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Let G be a simple and undirected graph. The eigenvalues of the adjacency matrix of G are called the eigenvalues of G. In this paper,
we characterize all the n-vertex graphs with some eigenvalue of multiplicity n − 2 and n − 3, respectively. Moreover, as an
application of the main result, we present a family of nonregular graphs with four distinct eigenvalues.

1. Introduction

All graphs here considered are simple, undirected, and con-
nected. Let G be a graph with vertex set VðGÞ = fv1, v2,⋯,
vng. The set of all the neighbors of a vertex vi is denoted by
NGðviÞ. Two adjacent vertices vi and vj are denoted by
vi~vj. The adjacency matrix AðGÞ = ½aij� of G is a real
symmetric matrix, and aij = 1 if there is an edge joining
the vertices vi and vj; otherwise, aij = 0. The eigenvalues
of AðGÞ are called the eigenvalues of G, denoted by ρ1
≥ ρ2≥⋯≥ρn. The rank of the adjacency matrix AðGÞ of G is
called the rank of G, written as rðGÞ. The rank of a matrix
M is also written as rðMÞ. An independent set of G is a subset
of VðGÞ such that there is no edge between any two vertices.
The number of vertices in a maximum independent set of G
is called the independent number of G, denoted by μðGÞ.
The distance between two vertices vi and vj, denoted by d
ðvi, vjÞ, is the length of a shortest path between vi and vj.
Denote by diamðGÞ the diameter of G, then diamðGÞ =
max fdðvi, vjÞ: vi, vj ∈ VðGÞg. Let mðρiÞ be the multiplicity
of an eigenvalue ρi of a graph G.

The multiplicity of an eigenvalue of a graph has attracted
much attention. Rowlinson gives an extensive investigation

in this topic [1–8]. Let G be a graph of order n with an
eigenvalue ρ. In [1], the author proved that if mðρÞ = k and
ρ ≠ 0,−1, then k ≤ 1/2ðt − 1Þðt + 4Þ with t = n − k. This upper
bound was extended to k ≤ ð1/2Þtðt − 1Þ with t = n − k > 2 (or
equivalently, k ≤ n + 1/2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n + 1/4

p
) in [2]. The graphs sat-

isfying k = ð1/2Þtðt − 1Þ were discussed in [5]. In [3, 4, 6–8],
the authors studied the multiplicity of an eigenvalue of a
graph in some special graph classes. Moreover, Fonseca [9]
proved many relations between the multiplicities of an eigen-
value whenever a path is removed from the graph. Bu et al.
[10] gave two upper bounds on eigenvalue multiplicity of
unicyclic graphs and trees. Wong et al. [11] improved an
upper bound on the multiplicity of a positive eigenvalue of
a tree in [3].

Notice that the upper bounds in [1, 2] are established for
the multiplicity of the eigenvalue not equal to 0 or -1. In other
words, the multiplicities of the eigenvalues 0 and -1 cannot be
bounded easily. Then, it is interesting to study the multiplic-
ities of the eigenvalues 0 and -1 of graphs. Here, we are inter-
ested in searching the graphs with the eigenvalue -1 or 0 of
large multiplicity. It is well known that the multiplicity of
the eigenvalue 0 is called the nullity of a graph, which has
been studied intensively. Hence, attention may be paid to
the graphs with the eigenvalue -1 of large multiplicity. More
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generally, in this paper, we investigate the graphs with some
eigenvalue of large multiplicity because they are related to the
graphs with few distinct eigenvalues, which have been inves-
tigated intensively (see [12–18], for example).

Denote the set of all n-vertex connected graphs with
some eigenvalue of multiplicity k by Gðn, kÞ. The following
are the main conclusions of this paper.

Theorem 1. Let G be a graph of order n > 3, then G ∈ G
ðn, n − 2Þ if and only if G is the complete bipartite graph
Ks,t with s + t = n.

