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The effect of the structure parameter on the compressibility of dust grains and soliton behavior in a dusty plasma system consisting
of Maxwellian electrons, ions, and dust grains charged with a negative charge has been studied. In the theoretical study, a reductive
perturbation technique was used to derive the Korteweg-de Vries (KdV) equation and employ the Hirota bilinear method to obtain
multisoliton solution. It is found that coupling and structure parameters have a clear effect on the compressibility. These changes in
the compressibility affected the amplitude and width of interactive solitons, in addition to the phase shifts resulting from the
interaction. These results can be used to understand the behavior of solitary waves that occur in various natural and laboratory
plasma environments with dust impurity situations.

1. Introduction

Study of nonlinear phenomena in dusty plasma had a great
deal of interest because of the presence of dust in various
space and astrophysical environments, for example, plane-
tary rings, comets, the Earth’s ionosphere, and interstellar
molecular clouds [1, 2]. Moreover, dusty plasma opened up
a new field of research after the possibility of crystallization
(whose temperature is low relative to the temperature of
other components) in a crystalline structure called a plasma
crystal or coulomb crystal was discovered [3, 4].

Dusty plasma is composed of ordinary plasma (electron-
ion plasma) and additional solid grains whose radius range
from 100nm-100μm. These grains are charged with a
negative charge because the thermal velocity of electrons is
greater than that of ions [2].

The Coulomb coupling parameter is one of the basic
properties of the dusty plasma system, which determines
the phase state of the system and is a dimensionless parame-
ter which represents the ratio between the electrostatic inter-
action energy and the thermal energy of the grains, and the
first investigations showed that the Coulomb coupling
parameter is given as follows [5]:

Γc =
eZdð Þ2

4πε0aTd
, ð1Þ

where a = ð3/4πndÞ1/3 interparticle distance, Td is the tem-
perature of dust grains, nd is the grain number density, and
Zdis the charge number of grains. Later, a new mathematical
formula of the coupling parameter was obtained after consid-
ering the screening of charges, using the Debye-Hückel or
Yukawa potential that is given as follows [6]:

Γ = eZdð Þ2
4πε0aTd

exp −kð Þ, ð2Þ

where k = a/λD is the structural parameter, which represents
the ratio between the interparticle distance and the Debye
screening length. Vaulina and Khrapak proposed an empiri-
cal scaling law of the coupling parameter that is compatible
with recent molecular dynamics simulations, which is given
as follows [7]:
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Γ = eZdð Þ2
4πε0aTd

1 + k + k2

2

 !1/2

exp −kð Þ: ð3Þ

The presence of dust of a relatively large mass and charge
contributes to modifying the plasma collective behavior and
generates new linear and nonlinear modes, for example,
dust-ion-acoustic (DIA) waves [8], dust-acoustic waves
(DA) [9], dust-lattice (DL) waves [10], DIA solitary waves
[11], DA solitary waves [12], and DL solitary waves [13].

Many researchers have studied the interaction of nonlin-
ear waves in dusty plasma systems using many analytical,
experimental, and numerical methods. Jaiswal et al. [14]
studied dust-acoustic solitary wave (DASW) head-on colli-
sion in strongly and weakly coupled dusty plasma, using
the extended Poincaré–Lighthill–Kuo perturbation method.
Effects of dusty plasma parameters on phase shifts of these
solitary waves are studied. They found that the phase shift
changes its sign when compressibility of the medium exceeds
the critical value for a specific set of dusty plasma parameters.
Gao et al. [15] studied the overtaking collision between two
dust-acoustic waves in dusty plasmas consisting of
Boltzmann electrons and ions, and negative dust grains by
the PIC simulation method. They compared their results
with previous theoretical studies using the Hirota method
and found a significant correlation between the results of
the two methods. Boruah et al. [16] experimentally investi-
gated the propagation and interaction of dust-acoustic multi-
solitons which unmagnetized strongly coupled dusty plasma.
By comparing their results with previous theoretical studies,
they proved that the evolution of these waves depends on
the amplitude of the initial perturbation. Tao et al. [17] stud-
ied the head-on collision between two dust-acoustic solitary
waves in an unmagnetized strongly coupled dust plasma
using the PIC simulation method. By comparing simulation
results with an analytical study, they noted that the analytical
results are correct if the amplitudes of both of the colliding
solitary waves are sufficiently small. Seadawy and Jun [18]
obtained The Zakharov–Kuznetsov–Burgers (ZKB) equa-
tions that describe the dust-ion-acoustic waves in dusty
plasma with high-energy electrons and positrons by applying
the modified direct algebraic method. They found that the
electric field potential, electric field, and quantum statistical
pressure significantly impact in the form of water wave solu-
tions for the three-dimensional ZKB equation. Arnous et al.
[19] applied the modified simple equation method to the
complex Ginzburg–Landau equation to secure soliton solu-
tions. They studied using this method the Kerr and power
laws of nonlinearity. The results of their investigation showed
that the limitation of the scheme prevents obtaining bright
soliton solutions. Seadawy [20] applied the reductive pertur-
bation procedure method on the fluid system governing
plasma, and he got the nonlinear three-dimensional modified
Zakharov–Kuznetsov (mZK) equation governing the propa-
gation of ion dynamics of nonlinear ion-acoustic waves in a
plasma comprising cold ions and hot isothermal electrons
in the presence of a uniform magnetic field. He found that
the electrostatic field potential and electric field form travel-
ing wave solutions for the three-dimensional mZK equation.

