10Þ

(1) Choose a unitary matrix V1 of dimension n × p
(2) For j = 1,⋯,m Do
(3) Compute Hij =VT

i AV ji = 1,⋯, j
(4) Wj = AV j − ∑j

i=1ViHij

(5) Compute the QR-factorization of Wj : Wj = V j+1Hj+1,j
(6) EndDo

Algorithm 1. Block Arnoldi.

(1) Choose p initial vectors fvigi=1,⋯,p
(2) For j = p,⋯,m + p − 1 Do
(3) Set k≔ j − p + 1
(4) Compute w≔ Avk
(5) For i = 1,⋯, j Do
(6) hi,k ≔ ðw, viÞ
(7) w≔w − hikvi
(8) EndDo
(9) Compute hj+1,k ≔ kwk2 and vj+1 =w/hj+1,k
(10) EndDo

Algorithm 2. Block Arnoldi-Ruhe’s variant.
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in whichX = ðxð1Þ,⋯, xðpÞÞ andX = ðbð1Þ,⋯, bðpÞÞ, and assume

that the initial block guess X0 = ðxð1Þ0 ,⋯, xðpÞ0 Þ ∈ Cn×p of initial

guesses xðiÞ0 is given and the initial block residual R0 is as follows:

R0 ≡ r 1ð Þ
0 ,⋯, r pð Þ

0
� �

, ð11Þ

in which rðiÞ0 ≔ bðiÞ − AxðiÞ0 . Recall that in the case of a single sys-
tem, that is when p = 1, the approximate solution xm is chosen
such that the correction xm − x lies in the Krylov subspace

Km A, r0ð Þ≔ span r0, Ar0,⋯, Am−1r0
� �

⊂ Cn: ð12Þ

The block Krylov space method for solving the p systems
(3) is an iterative method that generates approximate solu-
tion X such that

Xm − X0 ∈Km A, R0ð Þ, ð13Þ

where R0 is the initial residual as (11).
The block FOM algorithm compute the QR-factorization

of R0:

R0 = v1,⋯, vp
� �

R, ð14Þ

in which matrix ½v1,⋯, vp� is unitary and R is p × p upper tri-
angular. This factorization provides the first p vectors of the
block Arnoldi basis.

Each of the approximate solutions has the form

x ið Þ = x ið Þ
0 +Vmy

ið Þ: ð15Þ

WritingX = ðxð1Þ,⋯, xðpÞÞ andY = ðyð1Þ,⋯, yðpÞÞ, we have

X = X0 +VmY : ð16Þ

Let E1 be the ðm + pÞ × pmatrix whose upper p × p princi-
pal block is an identity matrix. Then, the relation (8) results in

B − AX = B − A X0 +VmYð Þ
= R0 − AVmY = v1,⋯, vp

� �
R − Vm+p �HmY

=Vm+p E1R − �Hmy
� �

:

ð17Þ

Note that the vector �gðiÞ ≡ E1 Rei in Cm+p is a vector
whose arrays are zero apart from those from 1 to i which
are derived from the ith column of the upper triangular
matrix R. The matrix �Hm is an ðm + pÞ ×m matrix. The
block FOM approximation eliminates the last p rows of
�Hm and �gðiÞ and then solves the resulting system Hmy

ðiÞ =
gðiÞ. Then, the approximate solution xðiÞ will be calculated
by (15), and finally, from the orthogonality of the column
vectors of Vm+p, the relation (17) yields

b ið Þ − Ax ið Þ
��� ���

2
= �g ið Þ − �Hmy ið Þ�� ��

2: ð18Þ

3. Indefinite Block FOM Method

In [2], the indefinite Arnoldi’s process builds a J-orthogonal
basis for a nondegenerated Krylov subspace as shown in
Algorithm 3.

In the following, after recalling the indefinite Gram-
Schmidt orthogonalization (Algorithm 4), we will express
the block analogue of this algorithm.

Algorithm 4 gives

xj = 〠
j−1

i=1
t qið Þrijqi, for j = 1,⋯,m ð19Þ

and this implies that X =QJ́R in which QT JQ = J́ and
J́ = diag ðtðq1Þ,⋯, tðqmÞÞ. Note that the indefinite modified
Gram-Schmidt algorithm is similar to the above algorithm,
except that here, the seventh row will be replaced as follows.
Now see Algorithm 5.