Theorem 2. Let G be a graph of order n > 6, then G ∈ G
ðn, n − 3Þ if and only if G is the complete tripartite graph
Ka,b,c with a + b + c = n or the graph Γ (see Figure 1) with
s, t, p ≥ 1 and s + t + p = n.

2. Proofs

Before showing the proofs of Theorems 1 and 2, we first pres-
ent some known results as lemmas.

Lemma 3 (interlacing theorem, [19]). For a real symmetric
matrix A of order n, let M be a principal submatrix of A with
order sð≤nÞ. Then,

λi+n−s Að Þ ≤ λi Mð Þ ≤ λi Að Þ,  1 ≤ i ≤ s, ð1Þ

where λi is the ith largest eigenvalue.

Let H be a symmetric real matrix, whose block form is

H =

H11 ⋯ H1t

⋮ ⋱ ⋮

Ht1 ⋯ Htt

0
BBBBB@

1
CCCCCA
, ð2Þ

where the transpose of Hij is Hji. Let qij be the average row
sum of Hij, then Q = ½qij� is the quotient matrix of H. If the
row sum of Hij is constant, then we say H has an equitable
partition.

Lemma 4 (see [19]). Let H be a symmetric real matrix having
an equitable partition and Q be the quotient matrix of H.
Then, each eigenvalue of Q is an eigenvalue of H.

Lemma 5 (see [20, 21]). Let G be a graph, then rðGÞ = 2 if and
only if G is a complete bipartite graph, and rðGÞ = 3 if and
only if G is a complete tripartite graph.

Lemma 6 (see [2]). Let G be a graph of order n and ρ be an
eigenvalue of multiplicity k. If ρ ∉ f0,−1g, then

k ≤ n + 1
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n + 1

4

r
, ð3Þ

or equivalently, k ≤ ð1/2Þtðt − 1Þ with t = n − k > 2.

Lemma 7. Let G be a graph with n vertices and K = fv1,⋯,
vqg induces a clique in G such that NGðviÞ − K =NGðvjÞ − K
ð1 ≤ i, j ≤ qÞ, then −1 is an eigenvalue of G with multiplicity
at least q − 1.

Proof. Since K = fv1,⋯, vqg induces a clique of G and
NGðviÞ − K =NGðvjÞ − K ð1 ≤ i, j ≤ qÞ, then the first q rows
of the matrix AðGÞ + I are identical, where I is the identity
matrix. Thus AðGÞ + I contains 0 as an eigenvalue of mul-
tiplicity at least q − 1, which indicates that −1 is an eigen-
value of AðGÞ with multiplicity at least q − 1.

In the following, we present the proofs of Theorems 1 and
2.

2.1. Proof of Theorem 1. LetG be a graph of order n ≥ 4. IfG is
the complete bipartite graph Ks,t with s + t = n, then it is easy
to know that all the eigenvalues of Ks,t are f ffiffiffiffi

st
p

,−
ffiffiffiffi
st

p
, 0g

with multiplicities f1, 1, n − 2g, respectively. Thus, G = Ks,t
∈ Gðn, n − 2Þ.

Now suppose that G ∈ Gðn, n − 2Þ. We will show that G
must be a complete bipartite graph. Let θ be the eigenvalue
of G with multiplicity n − 2. First, assume that θ = 0, then
the rank rðGÞ of G is 2, and thus, G is a complete bipartite
graph from Lemma 5. Next, assume that θ ≠ 0 (this case
cannot happen from the following proof). Then, rðAðGÞ − θ
IÞ = 2 with I as the identity matrix, which indicates that the
independent number μðGÞ ≤ 2 (otherwise, rðAðGÞ − θIÞ > 2
clearly, a contradiction). Moreover, we claim that G is a
cograph, i.e., G contains no path P4 as an induced subgraph.
Otherwise, assume that G contains P4 as an induced sub-
graph, and then, AðP4Þ (resp., AðP4Þ − θI) is a principal sub-
matrix of AðGÞ (resp., AðGÞ − θI). Thus, one can obtain that