The Hirota bilinear method differs from the mathemati-
cal methods used in previous investigations (for example,
the extended modified direct algebraic method and extended
mapping method) in that it enables us to obtain multisoliton
solutions of nonlinear partial differential equations, which is
why we chose this method. Also, previous studies have exam-
ined the effect of the coupling parameter on the behavior of
the solitons in the strongly coupled dusty plasma but
neglected the effect of the structure parameter, as this param-
eter is expected to play an important role. In this scenario, we
relied on the results mentioned in Reference [20], which
showed that the internal energy is related to the coupling
parameter and the structure parameter together.

In this paper, the overtaking collision between two soli-
tons and three solitons in strongly coupled dusty plasma is
studied. The effect of the structure parameter on plasma
compressibility and the behavior of the interactive solitons
is taken into account. The reductive perturbation method is
applied to obtain the Korteweg-de Vries (KdV) equation.
The Hirota bilinear method is applied to obtain multisoliton
solutions. Computer modeling used the Maple program to
show the time development of the propagation and interac-
tion of solitons.

2. Materials and Methods

We consider an unmagnetized strongly coupled dusty
plasma system with negatively charged inertial dust grains
and inertia-less electrons and the ions that can be described
by Boltzmann distributions. The dust fluid equations that
can describe this system are given as follows [14, 21]:

∂nd
∂t

+ ∂ ndϑdð Þ
∂x

= 0, ð4Þ

∂ϑd
∂t

+ ϑd
∂ϑd
∂x

= ∂Φ
∂x

−
μ́

nd

∂nd
∂x

, ð5Þ

∂2Φ
∂x2

= μene + nd − μini, ð6Þ

where nd is the dust grain number density, ϑdis the dust fluid
velocity, Φ is the electrostatic potential, ne is the electron
number density, and ni is the ion number density. The
following normalization

nd →
nd
nd0

,Φ→ e∅
KBTi

, ϑd →
ϑd
Cd

, x→ x
λD

, t→ tωpd , ð7Þ

where λD = ðKBTi/nd0Zde
2Þ1/2 is the dust Debye length,

Cd = ðZdKBTi/mdÞ1/2 is the dust-acoustic speed, ωpd =
ðnd0Zd

2e2/mdÞ1/2 is the dust plasma frequency, and KB, nd0,
e, and md are the Boltzmann constant, the unperturbed dust
grain number density, the electron charge, and the dust grain
mass, respectively. The contribution due to the compressibil-
ity (μ) in the momentum equation, equation (5), is expressed
in terms of μ́ where μ́ = μTd/Zd Ti where Td , Ti, and Zd
denote the dust temperature, the ion temperature, and the
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number of electrons residing on the surface of the negatively
charged dust grains, respectively. The compressibility μ is
defined as [2]

μ = 1
Td

∂P
∂n

� �
Td

= 1 + u Γð Þ
3 + Γ

9
∂u Γð Þ
∂Γ

, ð8Þ

where Γ is the Coulomb coupling parameter and uðΓÞ is a
measure of the excess internal energy of the system. For a
weakly coupled plasma Γ < 1, uðΓÞ can be written as
uðΓÞ≈−ð ffiffiffi

