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Soliton molecules of the (2 + 1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation are derived by
N-soliton solutions and a new velocity resonance condition. Moreover, soliton molecules can become asymmetric solitons
when the distance between two solitons of the molecule is small enough. Finally, we obtained some novel types of hybrid
solutions which are components of soliton molecules, lump waves, and breather waves by applying velocity resonance, module
resonance of wave number, and long wave limit method. Some figures are presented to demonstrate clearly dynamics features
of these solutions.

1. Introduction

Solitons as localized nonlinear waves exhibit many interest-
ing properties [1]. In particular, solitons can form stable
bound states known as soliton molecules, which have been
observed experimentally in some fields [2–8]. For the first
time, soliton molecules were experimentally observed in
dispersion-managed optical fibers [2]. In 2017, the authors
in [5] resolved the evolution of femtosecond soliton mole-
cules in the cavity of a few-cycle mode-locked laser by means
of an emerging timestretch technique. In 2018, Liu et al. have
experimentally observed the real-time dynamics of the entire
buildup process of stable soliton molecules for the first time
[6]. These soliton compounds may find important applica-
tions in fiber optic communication systems to enhance their
data-carrying capacity [9]. The existence of two-soliton bound
states in Bose-Einstein condensates with contact atomic
interactions and some dynamic phenomena involving soliton
molecules was reported in [10, 11].

As we all know, exact solutions for some local or nonlocal
nonlinear evolution equations (NLEEs) have been applied in
the nonlinear science fields. Solitons and rational solutions of

many NLEEs have been investigated by researches [12–16].
Among these rational solutions, lump solutions, breather
wave solutions, and rogue wave solutions are hot point all
the time. Recently, the hybrid solutions of lump solutions
with other types of solutions draw a lot of attention, which
include lump-soliton [17–19], lump-kink solution [20], reso-
nance stripe solitons [21–23], and some hybrid solutions
[24–26]. Very recently, Lou [27] introduced a new possible
mechanism, the velocity resonant, to form soliton molecules
and asymmetric solitons of three (1 + 1)-dimensional fluid
models: fifth-order KdV, SK equation, and KK equation. To
the best of our knowledge, soliton molecules interacting with
lump waves and breather waves has not been studied yet. In
this paper, we will extend the velocity resonant method to
soliton molecules of (2+ 1)-dimensional systems and further
explore some novel type hybrid solutions among soliton mol-
ecules, lump waves, and breather waves.

In many physical situations, with the inhomogeneities of
media and boundaries taken into account, the variable coef-
ficient nonlinear evolution equations might be more realistic
than the constant coefficient ones [28–33]. In the past
decades, the study of the nonlinear evolution of variable-
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coefficient has attracted the attention of mathematicians
and physicists. In modeling, a variety of complex nonlin-
ear phenomena of physical and engineering fields and many
physical and mechanical situations are governed by variable-
coefficient equations. Therefore, seeking for soliton mole-
cules and hybrid solitons of variable-coefficient equations
are also of great significance.

In this paper, we will focus on a generalized ð2 + 1Þ-
dimensional variable-coefficient Caudrey-Dodd-Gibbon-
Kotera-Sawada (CDGKS) equation such as the one given
below:

ut + a1uxxxxx + a2uxuxx + a3uuxxx + a4u
2ux

+ a5uxxy + a6

ð
uyydx + a7ux

ð
uydx

+ a8uuy + a9u = 0,

ð1Þ

where u is a function of fx, y, tg and ai = aiðtÞ, i = 1,⋯, 9, are
analytic functions with respect to t. If the parameters are spe-
cially chosen, a series of equations can be obtained, which can
be integrable [34, 35] or used to describe physical phenom-
ena as the interaction between a water and a floating ice cover
the gravity-capillary waves [36].