(i) For i = 1,⋯, j − 1
(ii) q̂ = xj − tðqiÞrijqi
(iii) end

(1) Choose a vector x such that ½x, x� ≠ 0
(2) Define v1 = x/

ffiffiffiffiffiffiffiffiffiffiffiffij½x, x�jp
(3) For j = 1,⋯,m Do:
(4) For i = 1,⋯, j Do:
(5) Compute hij ≔ ½Avj, vi� and tðviÞ = ½vi, vi�
(6) Compute wj ≔ Avj −∑j

i=1tðviÞhijvi
(7) If

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j½wj,wj�j

q
= 0 then stop

(8) vs =wj/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j½wj,wj�j

q
(9) tðvj+1Þ = ½vj+1, vj+1�
(10) hj+1,j = tðvj+1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j½wj,wj�j

q
(11) EndDo
(12) EndDo

Algorithm 3. Indefinite Arnoldi’s process.

(1) Input vectors x1,⋯, xr
(2) r11 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij½x1, x1�j
p

(3) If r11 = 0 stop
(4) else q1≔ x1/r11 and tðq1Þ = ½q1, q1�
(5) For j = 2,⋯, r Do
(6) Compute rij ≔ ½xj, qi�, for i = 1,⋯, j − 1
(7) q̂≔ xj − ∑j−1

i−1 tðqiÞrijqi
(8) If [q̂, q̂] = 0 stop else qj = q̂/

ffiffiffiffiffiffiffiffiffiffiffiffij½q̂, q̂�jp
(9) tðqjÞ = ½qj:qj�
(10) EndDo

Algorithm 4.
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Note that J is the mentioned matrix in the indefinite sca-
lar product (2) and Ji′ is the acquired matrix by the indefinite
Gram-Schmidt process. Now, a simple property of the algo-
rithm is proved.

Proposition 1. Denote by Iκ the k × k identity matrix and
define the following matrices by the above algorithm:

Um = V1,⋯, Vm½ �,
Hm = Hij

� �
1≤i,j≤m,Hij ≡ 0for i > j + 1,

Em =matrix of the last p columns of Imp:

~Jm = diag J́ 1,⋯, J́mÞ, J́ 1 ∈ Cp×p, ~Jm ∈ Cmp×mp:
�

ð20Þ

Then the following relation holds:

AUm, =Um
~JmHm +Vm+1 J́m+1Vm+1,mE

T
m, ~JmUT

mJAUm

= ~JmHm,

J́UT
mJUm = I:

ð21Þ

Proof. The relation is straightforward by the following equal-
ities which are derived from algorithm:

Wj = AV j − 〠
j

i=1
Vi J́ iHij andWj =V j+1 J́ i+1Hj+1,j,AUm = AV1,⋯, AVm½ �

= V2 J́2H2,1 + V1 J́1H11,⋯, Vm+1 J́m+1Hm+1,m + 〠
m

i=1
Vi J́ iHij

#"

=Um
~JmHm +Vm+1 J́m+1Hm+1,mE

T
m:

ð22Þ

Algorithm 6 is the modified version of Algorithm 5 for
which the indefinite QR-factorization is calculated by the
indefinite modified Gram-Schmidt process.

As shown in Algorithm 6, we express the indefinite
version of the block Arnoldi-Ruhe’s variant, as another
Krylov subspace method for which A acts on a group of
vectors instead of just one vector.

According to Algorithm 7, the vector w is expressed as

w = Avk − 〠
j

i=1
tihi,kvi, ð23Þ

(1) Choose vectors x1,⋯, xp such that the indefinite Gram-Schmidt
orthogonalization gives result:
½x1, ::xp � = V1 J́1R1 where VT

1 JV1 = J́:

(2) Define H11 =VT
1 JAV1:

(3) For j = 1,⋯,m Do:
(4) Compute Hij = VT

i JAV j,, for i = 1,⋯, j
(5) Compute Wj = AV j − ∑j

i=1Vi J́iHij

(6) EndDo
(7) Compute the indefinite Q-R factorization of Wj =V j+1 J́ j+1Hj+1, j:

Algorithm 5. Indefinite block Arnoldi’s process.

