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Quenching characteristics based on the two-dimensional (2D) nonlinear unsteady convection-reaction-diffusion equation are
creatively researched. The study develops a 2D compact finite difference scheme constructed by using the first and the second
central difference operator to approximate the first-order and the second-order spatial derivative, Taylor series expansion rule,
and the reminder-correction method to approximate the three-order and the four-order spatial derivative, respectively, and the
forward difference scheme to discretize temporal derivative, which brings the accuracy resulted meanwhile. Influences of
degenerate parameter, convection parameter, and the length of the rectangle definition domain on quenching behaviors and
performances of special quenching cases are discussed and evaluated by using the proposed scheme on the adaptive grid. It is
feasible for the paper to offer potential support for further research on quenching problem.

1. Introduction

As a common class of thermodynamic problems, quench-
ing phenomena research has been widely applied in engi-
neering area. There exist some typical researches
including the flow, thermal properties, and its working
mechanism of an object in heat associated with quenching
phenomena [1, 2], the forced convection quench of hot
sheets in super-cooled liquid [3], the quench process
speed-up, and its quench characteristics in porous inter-
face processing [4, 5]. In recent years, more and more
scholars concern quenching problem built on parabolic
equations [6–10], in which the authors depended on the
different parabolic equations to analyze corresponding
quench features. Additionally, quenching phenomena
based on parabolic equation systems have attracted
researchers’ attentions [11–13]. Nonlinear degeneration
singularity reaction-diffusion equations or convection-
reaction-diffusion equations, as a branch of parabolic
equations, have been usually employed to handle quench-
ing problems. References [14–16] focused on the quench-

ing phenomena of the nonlinear degeneration singularity
reaction-diffusion equations whereas Refs. [17, 18] focused
on the quenching phenomena of the nonlinear degenera-
tion singularity convection-reaction-diffusion equations.
Selcuk discussed quench performances of solution and its
time derivative and estimation of quenching time under
special conditions [14]. Ge et al. devoted to an adaptive
compact difference scheme to solve quench problems
[15]. Beauregard analyzed quenching properties of the
fractional Kawarada equation by using a new numerical
method and proved the proposed method monotonic,
nonnegative, and linearly stable [16]. Zhou et al. theoreti-
cally investigated quenching characteristics of the nonlin-
ear degeneration singularity convection-reaction-diffusion
equation [17]. Zhu and Rui constructed a high-accuracy
method with adaptation mechanism for studying quench-
ing behaviors and analyzed the influence of important ele-
ments on quenching [18].

References [6–18] concentrated on the quenching phe-
nomena of the 1D heat equations. The quenching phenom-
ena of the 2D heat equations are described as follows.
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References [19–21] used numerical method with adaptive
algorithm to research degeneration singularity problem of
the two-dimensional nonlinear reaction-diffusion equations.
A Peaceman-Rachford finite difference scheme based on semi-
adaptive grids with stability and convergence under certain
condition was posed to analyze the quenching behaviors of
the 2D reaction-diffusion equation in Ref. [19]. Numerical
analyses showed that the method is very efficient and reliable.
An adaptive Peaceman-Rachford-Strang splitting method on
exponentially evolving meshes was constructed to resolve the
2D problem of quenching type in Ref. [20]. Computational
experiments stated that the method is of the satisfactory effec-
tiveness, efficiency, and numerical stability. An exponential
splitting method with spatial semidiscretization on arbitrary
nonuniformmeshes was investigated to explore the 2D degen-
erate stochastic Kawarada equation in Ref. [21]. Zhu and Ge
developed an adaptive ADI strategy to simulate quenching
phenomena based on 2D convection-reaction-diffusion equa-
tion [22]. Numerical cases illustrated that the method is of
the positivity, monotonicity, and numerical stability. The
low-accuracy strategies were adopted in the most aforemen-
tioned researches [6–15, 19–21]. There are only Refs. [15, 18,
22] delivering the high-accuracy strategies, in which the first
two refer to the one-dimensional problem and the last one
refers to the two-dimensional problem. It is well known that
the development of high-order finite difference scheme of the
2D nonlinear convection-reaction-diffusion equations is
maturing [23–25]. Reference [23] developed a new high-
order difference approach for the 2D convection-reaction-
diffusion equation with a small diffusivity, which firstly posed
the 1D high-accuracy difference scheme and then extended it
to the 2D case a nine-point stencil by using alternating direc-
tion algorithm and last resolve the 2D steady incompressible
Navier-Stokes equations. In order to simulate groundwater
pollution problems, Li et al. put forward a fourth-order com-
pact difference scheme with unconditional stability and the
second-order temporal accuracy, the fourth-order spatial accu-
racy built on the 2D convection-reaction-diffusion model,
which was efficient through experiments [24]. Wu and Zhai
combined exponential transformation and quadratic interpo-
lation polynomial with Padé approximation to study the 2D
time-fractional convection-dominated diffusion equation,
which owned the higher accuracy and used alternating direc-
tion implicit algorithm to alleviate computational amount [25].