Referring to [37], the bilinear form of Eq. (1) as follows:

DxDt + a1D
6
x + 5c1a1D3

xDy − 5c21a1D2
y

� �
f · f = 0, ð2Þ

under the following transformation:

u = 2c0 exp −
ð
a9dt

� �
ln fð Þxx , ð3Þ

where D is the Hirota’s bilinear differential operator, c0 and
c1 are arbitrary constants, f = f ðx, y, tÞ is a real function of

variables fx, y, tg, and aiði = 1,⋯,9Þ satisfies the following
conditions:

a2 = a3 =
15a1
c0

exp −
ð
a9dt

� �
,

a4 =
45a1
c20

exp −
ð
a9dt

� �
,

a5 = 5c1a1,
a6 = −5c21a1,

a7 = a8 =
15c1a1
c0

exp −
ð
a9dt

� �
,

ð4Þ

with fa1, a9g being the arbitrary functions of t and fc0 ≠ 0,
c1g the arbitrary constants.

It is well known that the bilinear equation (2) includes
several other forms: the usual (2+1)-dimensional fifth-order
KdV equation for selections fa1, c1gfKdVg = fð1/36Þ, 1g, the
(2 + 1)-dimensional B-type Kadomtsev-Petviashvili equa-
tion (BKP) model by taking fa1, c1gfBKPg = f1,−1g, and the
(2 + 1)-dimensional Sawada-Kotera equation (KP) model by
taking fa1, c1gfKPg = f−1, 1g.

Based on the Hirota’s bilinear theory, the N-soliton solu-
tions for Eq. (1) can be constructed as

u = 2c0 exp −
ð
a9dt

� �

� ln 〠
μ=0,1

exp 〠
N

1≤i<j
μiμ jAij + 〠

N

j=1
μjηj

 !" #( )
xx

,
ð5Þ

with

where kj, pj and ϕjðj = 1, 2,⋯,NÞ being arbitrary constants,
∑μ=0,1 indicates a summation over all possible combinations
of μj = 0, 1ðj = 1, 2,⋯,NÞ.

The remainder of this paper is organized as follows.
First, we aim to introduce a new velocity resonant condition
in Section 2, then soliton molecules are obtained based on N-
soliton formula with applying the velocity resonant condi-

tion, and further we explore their fascinating dynamical
behaviors. In Section 3, partial parameters are handled with
the velocity resonant condition, module resonance of wave
number and long wave limit method, and some novel types
of interaction solutions including soliton molecules, lump
waves, and breather waves are derived. Finally, the conclu-
sions are summarized in Section 4.

ηj = kjx + pjy + ωj tð Þ + ϕj,

ωj tð Þ = −
k6j + 5c1k3j pj − 5c21p2j

kj

ð
a1dt,

eAij =
ki − kj
� �

c1kik
2
j pi 2ki − kj
� �

+ c1k
2
i kjpj ki − 2kj

� �
+ k2i k

2
j k2i − kikj + k2j
� �

ki − kj
� �h i

+ c21 kipj − kjpi
� �2

ki + kj
� �

c1kik
2
j pi 2ki + kj
� �

+ c1k
2
i kjpj ki + 2kj

� �
+ k2i k

2
j k2i − kikj + k2j
� �

ki + kj
� �h i

+ c21 kipj − kjpi
� �2 ,

ð6Þ
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2. Soliton Molecules and Asymmetric Solitons

To find nonsingular analytical resonant excitation from
Eq. (5), we apply a novel type of resonant conditions
(ki ≠ ±kj, pi ≠ ±pj), the velocity resonance,

ki
kj

= pi
pj

= ωi ′ tð Þ
ωj ′ tð Þ

: ð7Þ

Combining Eq. (6), we can get the following expressions:

ki =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kj3 + 5c1 pj

kj

s
,

pi =
pj
kj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kj3 + 5c1 pj

kj

s
,

ð8Þ

or

ki = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kj3 + 5c1 pj

kj

s
,

pi = −
pj
kj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kj3 + 5c1 pj

kj

s
:

ð9Þ

It can be known under the resonance conditions (Eq. (8)
or Eq. (9)) that two solitons for N = 2 in Eq. (5) are bounded
to generate a soliton molecule. From Eqs. (5)–(7), we can
deduce that when a1 is an arbitrary constant and a9 = 0, the
amplitudes and the velocities of solitons molecules all remain
unchanged during the evolutions. While a1 is a function of
t and a9 ≠ 0, the amplitudes and the velocities of them vary
with time. So, we will explore some dynamics of soliton mol-
ecules from the above two cases.