3
p

/2ÞΓ3/2 [22], while in the case of strong coupling
(Yukawa fluid) Γ > 100 excess internal energy can be deter-
mined as a function of ðk, ΓÞ by using the following
relation [23]:

u k, Γð Þ = a kð ÞΓ + b kð ÞΓ1/3 + c kð Þ + d kð ÞΓ− 1/3ð Þ, ð9Þ

where parameters aðkÞ, bðkÞ, cðkÞ, and dðkÞ are defined as
follows:

a kð Þ = k
2 − 0:899 − 0:103 k2 + 0:003 k4

b kð Þ = 0:565 − 0:026 k2 − 0:003 k4

c kð Þ = −0:207 − 0:086 k2 + 0:018 k4

d kð Þ = −0:031 + 0:042 k2 − 0:008 k4

9>>>>>>>=
>>>>>>>;
: ð10Þ

The densities of Boltzmann distributed electrons and ions
at temperatures Te and Ti can be written in a normalized
form as

ne = μe exp σi∅ð Þ,
ni = μi exp −∅ð Þ,

ð11Þ

where σi = Ti/Te is the ratio of ion temperature and elec-
tron temperature, μe = 1/ðδ − 1Þ, and μi = δ/ðδ − 1Þ, where
δ is the ratio of equilibrium ion to electron densities.

3. Derivation of KdV Equation

Now, we derive the KdV equation from equations (4)–(6) by
employing the reductive perturbation technique. The inde-
pendent variables are stretched as

ξ = ε1/2 x − ctð Þ, τ = ε3/2t

∂
∂x

= ε1/2
∂
∂ξ

, ∂
∂t

= −cε1/2
∂
∂ξ

+ ε3/2
∂
∂τ

9>=
>;, ð12Þ

and the dependent variables are expanded as

nd = 1 + εn1 + ε2n2+⋯
ϑd = εϑ1 + ε2ϑ2+⋯
Φ = εΦ1 + ε2Φ2+⋯

9>>=
>>;: ð13Þ

ε is a small parameter proportional to the strength of the
perturbation. Substituting (12)–(13) into (4)–(6) and taking
the terms in different powers of ε, we obtain in the lowest
order of ε:

n1 = − μeσi + μið ÞΦ1,
ϑ1 = −c μeσi + μið ÞΦ1,

ð14Þ

where c the phase velocity given as follows:

c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + μ́ μeσi + μið Þ

μeσi + μið Þ :

s
ð15Þ

Similarly, we get from the terms of order ε2 and ε5/2:

−c
∂n2
∂ξ

+ ∂n1
∂τ

+ n1
∂ϑ1
∂ξ

+ ∂ϑ2
∂ξ

+ ϑ1
∂n1
∂ξ

= 0, ð16Þ

−c
∂ϑ2
∂ξ

+ ∂ϑ1
∂τ

+ ϑ1
∂ϑ1
∂ξ

= ∂Φ2
∂ξ

+ μ́n1
∂n1
∂ξ

− μ́
∂n2
∂ξ

, ð17Þ

∂2Φ1
∂ξ2

= n2 + μeσi + μið ÞΦ2 +
μeσi

2 − μi
2

� �
∅2

1: ð18Þ

By common solution to system of equations (15)–(17),
we obtain the following Korteweg-de Vries (KdV) equation
for the first-order perturbed electrostatic potential Φ1 as
follows:

∂Φ1
∂τ

+ AΦ1
∂Φ1
∂ξ

+ B
∂3Φ1
∂ξ3

= 0, ð19Þ

where the nonlinear coefficient A and the dispersion coeffi-
cient B are given by

A = −
1
E

μeσi + μið Þ2 3 + 2μ́ μeσi + μið Þ� + μeσi
2 − μi

� ��g,���
ð20Þ

B = 1
E
, ð21Þ

where

E = μeσi + μið Þ
c

1 + 2μ́ μeσi + μið Þ�g:½
	

ð22Þ

4. Multisoliton Solutions

For obtaining the multisoliton solution of equation (16) and
to study the interaction between them, to do so, we shall
employ the Hirota bilinear method [23].