In summary, it is easily found that there are much more
low-order strategies than high-order strategies to solve
degenerate singularity problems of the 2D reaction-
diffusion equation. Especially, high-order difference schemes
received few attentions for solving quenching problem of the
two-dimensional convection-reaction-diffusion equation. It
is the high-precision algorithms that have advantages in deal-
ing with such problems because of its high accuracy and effi-
ciency. So it is a meaningful try to explore the high-order
compact difference schemes on adaptation mesh for analyz-
ing quenching problems of the 2D degenerate singular
reaction-diffusion equation with convection function. Going
down this idea, we extend this study from Ref. [18] and con-
struct a compact difference scheme on adaptive grid for solv-
ing the 2D unsteady convection-reaction-diffusion equation

to explain the corresponding quenching phenomena.
According to Ref. [18], we extend its 1D high-order compact
finite difference scheme on adaptive mesh to a 2D strategy
and use it to analyze the quenching behaviors of the 2D
convection-reaction-diffusion combustion model. There
exist three contributions of this paper. Firstly, we represent
a new 2D high-order compact difference scheme for solving
the corresponding unsteady convection-reaction-diffusion
equation and give its accuracy performances. Secondly, we
apply the scheme to explain the 2D reaction-diffusion of
quenching type with and without convection function,
respectively. Thirdly, we investigate a series of quenching
characteristics including quenching time, quenching loca-
tion, and so on, from which we can discover impacts of the
parameters q, b, and α (β) on quenching behaviors. There
are five parts in the paper. Section 1 introduces the theme
of this study. Section 2 describes carefully the proposed
scheme of high-order accuracy. Section 3 introduces adaptive
mesh algorithm. Section 4 stimulates some typical numerical
samples to explore and explain quenching problems. Section
5 draws the conclusion.

2. 2D Problem and Difference Scheme

2.1. 2D Nonlinear Convection-Reaction-Diffusion Equation.
The typical convection-reaction-diffusion equation of
quenching type is written as

σ x, yð Þut = uxx + uyy + c1 x, yð Þux + c2 x, yð Þuy
+ f uð Þ, x, yð Þ ∈Ω, t ∈ 0, Tð Þ:

ð1Þ

Its boundary conditions are

u 0, y, tð Þ = u α, y, tð Þ = u x, 0, tð Þ = u x, β, tð Þ = 0, t ∈ 0, Tð Þ:
ð2Þ

Its initial conditions is

u x, y, 0ð Þ = u0 x, yð Þ, x, yð Þ ∈ 0, αÞ × 0, βð Þ: ð3Þ

This semilinear degenerate problem model involving two
spatial dimensions is regarded as Eq. (1) with the boundary
and initial conditions of Eqs. (2) and (3). The solution uðx, y
, tÞ represents the temperature of the combustion chamber.
Ω ∈ ð0, αÞ × ð0, βÞ refers to the smooth domain of the rectan-
gle combustor in which α > 0, β > 0, and combustion chamber
sizes α and β are the length of the definition area, ∂Ω, and is its
boundary. c1ðx, yÞ and c2ðx, yÞ are the convection functions of
x and y, and σðx, yÞ = ðx2 + y2Þq/2 is the degeneracy function
and degeneration parameter q ≥ 0. The singularity source f ð
uÞ = 1/ð1 − uÞθ is strictly increasing for 0 ≤ u0 < 1
withf ð0Þ = f0 > 0, lim