Figure 1 displays the molecule structure with the param-
eter selections

p1 = 1,

k1 = −
5
6 ,

k2 = −
ffiffiffiffiffiffiffi
191

p

6 ,

p2 =
ffiffiffiffiffiffiffi
191

p

5 ,

ϕ1 = 0,
ϕ2 = 6,
c0 = c1 = a1 = 1,
a9 = 0:

ð10Þ

From Figure 1, one can find that two solitons in the
molecule are different because k1 ≠ k2 though their velocities
are same.

If we change values ϕ1 and ϕ2, the distance between two
solitons of the molecule will change, respectively. When the
distance of two solitons is close enough to have an interaction
with each other, the soliton molecule will become an asym-
metric soliton. Figure 2 is the plots of the asymmetric soliton
solutions with the parameters (10) except for ϕ2 = −2. From
Figure 2, one can see that the soliton molecule keeps its asym-
metric shape and velocity during the evolution with times.
Because asymmetric solitons are just special case of soliton
molecules, so we will not investigate these asymmetric soli-
tons in the following paper.

Figure 3 shows the propagation of one-soliton molecule
via the parameter selections (10) except for fa1 = cos ðtÞ,
a9 = 0:01t, ϕ2 = 16g. From Figures 3(b)–3(e), one can see that
(i) the amplitudes of two solitons in the soliton molecules are
changed with the function exp ð− Ð a9dtÞ = exp ð−0:005t2Þ;
(ii) the velocities of two solitons are periodically changed
with the function a1 = cos ðtÞ at the same time.

Two-soliton molecules can be generated from four soli-
tons, k1, p1,w1 and k2, p2,w2 satisfy Eq. (8) and k3, p3,w3
and k4, p4,w4 satisfy Eq. (8) or Eq. (9) at the same time.
Figure 4 displays the elastic interaction property for the solu-
tion (5) with N = 4 and with parameter selections

k1 = −
5
4 ,

k2 =
ffiffiffiffiffiffiffi
103

p

4 ,

k3 = −
2
3 ,

k4 = −
ffiffiffiffiffi
41

p

3 ,

p1 = 2,

p2 = −
2
ffiffiffiffiffiffiffi
103

p

5 ,

p3 = −
2
3 ,

p4 =
ffiffiffiffiffi
41

p

3 ,

ϕ1 = 10,
ϕ2 = 0,
ϕ3 = −3,
ϕ4 = 12,
a1 = c0 = c1 = 1,
a9 = 0:

ð11Þ

As can be seen from Figure 4, the height of wave peaks
and the velocities of wave peaks do not change except for
the phase after the collision of one-soliton molecule and
another soliton molecule. It is necessary to point out that if
taking a1 as a function of t and a9 ≠ 0, the heights and veloc-
ities of two-soliton molecules will change with time t.
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Figure 1: (Color online) soliton molecule structure for Eq. (1) with the parameter selections (10) at t = 0. (a) Three-dimensional plot. (b)
Density plot.
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Figure 2: (Color online) asymmetric soliton for Eq. (1) with the parameter selections (9)) except for ϕ2 = −2. (a) Three-dimensional plot at
t = 0. (b) Two-dimensional plot when y = 0 at x = −15, 0, 15. (c) Two-dimensional plot when x = 0 at y = −20, 0, 20.
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Figure 3: (Color online) one-soliton molecule for Eq. (1) with the parameter selections (10) except for a1 = cos ðtÞ, a9 = 0:01t, andϕ2 = 16. (a)
Three-dimensional plot at t = 0. (b) Two-dimensional plot when y = 0 at t = −10, 0, 10. (c) Two-dimensional plot when x = 0 at t = −10, 0, 10.
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3. Some Novel Hybrid Solutions Consisting of
Soliton Molecules, Breathers, and Lumps

In this section, some novel hybrid solutions will be investi-
gated which are soliton molecules interacting with breathers
and lump waves. To our knowledge, soliton molecules inter-
acting with breathers and lump waves has not been studied
yet. We study the interactions between soliton molecules
and other waves via velocity resonance, module resonance,
and long-wave limit method.