(1) Choose vectors x1,⋯, xp such that the indefinite Gram-Schmidt
orthogonalization gives result:
½x1,⋯xp� = V1 J́1R1 where VT

1 JV1 = J́1
(2) For j = 1,⋯,m Do:
(3) Compute Wj ≔ AV j

(4) For i = 1,…, j Do
(5) Hi, j ≔ VT

i J́ iWj

(6) Wj ≔Wj − Vi J́ iHij

(7) EndDo
(8) Compute the indefinite QR-factorization of Wj =V j+1 J́ jH j+1,j:

(9) EndDo

Algorithm 6.
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where k = j − p + 1 and also w = t j+1hj+1,kvj+1. Thus,

AVk = 〠
k+p

i=1
tihi,kvi, ð24Þ

in which V j indicates the n × jmatrix with columns v1,⋯, vj.
Finally, from there

AVm =Vm+p J́ �Hm, ð25Þ

for ðm + pÞ ×m matrix �Hm.
Now, similar to the end of the previous section, consider

the linear systems

Ax ið Þ = b ið Þ, i = 1,⋯, p, ð26Þ

with matrix notation

AX = B, ð27Þ

in which X = ðxð1Þ,⋯, XðpÞÞ and B = ðbð1Þ,⋯, bðpÞÞ, and

assume that the initial block guess X0 of initial guesses xðiÞ0
and the initial block residual R0 are defined similar to the pre-
vious section.

R0 ≡ r 1ð Þ
0 ,⋯, r pð Þ

0
� �

, ð28Þ

in which rðiÞ0 ≔ bðiÞ − AxðiÞ0 . Recall that in the case of a single
system, that is when p = 1, the approximate solutionXm is cho-
sen such that the correction Xm − X lies in the Krylov subspace

Km A, r0ð Þ≔ span r0, Ar0,⋯, Am−1r0

 �

: ð29Þ

A block Krylov space method for solving the p systems (3)
is an iterative method that generates approximate solution X
such that

Xm − X0 ∈Km A, R0ð Þ, ð30Þ

where R0 is the initial residual as (28).
The indefinite block FOM computes the indefinite QR-

factorization of R0:

R0 =Vp
´JR, ð31Þ

such that Vp = ½v1,⋯, vp� and Vt
pJVp = J́ .

Each of the approximate solutions has the form

x 1ð Þ = x ið Þ
0 +Vmy

ið Þ: ð32Þ

Writing X = ðxð1Þ,⋯, xðpÞÞ and Y = ðyð1Þ,⋯, yðpÞÞ, we
have

X = X0 +VmY : ð33Þ

Let E1 be the ðm + pÞ × pmatrix as before. Then, the rela-
tion (24) results in

B − AX = B − A X0 +VmYð Þ = B − AX0 − AVmY

= R0 − AVmY = v1,⋯, vp
� �

J1R −Vm+p
′J �HmY

=Vm+p
′J E1R − �HmY
� �

:

ð34Þ

The vector �gðiÞ ≡ E1 Rei is a vector whose components are
zero except those from 1 to i which are extracts from the ith
column of the upper triangular matrix R. While Hm and �Hm
are defined as before, the indefinite block FOM (IBFOM)
deletes the last p rows of �Hm and �gðiÞ and solves the resulting
system Hmy

ðiÞ = gðiÞ. Then, the approximate solution xðiÞ is
computed by (32).