r A Gð Þ − θIð Þ ≥ r A P4ð Þ − θIð Þ ≥ 3 ð4Þ

a contradiction. As a result, diamðGÞ ≤ 2. If diamðGÞ = 1, G is
the complete graph Kn whose eigenvalues are n − 1 and −1
with multiplicity 1 and n − 1, respectively. Obviously, Kn ∉
Gðn, n − 2Þ. Suppose that diamðGÞ = 2 and H is an arbitrary
connected subgraph with order 4 of G in the following. For
the eigenvalues ρi of G and λi of H, it follows from Lemma
3 that

Ks Kt Kp

Figure 1: The graph Γ.
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ρ1 ≥ λ1 ≥ ρn−3,
ρ2 ≥ λ2 ≥ ρn−2,
ρ3 ≥ λ3 ≥ ρn−1,
ρ4 ≥ λ4 ≥ ρn:

8>>>>><
>>>>>:

ð5Þ

Since G ∈ Gðn, n − 2Þ, we obtain that H also contains
θð≠ 0Þ as an eigenvalue of multiplicity at least 2. Recalling
that μðGÞ ≤ 2, diamðGÞ = 2, and G is a cograph, then H
must be isomorphic to one of the graphs fH1,H2,H3g
(see Figure 2). However, by direct calculation, Hið1 ≤ i ≤
3Þ contains no nonzero eigenvalue of multiplicity at least
2 from Table 1, a contradiction.

Consequently, the proof is completed.

2.2. Proof of Theorem 2. Let G be a graph of order n > 6. We
first show the sufficiency part. If G is the complete tripartite
graph Ka,b,c with a + b + c = n, then from Lemma 5, it is
clear that Ka,b,c ∈ Gðn, n − 3Þ with eigenvalue 0 of multi-
plicity n − 3. Suppose that G is the graph Γ with s, t, p ≥
1 and s + t + p = n in Figure 1. From Lemma 7, Γ contains
−1 as an eigenvalue of multiplicity at least s + t + p − 3 =
n − 3. According to the partition VðΓÞ = fVðKsÞ, VðKtÞ,
VðKpÞg, the quotient matrix Q of AðΓÞ is

Q =
s − 1 p 0
s p − 1 t

0 p t − 1

0
BB@

1
CCA: ð6Þ

By calculation, the determinant of the matrix Q + I is

det Q + Ið Þ = −pst ≠ 0, ð7Þ

which implies that −1 is not an eigenvalue of the quotient
matrix Q. Applying Lemma 4, we obtain that −1 is an eigen-
value of Γ with multiplicity n − 3; that is, Γ ∈ Gðn, n − 3Þ.

We now prove the necessity part. Suppose that G ∈ G
ðn, n − 3Þ and θ is the eigenvalue of G with multiplicity
n − 3. First, if θ = 0, then rðGÞ = 3 and G is a complete tri-
partite graph Ka,b,c with a + b + c = n from Lemma 5. Next,
suppose that θ ≠ 0, then rðAðGÞ − θIÞ = 3. We claim that
the independent number μðGÞ = 2. Assume on the con-
trary that μðGÞ ≠ 2. If μðGÞ = 1, G is the complete graph
Kn and Kn ∉ Gðn, n − 3Þ from the proof of Theorem 1.
Suppose that μðGÞ ≥ 4 with fv1, v2, v3, v4g an independent
set of G, and let M be the principal submatrix of AðGÞ
indexed by fv1, v2, v3, v4g. Then,

r A Gð Þ − θIð Þ ≥ r M − θIð Þ = 4, ð8Þ

contradicting with rðAðGÞ − θIÞ = 3.
Now suppose that μðGÞ = 3 with S = fv1, v2, v3g a maxi-

mum independent set of G, which yields that each vertex
out of S must be adjacent to at least one of S. To complete
the proof, the following claims are necessary.