u→1−
f ðuÞ =∞, and singularity parameter θ

is the power of the singular source term 1/ð1 − uÞθ.
With the aid of the intermediate variables x̂ and ŷ, we

replace x̂ = x/α and ŷ = y/β into Eq. (1) which can be defined as
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σ αx̂, βŷð Þut =
1
α2

ux̂x̂ +
1
β2 uŷŷ +

c1 αx̂, βŷð Þ
α

ux̂ +
c2 αx̂, βŷð Þ

β
uŷ

+ f uð Þ, αx̂, βŷð Þ ∈Ω, t ∈ 0, Tð Þ:
ð4Þ

For the convenience of expression, we use x and y instead
of x̂ and ŷ. Then, the above formulation can be rearranged as

σ x, yð Þut =
1
α2

uxx +
1
β2 uyy +

c1 x, yð Þ
α

ux +
c2 x, yð Þ

β
uy

+ f uð Þ, x, yð Þ ∈Ω, t ∈ 0, Tð Þ,
ð5Þ

where σðx, yÞ = ðα2x2 + β2y2Þq/2,Ω ∈ ð0, 1Þ × ð0, 1Þ: Corre-
spondingly, the boundary conditions of Eq. (5) are

u 0, y, tð Þ = u 1, y, tð Þ = u x, 0, tð Þ = u x, 1, tð Þ = 0, t ∈ 0, Tð Þ:
ð6Þ

The initial conditions of Eq. (5) is

u x, y, 0ð Þ = u0 x, yð Þ, x, yð Þ ∈ 0, 1ð Þ × 0, 1ð Þ: ð7Þ

In the physical application, we rely on Eqs. (5)–(7) to
compute u and ut . Through observing a large number of
values of u and ut, we can capture quenching moment, i.e.,
quenching occurs when u infinitely close to 1 and ut becomes
so huge that its value blows up.

2.2. The Proposed Compact Difference Scheme. According to
the idea given in [18], we employ the first and the second cen-
tral difference operator to approximate the first-order and
the second-order spatial derivatives of x − direction and y −
direction, respectively, and the forward difference operator
to discrete temporal derivative. The proposed high-accuracy
finite difference scheme of Eq. (5) is deduced below. After
the first-order and the second-order spatial derivatives of x
− direction and y − direction are discretized on the nonuni-
form mesh, respectively, a scheme approximating the 2D
unsteady convection-diffusion equation dispersed at point ð
xk, yjÞ can be written as

� 2 − α xR − xLð Þc1
2α2σ δ2x +

c1
ασ

δx +
2 − β yR − yLð Þc2

2β2σ
δ2y

+ c2
βσ

δy

�
uk,j +Ψ1x uxxxð Þk,j +Ψ2x uxxxxð Þk,j +Ψ3x uxxxxxð Þk,j

+Ψ1y uyyy
� �

k, j +Ψ2y uyyyy
� �

k,j +Ψ3y uyyyyy
� �

k, j

= ut −
f
σ

uð Þ
� �

k,j,l
+O

x5R + x5L
xR + xL

� �
+O

y5R + y5L
yR + yL

� �
,

ð8Þ

where

Ψ1x = −
2 xR − xLð Þ + αxRxLc1

6α2σ ,

Ψ2x = −
2 x2R − xRxL + x2L
� �

+ α xR − xLð ÞxRxLc1
24α2σ ,

Ψ3x = −
2 xR − xLð Þ x2R + x2L

� �
+ α x3RxL − x2Rx

2
L + x3LxR

� �
c1

120α2σ ,

Ψ1y = −
2 yR − yLð Þ + βyRyLc2

6β2σ
,

Ψ2y = −
2 y2R − yRyL + y2L
� �

+ β yR − yLð ÞyRyLc2
24β2σ

,

Ψ3y = −
2 yR − yLð Þ y2R + y2L

� �
+ β y3RyL − y2Ry

2
L + y3LyR

� �
c2

120β2σ
:

ð9Þ

We use Taylor series to obtain the derivative expansions
of x − direction: ðuxxxÞk,j and ðuxxxxÞk,j, and the derivative
expansions of y  − direction: ðuyyyÞk,j and ðuyyyyÞk,j from
Eq. (5). The four expressions are substituted into the corre-
sponding terms in Eq. (8). OðΔÞ =Oðx5R + x5L/xR + xLÞ +Oð
y5R + y5L/yR + yLÞ −Ψ2yðuyyyyÞk,j −Ψ3yðuyyyyyÞk,j, which is the

truncation error of Eq. (8). Omitting the truncation errors,
we consider the situation of point ðk, j, nÞ for Eq. (8)

κ1xδx + κ2xδ
2
x + κ1yδy + κ2yδ

2
y

n o
unk,j + κ3ut + κ4xutx + κ5xutxxf

+ κ4yuty + κ5yutyy + κ6uxy + κ7xuxxy + κ7yuxyy + κ8uxxyy
�n
k,j

= −
1
σ
+ κ9xδx + κ10xδ

2
x + κ9yδy + κ10yδ

2
y

� �
f nk,j +O Δð Þ,

ð10Þ

where

κ1x =
c1
ασ

− α Ψ1x − αΨ2xc1ð Þ c1ð Þx − αΨ2x c1ð Þxx

−
β2

α
Ψ1y − βΨ2yc2
� �

c1ð Þy −
β2Ψ2y
α

c1ð Þyy ,

κ2x =
2 − α xR − xLð Þc1

2α2σ − α Ψ1x − αΨ2xc1ð Þc1 − 2αΨ2x c1ð Þx,

κ1y =
c2
βσ

− β Ψ1y − βΨ2yc2
� �

c2ð Þy − βΨ2y c2ð Þyy

−
α2

β
Ψ1x − αΨ2xc1ð Þ c2ð Þx −

α2Ψ2x
β

c2ð Þxx,

κ2y =
2 − β yR − yLð Þc2

2β2σ
− β Ψ1y − βΨ2yc2

� �
c2 − 2βΨ2y c2ð Þy,
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κ3 = α2 Ψ1x − αΨ2xc1ð Þσx + α2Ψ2xσxx

+ β2 Ψ1y − βΨ2yc2
� �

σy + β2Ψ2yσyy − 1,

κ4x = α2 Ψ1x − αΨ2xc1ð Þσ + 2α2Ψ2xσx, κ4y
= β2 Ψ1y − βΨ2yc2

� �
σ + 2β2Ψ2yσy ,

κ5x = α2Ψ2xσ, κ5y = β2Ψ2yσ,

κ6 = −
α2

β
Ψ1x − αΨ2xc1ð Þc2 −

2α2Ψ2x
β

c2ð Þx

−
β2

α
Ψ1y − βΨ2yc2
� �

c1 −
2β2Ψ2y

α
c1ð Þy ,

κ7x = −
α2Ψ2x
β

c2 −
β2

α2
Ψ1y − βΨ2yc2
� �

,

κ7y = −
β2Ψ2y
α

c1 −
α2

β2 Ψ1x − αΨ2xc1ð Þ,

κ8 = −
α2Ψ2x
β2 −

β2Ψ2y
α2

,

κ9x = α2 Ψ1x − αΨ2xc1ð Þ, κ9y = β2 Ψ1y − βΨ2yc2
� �

,

κ10x = α2Ψ2x, κ10y = β2Ψ2y: ð11Þ

The second-order derivative of time from Eq. (8) is utt
= ð1/α2σÞutxx + ð1/β2σÞutyy + ðc1/ασÞutx + ðc2/βσÞuty + ð f t/
σÞ. By using the forward difference scheme, we can get

utð Þnk,j =
un+1k,j − unk,j

τn
−
τn
2 uttð Þnk,j +O τ2

� �

= δ+t u
n
k,j −

τn
2 uttð Þnk,j +O τ2

� �
:

ð12Þ

Relying on the second-order backward Euler difference
scheme, we can get

f tð Þnk,j =
3f nk,j − 4f n−1k,j + f n−2k,j

2τn
: ð13Þ

Provided OðΔÞ =OðΔ + τ2Þ, Eq. (14) can be derived as

κ1xδx + κ2xδ
2
x + κ1yδy + κ2yδ

2
y

n o
unk,j + κ3δ

+
t u

n
k,j

+
�

κ4x −
κ3τnc1
2ασ

	 

utx + κ5x −

κ3τn
2α2σ

	 

utxx

+ κ4y −
κ3τnc2
2βσ

� �
uty + κ5y −

κ3τn
2β2σ

� �
utyy

�n

k,j

+ κ6uxy + κ7xuxxy + κ7yuxyy + κ8uxxyy
� �n

k,j

= −
1
σ
+ κ9xδx + κ10xδ

2
x + κ9yδy + κ10yδ

2
y

� �
f nk,j

+ 3κ3
4σ f nk,j −

κ3
σ
f n−1k,j + κ3

4σ f n−2k,j +O Δð Þ:

ð14Þ

The first-order and the second-order derivate of u with
regard to space variables x andy are discretized by the central
difference scheme. The first-order derivate of uwith regard to
time variable t is discretized by the forward difference
scheme. Subsequently, after the difference approximations
are carried out to ðutxÞnk,j, ðutxxÞnk,j, ðutyÞnk,j, ðutyyÞ

n
k,j, ðuxyÞ

n
k,j,

ðuxxyÞnk,j, ðuxyyÞ
n
k,j, and ðuxxyyÞnk,j, a linear system is formed as

b1yu
n+1
k,j−1 + b1xu

n+1
k−1,j + b0u

n+1
k,j + b2xu

n+1
k+1,j + b2yu

n+1
k,j+1

= d1yu
n
k,j−1 + d1xu

n
k−1,j + d0u

n
k,j + d2xu

n
k+1,j

+ d2yu
n
k,j+1 + d31u

n
k−1,j−1 + d32u

n
k+1,j−1 + d33u

n
k−1,j+1

+ d34u
n
k+1,j+1 + s1y f

n
k,j−1 + s1x f

n
k−1,j + s0 f

n
k,j

+ s2x f
n
k+1,j + s2y f

n
k,j+1 +M1 f

n−1
k,j +M2 f

n−2
k,j ,

ð15Þ

where

b1y =
−2τn + βc2τnyLð Þκ3 − 2β2σyLκ4y + 4β2σκ5y

2β2στnyL yR + yLð Þ
,

b1x =
2τn + αc1τnxLð Þκ3 − 2α2σxLκ4x + 4α2σκ5x

2α2στnxL xR + xLð Þ ,

b0 =
κ3
τn

−
2α2σκ5x − τnκ3
α2στnxRxL

−
2β2σκ5y − τnκ3

β2στnyRyL
,

b2x =
−2τn − αc1τnxRð Þκ3 + 2α2σxRκ4x + 4α2σκ5x

2α2στnxR xR + xLð Þ ,

b2y =
−2τn − βc2τnyRð Þκ3 + 2β2σyRκ4y + 4β2σκ5y

2β2στnyR yR + yLð Þ
,
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d1y =
κ1y