The first step: using the transformation on equation (19):

Φ1 =
12B
A

∂2 ln f ξ, τð Þð Þð Þ
∂ξ2

: ð23Þ
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We get the following equation:

−f ξ f τ + f f ξτ + Bf f ξξξξ − 4Bf ξξξ · f ξ + 3B f ξξ
� �2 = 0: ð24Þ

By using the Hirota-D operator, we get

DτDξ f , ff g = 2 f f ξτ − f ξ f τ
� �

, ð25Þ

BDξ
4 f , ff g = 2 Bf f ξξξξ − 4Bf ξ f ξξξ + 3B f ξξ

� �2
 �
: ð26Þ

Using (25) and (26) in (24), we get the Hirota bilinear
form:

DτDξ + BDξ
4� �

f , ff g = 0, ð27Þ

where D is a binary operator (because it operates on a pair of
functions) and is called the Hirota derivative.

We use Hirota’s perturbation technique, and we insert
f = 1 + εf1 where f1 = eθ1 ; substituting ε = 1, we obtain f = 1
+ f1; now substituting in equation (23), we get the single-
soliton solution as follows:

Φ1 =
12B
A

∂2 ln 1 + e k1B
− 1/3ð Þξ−k31τð Þh in o

∂ξ2
: ð28Þ

Same as the previous method, we insert f = 1 + εf1 + ε2 f2
where f1 = eθ1 + eθ2 and make some necessary mathematical
calculations. We get the relationship f2 = að1, 2Þeθ1+θ2 ; now
substituting in equation (23), we get the two-soliton solution
as follows:

Φ1 =
12B
A

∂2 ln 1 + eθ1 + eθ1 + a 1, 2ð Þeθ1+θ2� �� 
∂ξ2

, ð29Þ

where θi = kiB
−ð1/3Þξ − k3i τ − Δi, i = 1, 2 , Δi = ∓ð2B1/3/kiÞ ln jffiffiffiffiffiffiffiffiffiffiffiffiffi

að1, 2Þp j are the phase shifts að1, 2Þ = ðk1 − k2Þ2/ðk1 + k2Þ2
where k1, k2are wave numbers.

In order to get a three-soliton solution, we
insertf = 1 + εf1 + ε2 f2 + ε3 f3twheref1 = eθ1 + eθ2 + eθ3 .f2 and
f3 are determined by performing some mathematical
calculations, and we get the following two relationships:

f2 = a 1, 2ð Þeθ1+θ2 + a 1, 3ð Þeθ1+θ3 + a 2, 3ð Þeθ2+θ3 ,
f 3 = beθ1+θ2+θ3 :

ð30Þ

Substituting in equation (23), we get the two-soliton solution
as follows:

Φ1 =
12B
A

∂2

∂ξ2
ln 1 + eθ1 + eθ2 + eθ3 + a 1, 2ð Þeθ1+θ2
hn

+ a 1, 3ð Þeθ1+θ3 + a 2, 3ð Þeθ2+θ3 + beθ1+θ2+θ3
io

,
ð31Þ

where θ1 = k1B
−ð1/3Þξ − k31τ − Δ1′, θ2 = k2B

−ð1/3Þξ − k32τ − Δ2′,
and θ3 = k3B

−ð1/3Þξ − k33τ − Δ3′.
The phase shifts are given as follows:

Δ1′ = ∓
2B1/3

k1
ln b

a 2, 3ð Þ
����

����, Δ2′ = ∓
2B1/3

k2
ln b

a 1, 3ð Þ
����

����, Δ3′

= ∓
2B1/3

k3
ln b

a 1, 2ð Þ
����

����,
ð32Þ

where að1, 2Þ = ðk1 − k2Þ2/ðk1 + k2Þ2, að1, 3Þ = ðk1 − k3Þ2/
ðk1 + k3Þ2, að2, 3Þ = ðk2 − k3Þ2/ðk2 + k3Þ2, and b = að1, 2Það1,
3Það2, 3Þ.

5. Results and Discussion

In this work, we investigated the propagation and interaction
of DA multisolitons in strongly coupled dusty plasma con-
sisting of Maxwellian electrons, ions, and inertial negative
dust grains. The Korteweg-de Vries (KdV) equation (19)
was obtained using a reductive perturbation technique.
Soliton solutions are formed due to the balance between the
nonlinear coefficient A and the dispersion coefficient B. It
is important to indicate the numerical data used in this
study obtained from References [24, 25]. The range of
structure parameter and the coupling parameter values
were chosen based on experimental data, which describes
the Yukawa fluid in the case of strong coupling, taken from
References [26, 27].

5.1. Compressibility Changes. We plotted the compressibility
variations with the coupling parameter for different values of
the structure parameter and obtained Figure 1.