Claim 1. The eigenvalue θ = −1.
Recalling that θ ≠ 0, further, if θ ≠ −1, then from Lemma

6 and n > 6,

m θð Þ ≤ n + 1
2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n + 1

4

r
< n − 3, ð9Þ

contradicting with mðθÞ = n − 3. Hence, θ = −1.

Claim 2. There exists no vertex adjacent to exactly two of f
v1, v2, v3g.

Without loss of generality, suppose for a contradiction
that there exists a vertex u such that u~v1, u~v2 and u ≁ v3.
Let M be the principal submatrix of AðGÞ indexed by fv1,
v2, v3, ug, then M − θI is a principal submatrix of AðGÞ − θI
and

M − θI =

−θ 0 0 1
0 −θ 0 1
0 0 −θ 0
1 1 0 −θ

0
BBBBB@

1
CCCCCA
: ð10Þ

Denote by Rvi
the row of AðGÞ − θI indexed by the

vertex vi. Since rðAðGÞ − θIÞ = 3, it is clear that fRv1
, Rv2

,
Rv3

g are linearly independent, which yields that any other
rows of AðGÞ − θI can be written as a linear combination
of fRv1

, Rv2
, Rv3

g. Let

Ru = aRv1
+ bRv2

+ cRv3
: ð11Þ

Applying (11) to the first, second, and fourth columns
of M − θI, we get

−aθ = 1,
−bθ = 1,
a + b = −θ,

8>><
>>:

ð12Þ

which yields that θ2 = 2, contradicting with Claim 1.

Claim 3. There exists no vertex adjacent to each of fv1, v2, v3g.

H1 H2 H3

Figure 2: The graphs H1,H2, and H3.

Table 1: The eigenvalues of graphs Hið1 ≤ i ≤ 3Þ.
H1 -1.4812 -1 0.3111 2.1701

H2 -2 0 0 2

H3 -1.5616 -1 0 2.5616
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Suppose for a contradiction that there exists a vertex u
such that u~viði = 1, 2, 3Þ. Analogous with the proof of
Claim 2, let M be the principal submatrix of AðGÞ indexed
by fv1, v2, v3, ug, then

M − θI =

−θ 0 0 1
0 −θ 0 1
0 0 −θ 1
1 1 1 −θ

0
BBBBB@

1
CCCCCA
: ð13Þ

As rðAðGÞ − θIÞ = 3, then clearly fRv1
, Rv2

, Rv3
g are lin-

early independent, which span the row space of AðGÞ − θI.
Let

Ru = aRv1
+ bRv2

+ cRv3
: ð14Þ

Applying (14) to the columns of M − θI, we get

−aθ = 1,
−bθ = 1,
−cθ = 1,
a + b + c = −θ,

8>>>>><
>>>>>:

ð15Þ

which implies that θ2 = 3, contradicting with Claim 1.
Combining the above claims, we see that if μðGÞ = 3, then
G is not connected, a contradiction. As a result, μðGÞ ≠ 3.
Recalling the discussions before, it can be proved that μ
ðGÞ = 2.

In what follows, we prove that G contains no induced
path P4, i.e., G is a cograph. If G contains P4 as an induced
subgraph, then by considering an induced subgraph of order
5 of G, we see that G must contain some Gi ð1 ≤ i ≤ 4Þ (see
Figure 3) as an induced subgraph (noting that μðGÞ = 2).
Applying Lemma 3 and Claim 1, we obtain that Gi ð1 ≤ i ≤
5Þ contains θ = −1 as an eigenvalue of multiplicity at least 2.
However, by direct calculation, it follows that the multiplicity
of −1 as an eigenvalue of Gi ð1 ≤ i ≤ 5Þ is not more than one
(see Table 2), a contradiction. Therefore, G is a cograph
and the diameter diamðGÞ = 2.