yR + yL
−

2κ2y
yL yR + yLð Þ

+
−2τn + βc2τnyLð Þκ3 − 2β2σyLκ4y + 4β2σκ5y

2β2στnyL yR + yLð Þ
−

2κ7x
xRxL yR + yLð Þ + 4κ8

xRxLyL yR + yLð Þ ,

d1x =
κ1x

xR + xL
−

2κ2x
xL xR + xLð Þ

+ −2τn + αc1τnxLð Þκ3 − 2α2σxLκ4x + 4α2σκ5x
2α2στnxL xR + xLð Þ

−
2κ7y

xR + xLð ÞyRyL
+ 4κ8
xL xR + xLð ÞyRyL

,

d0 =
2κ2x
xRxL

+
2κ2y
yRyL

+ κ3
τn

−
2α2σκ5x − τnκ3
α2στnxRxL

−
2β2σκ5y − τnκ3

β2στnyRyL
−

4κ8
xRxLyRyL

,

d2x =
κ1x

xR + xL
−

2κ2x
xR xR + xLð Þ

� −2τn − αc1τnxRð Þκ3 + 2α2σxRκ4x + 4α2σκ5x
2α2στnxR xR + xLð Þ

+
2κ7y

xR + xLð ÞyRyL
+ 4κ8
xR xR + xLð ÞyRyL

,

d2y = −
κ1y

yR + yL
−

2κ2y
yR yR + yLð Þ

+
−2τn − βc2τnyRð Þκ3 + 2β2σyRκ4y + 4β2σκ5y

2β2στnyR yR + yLð Þ
+ 2κ7x
xRxL yR + yLð Þ + 4κ8

xRxLyR yR + yLð Þ ,

d31 = −
κ6

xR + xLð Þ yR + yLð Þ + 2κ7x
xL xR + xLð Þ yR + yLð Þ

+
2κ7y

xR + xLð ÞyL yR + yLð Þ −
4κ8

xL xR + xLð ÞyL yR + yLð Þ ,

d32 =
κ6

xR + xLð Þ yR + yLð Þ + 2κ7x
xR xR + xLð Þ yR + yLð Þ

−
2κ7y

xR + xLð ÞyL yR + yLð Þ −
4κ8

xR xR + xLð ÞyL yR + yLð Þ ,

d33 =
κ6

xR + xLð Þ yR + yLð Þ −
2κ7x

xL xR + xLð Þ yR + yLð Þ
+

2κ7y
xR + xLð ÞyR yR + yLð Þ −

4κ8
xL xR + xLð ÞyR yR + yLð Þ ,

d34 = −
κ6

xR + xLð Þ yR + yLð Þ −
2κ7x

xR xR + xLð Þ yR + yLð Þ
−

2κ7y
xR + xLð ÞyR yR + yLð Þ −

4κ8
xR xR + xLð ÞyR yR + yLð Þ ,

s1y = −
κ9y

yR + yL
+

2κ10y
yL yR + yLð Þ ,

s1x = −
κ9x

xR + xL
+ 2κ10x
xL xR + xLð Þ ,

s0 =
3κ3 − 4
4σ −

2κ10x
xRxL

−
2κ10y
yRyL

,

s2x =
κ9x

xR + xL
+ 2κ10x
xR xR + xLð Þ ,

s2y =
κ9y

yR + yL
+

2κ10y
yR yR + yLð Þ ,

M1 = −
κ3
σ
,M2 =

κ3
4σ : ð16Þ

Through the prior deducing procedure, it can be seen
that the truncation error of the Eq. (15)
is-
Oðτ2n + τnðx2R − xRxL + x2LÞ + τnðy2R − yRyL + y2LÞ + ðx5R + x5L/xR
+ xLÞ + ðy5R + y5L/yR + yLÞÞ. When h = xR = xL = yR = yL and
τn = h2, it owns spatial accuracy of fourth order and temporal
accuracy of second order.

3. Adaptive Grid Structure

3.1. Adaptive Grid Structure in Time. The adaptation mesh
technique in the temporal and the spatial direction is
employed for solving the 2D problem of quenching type.
Obviously, the 2D adaptive mesh algorithm can be derived
from the 1D case. The arc-length monitor function of the
temporal derivative function resulting from equal distribu-
tion principle is used to design the temporal and the spatial
moving mesh algorithm, respectively. From Ref. [19, 20], a
self-adaptive grid in the time direction is given as follows. A
maximized ratio equation for computing the adaptive tem-
poral interval τn is

τn
τn−1

=

max 0<k<K
0< j<J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ∂2u/∂t2

� �
xk, yj, tn−1/2

	 
h i2r

max 0<k<K
0< j<J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ∂2u/∂t2

� �
xk, yj, tn+1/2

	 
h i2r , n = 1, 2,⋯

ð17Þ

The standard uniform central difference formula is
substituted for the ∂2u/∂t2 in Eq. (17). Of course, when the
prior temporal step τn−1 is given, the current temporal step
τn can be calculated through Eq. (17).