The long-wave limit method is a powerful technique to
get lump solution; based on the N-soliton solution (5), we
can obtain interaction solutions consisting of a soliton
molecule and a lump wave. For N = 4, we are taking a
long wave limit on k1, k2, p1, p2ðε→ 0Þ, k3, k4, p3, p4 which
satisfies the velocity resonance condition; the parameters
are as follows:

k1 = 1 + ið Þε,
k2 = 1 − ið Þε,
p1 = 2ε,
p2 = 2ε,
ϕ1 = πi,
ϕ2 = πi,

k3 = −
5
6 ,

k4 = −
ffiffiffiffiffiffiffi
191

p

6 ,

p3 = 1,

p4 =
ffiffiffiffiffiffiffi
191

p

5 ,

ϕ3 = 0,
ϕ4 = 20,

a1 tð Þ = sin tð Þ,
a9 tð Þ = 0:01,

c0 = 1,
c1 = 1:

ð12Þ

Figure 5 displays the interaction between a soliton
molecule and a lump wave. The collisions are also elastic.
It is necessary to point out that when a9 = 0, the height of
the lump wave and soliton molecules do not change before
and after the collisions, but when a9 = 0:01, the height of the
lump wave and soliton molecules all decrease with the func-
tion exp ð− Ð a9dtÞ = exp ð−0:01tÞ. At the same time, the
velocities of the soliton molecules are synchronously periodi-
cally changed with the function a1 = sin ðtÞ.

Novel hybrid solutions of a soliton molecule and breather
wave can be generated by four solitons. Furthermore, ki, pi
and ωiði = 1, 2Þ should satisfy the velocity resonance condi-
tion (8) or (9), and the other two solitons satisfy the module

resonance condition ηi = ηj. For instance, taking the follow-
ing parameters:

k1 = −
4
5 ,

k2 =
7
ffiffiffi
7

p ffiffiffi
2

p

10 ,

k3 =
2
5 −

2
5 i,

k4 =
2
5 + 2

5 i,

p1 = −
6
5 ,

p2 =
21

ffiffiffi
7

p ffiffiffi
2

p

20 ,

p3 =
1
6 + i

2 ,

p4 =
1
6 −

i
2 ,

ϕ1 = ϕ3 = ϕ4 = 0,
ϕ2 = 25,

a1 tð Þ = sin tð Þ,
a9 tð Þ = 0:01,

c0 = 1,
c1 = −1:

ð13Þ

As shown in Figure 6, four-soliton solution (Eq. (5)) with
parameter selections (Eq. (13)) exhibits the interaction
between a soliton molecule and a breather wave under partial
velocity resonance and the partial module resonance condi-
tion. The interactions of soliton molecules and breather solu-
tions are also elastic. When a1 = const:,a9 = 0, the amplitudes
and velocities of the soliton molecules and the breather waves
remain the same before and after the collisions. If a1 is a func-
tion of t and a9 ≠ 0, their amplitudes and velocities can be
changed during evolution. Under the parameters in Figure 6,
their amplitudes decrease with time due to a9 = 0:01 and their
velocities are periodically changed due to a1 = sin ðtÞ.

More generally, we can obtain the general hybrid solutions
consisting of m-soliton molecules, n-breather waves, and q-
lump waves under the following parameter constraints:

k1
k2

= p1
p2

= w1
w2

,⋯, k2m−1
k2m

= p2m−1
p2m

= w2m−1
w2m

, η2m+1

= η2m+2,⋯, η2m+2 n−1 = η2m+2 n, k2m+2 n+1
= K2m+2 n+1ε, k2m+2 n+2 = K2m+2 n+1ε,⋯, k2m+2 n+2 q−1

= K2m+2 n+2 q−1ε, k2m+2 n+2 q = K2m+2 n+2 q1ε, p2m+2 n+1

= P2m+2 n+1ε, p2m+2 n+2 = P2m+2 n+1ε,⋯, p2m+2 n+2 q−1

= P2m+2 n+2 q−1ε, p2m+2 n+2 q = P2m+2 n+2 q1ε, ϕ2m+2 n+1

= πi, ϕ2m+2 n+2 = πi,⋯, ϕ2m+2 n+2 q = πi, ε→ 0:

ð14Þ
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Figure 5: (Color online) interaction of a soliton molecule and a lump wave for the (2 + 1)-dimensional variable-coefficient CDGKS equation
with parameter (12).
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equation with parameter (13).
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Figure 4: (Color online) two-soliton molecules for the solution (5) of Eq. (1) with the parameter selections (11) at t = 0. (a) Three-
dimensional plot. (b) Density plot.
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Then, we can get interactions between soliton molecules,
lumps, and breathers by taking ε→ 0. To clearly describe the
interaction between them, let us take a simple example of
N = 6. Next, we set fk1, k2, p1, p2g which satisfies the velocity
resonant condition, fk3, k4, p3, p4g, which satisfies module
resonance condition, then taking a long wave limit on fk5,
k6, p5, p6gðε→ 0Þ, taking parameters as follows:

c0 = 1,

c1 = −1,

k1 = −
4
5 ,

k2 =
7
ffiffiffi
7

p ffiffiffi
2

p

10 ,

k3 =
2
5 −

2
5 i,

k4 =
2
5 + 2

5 i,

k5 =
1
2 + i
� �

ε,

k6 =
1
2 − i
� �

ε,

p1 = −
6
5 ,

p2 =
21

ffiffiffi
7

p ffiffiffi
2

p

20 ,

p3 =
1
6 + i

2 ,

p4 =
1
6 −

i
2 ,

p5 = −2 ε,

p6 = −2 ε,

ϕ1 = 0,

ϕ2 = 25,

ϕ3 = 0,

ϕ4 = 0,

ϕ5 = iπ,

ϕ6 = iπ,

a1 = 1,

a9 = 0:

ð15Þ

Figure 7 displays the interaction between a soliton mole-
cule, a lump wave, and a breather wave descried by Eq. (5)
with the parameter selections in Eq. (15). The interactions
between these waves are also elastic.

4. Conclusion

In this paper, soliton molecules and asymmetric solitons of
(2 + 1)-dimensional variable-coefficient Caudrey-Dodd-Gib-
bon-Kotera-Sawada equation are theoretically obtained by
velocity resonance. By introducing a new velocity resonance
condition, we obtained the soliton molecules from the gen-
eral N-soliton expression; see Figures 1, 3, and 4. When tak-
ing suitable values of ϕ, the soliton molecules can change to
asymmetric soliton; see Figure 2. It is necessary to point out
that when a1 = const: and a9 = 0, the height of soliton mole-
cules do not change before and after the collisions; but when
a1 is a function of t and a9 ≠ 0, the height of soliton molecules
are changed with the function exp ð− Ð a9dtÞ. At the same
time, the velocities of the soliton molecules are synchro-
nously changed with the function a1ðtÞ. Taking a long wave
limit on part of parameters and employing resonance condi-
tion on others, the new hybrid solutions consisting soliton
molecules and lump wave can be obtained; see Figure 5. By
employing velocity resonance condition and module reso-
nance condition on wave numbers, we can get a new hybrid
solution consisting soliton molecules and breather waves;
see Figure 6. By using velocity resonance, module resonance
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Figure 7: (Color online) elastic interaction property between a solitonmolecule, a lump wave, and a breather wave for Eq. (1) described by Eq.
(5) with parameters selections Eq. (15).
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and long-wave limit method to different parts of wave num-
bers, general hybrid solutions consisting of soliton mole-
cules, lump waves, and breather waves are obtained; see
Figure 7. These interaction phenomena may have not been
studied. At last, we give the general restrictions to derive
these novel interaction solutions containing m-soliton mole-
cules, n-breather waves, and q-lump waves, and their interac-
tions are elastic. The method to construct soliton molecules
and some novel types of hybrid solutions would be suitable
to investigate in other models in mathematical physics and
engineering. Meanwhile, we hope that our results will provide
some valuable information in the study of nonlinear science.
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