In Figure 1, it is shown that the compressibility decreases
with the increasing coupling parameter, while the compress-
ibility increases with the increase in the structure parameter
value. The increase in the structure parameter means an
increase of interparticle distance and a decrease of the Debye
screening length; hence, the grains would become more
mobile to move. This causes an increase of its compressibil-
ity. We compare this result with the result presented in
Figure 2 from Reference [17].

In Figure 2, the change of compressibility when the
plasma is transferred from the weak coupling state (Γ < 1)
to a strong coupling state (Γ > 1) while neglecting the effect
of the structure parameter (k = 0) is shown. By comparing
the two shapes (1) and (2), it appears that there is a great
agreement between our results and the results of the afore-
mentioned reference when the plasma becomes a strong cou-
pling state where the compressibility values become negative.

5.2. Soliton Shape Changes. We plotted the single-soliton
shape relation (28) variations for different values of the struc-
ture parameter and obtained Figure 3.

We plotted the single-soliton shape relation (25) varia-
tions for different values of the coupling parameter and
obtained Figure 4.

4 Advances in Mathematical Physics



Figure 3 shows that the amplitude and width of the soli-
ton increases with the increase of the structure parameter
(compressibility increasing) for a constant value of the cou-
pling parameter Γ = 170. Figure 4 shows that the amplitude
and width of the soliton decreases with the increase of the
coupling parameter (compressibility decreases) for a con-
stant value of the structure parameter k = 0:8. It is observed
from Figure 3 that the amplitude of the soliton decreases sig-
nificantly when the value of the coupling parameter increases
from Γ = 100 (dashed line) to Γ = 170 (dotted line). It is the
critical value of the plasma transmission from the fluid phase
to a quasisolid structure called the plasma crystal. These
results correspond with the simulation results in Reference
[17] and with the theoretical study that did not take into
account the effect of the structure parameter on the com-
pressibility (i.e., k = 0) in Reference [14].

5.3. Time Evolution of Multisolitons. The mathematical study
used in this investigation differs from the previous investiga-
tions [18, 19, 28], as they used the Zakharov–Kuznetsov
equation (ZK), which is an appropriate equation for studying
the (2 + 1)-dimensional systems. But the reason for using the
Korteweg-de Vries (KdV) equation in this investigation is
that the KdV equation describes multisoliton solutions
depending on the initial conditions, as well as the possibility
of applying the Hirota direct method to this equation. Thus,
this equation fulfills the required purpose of our investiga-
tion. The Hirota method is an innovative and powerful
method by which we can obtain, in principle, any number
of solutions for many nonlinear partial differential equations.

In this section, we used the Mable program to perform a
numerical simulation showing the propagation and

100

–90

–80

–70

–60

–50

–40

–30

–20

150 200 250 300
Γ

𝜇

Figure 1: Compressibility variations with the coupling parameter
for different values of the structure parameter, k = 0:4 (solid line),
k = 0:8 (dot line), and k = 1:2 (dashed line).
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interaction of solitons moving in the same direction, and we
obtained the following results.

Figure 5 shows the time evolution of two solitons with
different amplitudes and widths moving in the same direc-
tion from left to right at different times of τ. At τ = −12:5,
the larger amplitude soliton is behind the smaller amplitude
soliton. With the passage of time, a large soliton approaches
a small soliton at τ = −5 because a higher amplitude soliton
travels faster than a smaller amplitude soliton. At τ = 0, the
two solitons merge and become one soliton where the ampli-
tude of this soliton is less than the amplitude of the large
soliton and greater than the amplitude of the small soliton.
At τ = 5, they separate from each other again, and each
soliton acquires its shape and speed before the reaction, but
the large soliton comes in front.

Similarly, the two-soliton interaction scenario was
applied on the time evolution of three solitons with different
amplitudes and widths moving in the same direction from
left to right at different times of τ; the results are shown in
Figure 6. It should be noted that the results of simulation of
the time evolution of propagation and interaction of solitons
in this work correspond with the experimental results in
Reference [16].

5.4. Phase Shifts. In this section, we studied the effect of the
structure parameter on the phase shifts of interaction
solitons, and we obtained the following results.