4. Block Lanczos and Indefinite Block
Lanczos Methods

In 1950, Lanczos proposed an algorithm (Algorithm 8) [9],
which designed an orthogonal transformation of a symmetric

(1) Choose matrix V1 = ½v1,⋯, vp� such that for i = 1,⋯, p : ½vi, vj� = 0, i ≠ j and ti = ½vi, vi� = ±1:
(2) For j = p,⋯,m + p − 1 Do
(3) Set k≔ j − p + 1
(4) Compute w≔ Avk
(5) For i = 1,⋯, j Do
(6) hi,k ≔ ½w, vi�
(7) w≔w − tihikvi
(8) endDo
(9) Compute a≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij½w,w�jp
(10) If a = 0 stop
(11) Compute vj+1 =w/a
(12) t j+1 = ½vj+1, vj+1�
(13) hj+1,k = t j+1a
(14) End

Algorithm 7.
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matrix into a tridiagonal matrix T . It can be applied to
Krylov subspace methods for solving the symmetric matrix
linear systems as well as the eigenvalue problem of the
symmetric matrix. The block Lanczos algorithm was devel-
oped by Peter Montgomery and published in 1995, [10]; it
is based on, and bears a strong resemblance to, the Lanc-
zos algorithm for finding the eigenvalues of large sparse
real matrices.

Due to the login of J and J́ into the IBFOM algorithm, the
better performance of the BFOM algorithm can be expected
than the IBFOM algorithm, and this seen practically in
numerous examples. We know there is a Ruhe’s version of
the block Lanczos algorithm that is used for the symmetric

coefficient matrix mode. Our purpose in this section is to
build its indefinite mode, named indefinite block Lanczos
(Ruhe’s variant) algorithm, that is used for J-symmetric
matrices. First, we express the block Lanczos algorithm and
then we design its indefinite version (Algorithm 8).

In Algorithm 9, we suggest the indefinite version of the
Algorithm 8:

Algorithm 9 transforms the matrix A in to the matrix T ,
and as seen for IBFOM algorithm, the following relation
satisfies for them:

AVm =Vm+p J́ �Tm: ð35Þ

(1) Choose r initial orthonormal vectors V = ½v1,⋯, vp� and set ½tij�ðm+pÞ×m = 0
(2) For j = r,⋯,m + p
(3) k = j − p + 1
(4) Compute f = Avk
(5) If k ≤ p
(6) For i = 1,⋯, k − 1
(7) c = f Tvi
(8) f = f − cvi
(9) end
(10) else
(11) For i = k − p,⋯, k − 1
(12) c = f Tvi
(13) f = f − cvi
(14) end
(15) end
(16) For i = k,⋯, j
(17) ti,k = f Tvi
(18) If i ≠ k
(19) ti,k = tk,i
(20) end
(21) f = f − tikvi
(22) end
(23) If j <m + p
(24) t j+1,k = k f k
(25) vj+1 = f /k f k
(26) tk, j+1 = t j+1,k
(27) end
(28) end
(29) For j = 2,⋯, p
(30) k =m + j
(31) f = Avk
(32) For i = k − p,⋯, k − 1
(33) c = f Tvi
(34) f = f − cvi
(35) end
(36) For i = k,⋯,m + p
(37) tik = f Tvi
(38) if i ≠ k
(39) tki = tik
(40) end
(41) end
(42) end

Algorithm 8. Block Lanczos (Ruhe’s variant).
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As seen for the IBFOM algorithm, by considering
the linear system AX = B, we gain some relations simi-
lar to what obtained at the end of the third section,
and by solving the linear systems Tmy

ðiÞ = gðiÞ and by
substituting yðiÞ in relation (32), the solution xðiÞ is earned
for the system. Here, Tm and �Tm are defined similar to Hm
and �Hm.

5. Numerical Examples

Suppose that A is an n × n and J-symmetric matrix and B
is a n × p matrix. Our purpose is to solve the linear system
AX = B via three methods: block FOM (BFOM), indefinite
block FOM (IBFOM), and indefinite block Lanczos
(IBLAN). In the following examples, t will be considered