Now we are in a position to complete the proof. Note that
μðGÞ = 2 and diamðGÞ = 2 from the above process. Let P3 =
v1v2v3 be a diameter of G, then fv1, v3g is a maximum inde-
pendent set of G and each vertex out of fv1, v3g is adjacent to
at least one of fv1, v3g. Let

Sv1 = vi ∈ V Gð Þ \ V P3ð Þ: vi~v1, vi ≁ v3f g,
Sv2 = vi ∈ V Gð Þ \ V P3ð Þ: vi~v1, vi~v3f g,
Sv3 = vi ∈ V Gð Þ \ V P3ð Þ: vi ≁ v1, vi~v3f g,

8>><
>>:

ð16Þ

then any vertex out of VðP3Þ belongs precisely to one of Svi
ð1 ≤ i ≤ 3Þ. The following claims are needed for us.

Claim 4. Each vertex of Sv1 (resp., Sv3) is adjacent to each one
of Sv2 .

Suppose u ∈ Sv1 and w ∈ Sv2 such that u ≁w. Then, the
vertices fu, v1,w, v3g induce a path P4, a contradiction. The
proof for the case of Sv3 is parallel, omitted.

Claim 5.All the vertices of Sv1 (resp., Sv3) induce a clique ofG.

We only prove the case of Sv1 . If x, y ∈ Sv1 and x ≁ y, then
fx, y, v3g induce an independent set of G, contradicting with
μðGÞ = 2.

Claim 6. All the vertices of Sv2 induce a clique of G.

Assume that x, y ∈ Sv2 and x ≁ y. Considering an induced
subgraphH of order 5 ofG, we obtain thatH is isomorphic to
one of fX1, X2, X3g(see Figure 4). It follows from Lemma 3
that H contains θ as an eigenvalue of multiplicity at least 2.
But Xið1 ≤ i ≤ 3Þ contains no eigenvalue of multiplicity 2
from Table 3, a contradiction.

From Claims 4–6 and the facts μðGÞ = 2 and diamðGÞ = 2,
we derive that G is isomorphic to the graph Γ in Figure 1, as
required. The proof is completed.

van Dam [14] and Huang and Huang [18] investigated
the regular graphs with four distinct eigenvalues. Here, as
an application of Theorem 2, we obtain a family of nonregu-
lar graphs with four distinct eigenvalues.

G1 G2 G3 G4 G5

Figure 3: The graphs Gið1 ≤ i ≤ 5Þ.

Table 2: The eigenvalues of graphs Gið1 ≤ i ≤ 4Þ.
G1 -1.618 -1.618 0.618 0.618 2

G2 -1 -0.5392 -1.6751 1 2.2143

G3 -1 -0.5892 -1.7757 0.7237 2.6412

G4 -1.1701 -2 0 0.6889 2.4812

G5 -1.618 -1.4728 -0.4626 0.618 2.9354

X1

y y y

x x x

X2 X3

Figure 4: The graphs Xið1 ≤ i ≤ 3Þ.
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Corollary 8. The graph Γ with s, t, p ≥ 1 and s + t + p = n (see
Figure 1) contains four distinct eigenvalues, which is not a reg-
ular graph.

Proof. From the proof of Theorem 2, we see that −1 is an
eigenvalue of Γ with multiplicity n − 3 and the remaining
three eigenvalues of Γ are those of the quotient matrix Q of
AðΓÞ. Since det ðQ + IÞ = −pst < 0, then Q + I contains two
positive eigenvalues and one negative eigenvalue. By the
Perron-Frobenius theorem, the largest eigenvalue of Γ is sim-
ple; then, the largest eigenvalue of Q (resp., Q + I) is simple.
Thus, Q + I contains three distinct eigenvalues, that is, Q
contains three distinct eigenvalues. Recalling that −1 is not
an eigenvalue of Q, then Γ contains four distinct eigenvalues.
Moreover, it is clear that Γ is not a regular graph.
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