Figures 7 and 8 show a decrease of phase shift as the
structure parameter increases. The reason for the decrease
in the phase shift value is due to the phase shift being related
to the dispersion coefficient B, which in turn is related to the
structure parameter as shown in relation (21). In other
words, the phase shifts of solitons after interaction increase
as the coupling strength between dust particles increases.
This is achieved when the value of the structure parameter
is small, that is, the interparticle distance becomes smaller.
When we neglect the effect of the structure parameter and
study the phase shift changes with compressibility, we get
results similar to the theoretical study and PIC simulation
in the Figure 5 of Reference [18]. The difference between
our study and their study is in the method used, as they used
the Poincaré–Lighthill–Kuo (PLK) method in a study of the
head-on collision between two dust-acoustic solitary waves.
Any waves moving in opposite directions, in which case the
effect of the collision is greater, cause an increase in the phase
shifts resulting from the collision. In addition, phase shifts
are decreasing with the wave number increasing. This corre-
sponds with the results in Reference [29].

6. Conclusions

In this work, the effect of the structure parameter on the
compressibility of dust grains and soliton behavior in a dusty
plasma system consisting of Maxwellian electrons, ions, and
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Figure 5: Time evolution of two solitons at different times, σ = 0:1, δ = 10, k = 0:8, Γ = 170, k1 = 1, and k2 = 2.
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dust grains charged with a negative charge has been studied.
In the theoretical study, a reductive perturbation technique
was used to derive the Korteweg-de Vries (KdV) equation,
employing the Hirota bilinear method for obtaining a multi-
soliton solution. The Mable program was used to perform a
numerical simulation showing the propagation and interac-

tion of solitons. The results obtained can be summarized as
follows:

(i) Coupling and structure parameters have a clear
effect on the compressibility, where the compress-
ibility increases with the increase of the structural

–40 –20 0 20 40 60
𝜁

–40 –20 0 20 40 60
𝜁

–40 –20 0 20 40 60
𝜁

–40 –20 0 20 40 60
𝜁

–40 –20 0 20 40 60
𝜁

0

0.05

0.10

0.15

0.20

Ф
 (𝜁

,𝜏
)

0

0.05

0.10

0.15

0.20

Ф
 (𝜁

,𝜏
)

0

0.05

0.10

0.15

0.20

Ф
 (𝜁

,𝜏
)

0

0.05

0.10

0.15

0.20

Ф
 (𝜁

,𝜏
)

0

0.05

0.10

0.15

0.20

Ф
 (𝜁

,𝜏
)

𝜏 = –12.000 𝜏 = –7.5000

𝜏 = 7.5000 𝜏 = 22.500

𝜏 = 0

Figure 6: Time evolution of three solitons at different times, σ = 0:1, δ = 10, k = 0:8, Γ = 170, k1 = 0:5, k2 = 1, and k3 = 1:5.

0.4

1.544

1.545

1.546

1.547

1.548

0.6 0.8 1.0 1.2 1.4
k

Δ
1

(a)

0.7720

0.7725

0.7730

0.7735

0.7740

0.4 0.6 0.8 1.0 1.2 1.4
k

Δ
2

(b)

Figure 7: Variation of the phase shift for two solitons against the structure parameter, for small soliton k1 = 1 (a) and for large soliton k2 = 2
(b), for fixed values of σ = 0:1, δ = 10, and Γ = 170.

7Advances in Mathematical Physics



parameter and decreases with increase of the cou-
pling parameter

(ii) Compressibility changes contributed to modifying
the shape of the soliton, where amplitude and width
of the soliton increases with the increase of the struc-
ture parameter and decreases with the increase of the
coupling parameter

(iii) Numerical simulation of propagation and interac-
tion of solitons showed interest corresponding with
previous relevant theoretical and experimental
works

(iv) The phase shift of the interactive solitons decreases
with structure parameter and wave number increase

Our results showed that the smaller the distance between
the grains, the more strongly coupled the dusty plasma, so
the structure parameter plays an important role in determin-
ing the phase state of the dusty plasma, which clearly affects
the behavior of the nonlinear dusty acoustic pattern propaga-
tion in this type of plasma.

Analytical and numerical solutions of nonlinear partial
differential equations are useful in enabling us to deeply

understand the behavior of nonlinear phenomena in com-
plex plasma systems. Moreover, solitons have played a very
important and useful role in communication, where optical
soliton pulses contributed running over long distances and
transmitting high data rate information in optical fiber
[30]. In biology, soliton theory has been used to describe sig-
nal and energy propagation in biomembranes as occurs, for
example, in the nervous system and to low frequency collec-
tive pattern proteins and DNA [31].
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