(1) Choose matrix V = ½v1,⋯, vp� with J-orthonormal columns and set ½tij�ðm+kÞ×m = 0 and ½ J́ ij�m+p,m+p = 0
(2) For i = 1,⋯, p
(3) J́ ii = vTi Jvi
(4) end
(5) For j = r,⋯,m + p
(6) k = j − p + 1
(7) Compute f = Avk
(8) If k ≤ p
(9) For i = 1,⋯, k − 1
(10) c = f T Jvi
(11) f = f − J́ iicvi
(12) end
(13) else
(14) For i = k − p,⋯, k − 1
(15) c = f T Jvi
(16) f = f − J́ iicvi
(17) end
(18) end
(19) For i = k,⋯, j
(20) ti,k = f T Jvi
(21) If i ≠ k
(22) tk,i = ti,k
(23) end
(24) f = f − J́ iitikvi
(25) end
(26) If j <m + p
(27) t j+1,k =

ffiffiffiffiffiffiffiffiffiffiffiffiffij½ f , f �jp
(28) vj+1 = f /t j+1
(29) J́ j+1,j+1 = vTj+1 JV j+1
(30) t j+1,k = J́ j+1,j+1t j+1,k
(31) tk,j+1 = t j+1,k
(32) end
(33) end
(34) For j = 2,⋯, p
(35) k =m + j
(36) f = Avk
(37) For i = k − p,⋯, k − 1
(38) c = f T Jvi
(39) f = f − Jiicvi
(40) end
(41) For i = k,⋯,m + p
(42) tij = f T Jvi
(43) if i ≠ k
(44) tki = tik
(45) end
(46) end
(47) end

Algorithm 9. Indefinite block Lanczos.
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the time it takes to run each of the algorithms and will be
defined as the average of residuals, i.e.,

if ∈ = Ax ið Þ − b ið Þ
��� ���

2
for 1 ≤ i ≤ p, ð36Þ

then ∈ =∑p
i=1∈i/p. We define m the number of iterations

which is chosen arbitrarily.

Example 2. Consider matrix A as follows:

An×n =
A11 A12

A21 A22

 !
, ð37Þ

in which A11, A12, A21, A22 are all tridiagonal matrices with
arbitrary arrays belonging to (0, 1). In addition, A11, A22 are
symmetric and A21 = −AT

12. With this selection and by defin-
ing J as below

J =
In
2

0
0 −In

2

 !
, ð38Þ

the matrix A is J-symmetric. If n = 600, m = 300, and p = 5,
then the BFOM, IBFOM, and IBLAN method results are as
shown in Table 1.

Example 3. Consider the n × n matrices A and J as follows:

A =
A11 A12 A13

A21 A22 A23

A31 A32 A33

0
BB@

1
CCA,

J =
I 0 0
0 −I 0
0 0 I

0
BB@

1
CCA,

ð39Þ

in which A11, A12, A21, A22 are all tridiagonal matrices with
arbitrary arrays belonging to (0, 10). Besides, A12, A13, and
A23 are ðn/3Þ × ð3/nÞ matrices by zero arrays except for their
diagonal and subdiagonal arrays which are randomly
selected in (0, 1). Also, suppose that A21 = −AT

12, A32 = −AT
23

and A31 = AT
13. Under these circumstances, A is J-symmet-

ric. By letting n = 600, m = 300, and p = 5, we the results
shown in Table 2.

Example 4. Consider A and J as the previous example. By let-
ting n = 600, m = 500, and p = 20, we obtain the results
shown in Table 3.

In the above examples, B and X0 are n × p matrices with
randomly chosen arrays in (0, 1).

6. Conclusion

As can be seen from the discussed algorithms in this paper,
the BFOM and IBFOM algorithms are used to solve the linear

systems with arbitrary coefficients matrices. But since in the
IBFOM algorithm the indefinite inner product is used
instead of the standard inner product and the matrix J
appears in the calculations, the number of arithmetic opera-
tions is increased, and as a result, the IBFOM algorithm does
not perform better than the BFOM algorithm. But our goal is
to solve the block linear systems with the J-symmetric coeffi-
cient matrices. So the performance of the IBLAN algorithm
for solving such systems is important for us. The block linear
systems with the J-symmetric coefficients matrices can only
be solved by the BFOM, IBFOM, and IBLAN algorithms.
As can be seen in the numerical examples, the performance
of the IBLAN algorithm is far better than the IBFOM algo-
rithm and even better than the BFOM algorithm due to the
difference in the number of arithmetic operations, and this
is what we have theoretically achieved. The result in a sen-
tence is that the best way to solve the block linear systems
with the J-symmetric coefficients matrices is to use the
IBLAN algorithm.
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