3.2. Adaptive Grid Structure in Space. Let a spatial adaptation
algorithm be deduced as follows. Wxðx, tÞ is taken as the
monitor function in x − direction and Wyðy, tÞ is taken as
the monitor function in y − direction.
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Wx x, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 〠

K

k=0
∂2u/∂t∂x
� �

x, tð Þ �2
vuut , 0 ≤ x ≤ 1, 0 ≤ t < T ,

ð18Þ

Wy y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 〠

J

j=0
∂2u/∂t∂y
� �

y, tð Þ �2
vuut , 0 ≤ y ≤ 1, 0 ≤ t < T:

ð19Þ

fξkðxk, tÞgKk=0 and fζjðyj, tÞgJj=0 point to the set of 2D

original spatial mesh points in x − direction and y − direc-
tion. The 2D computational area is transformed as
fxkðξk, tÞgKk=0 in x − direction and fyjðζj, tÞgJj=0 in y − direc-

tion through mesh movement. The continuous function
Wxðx, tÞ > 0 and Wyðy, tÞ > 0 in the definition area ðx, yÞ ∈
ð0, 1Þ × ð0, 1Þ equally distributes over the 2D mesh refreshed.
In fact, the 1D adaptive mesh algorithm individually carries
out in each spatial direction. According to [19, 20], we can
get the semi-implicit scheme in x − direction

Wx x mð Þ
k+1/2, tn

	 

x m+1ð Þ
k+1 − x m+1ð Þ

k

	 


−Wx x mð Þ
k−1/2, tn

	 

x m+1ð Þ
k − x m+1ð Þ

k−1

	 

= 0, k = 1, 2,⋯, K − 1, n ≥ 0:

ð20Þ

Similarly, we can get the semi-implicit scheme in y −
direction

Wy y mð Þ
j+1/2, tn

	 

y m+1ð Þ
j+1 − y m+1ð Þ

j

	 


−Wy y mð Þ
j−1/2, tn

	 

y m+1ð Þ
j − y m+1ð Þ

j−1

	 

= 0, j = 1, 2,⋯, J − 1, n ≥ 0:

ð21Þ

3.3. Iterative Adaption Algorithm. This paragraph shows the
iterative process of the presented method in the paper.

Step 1. Depending on the spatial mesh fxðmÞ
k gKk=0, fy

ðmÞ
j gJ

j=0 at

the nth time layer, we can obtain the corresponding monitor
functions Wxðx, tÞ and Wyðy, tÞ via Eqs. (18) and (19).

Step 2. The point set fxðm+1Þ
k gKk=0 refreshed is extracted from

the prior grid fxðmÞ
k gKk=0 via Eq. (20) whereas fyðm+1Þ

j gJ
j=0

refreshed is extracted from fyðmÞ
j gJ

j=0 by Eq. (21). We use the

new point sets to get the replacement for the old point sets iter-

atively once ∑K−1
k=1 kxðm+1Þ

k − xðmÞ
k k < er, ∑J−1

j=1kyðm+1Þ
j − yðmÞ

j k <
er, which er takes 10-5. The last value of m + 1 takes Mn.

Step 3. By virtue of the last grid point sets fxðMnÞ
k gKk=0,

fyðMnÞ
j gJ

j=0, and area ratio algorithm, the solutions in the n

th time line funk,jgK−1,J−1k=1,j=1 are all estimated. Combining with
τn obtained from Eq. (17), fun+1k,j gK−1,J−1k=1,j=1 in the n + 1th time

line can be calculated by Eq. (15).

Step 4. Repeat steps from the first to the third till quenching
occurs, or the solution converges to a steady solution.

4. Simulation Demonstration

4.1. Numerical Case. This is a common numerical sample uti-
lized to evaluate the performance of Eq. (15) measure by Eq.
(22)

put = uxx + uyy − pux − puy, x, yð Þ ∈ 0, 1½ � × 0, 1½ �, t ≥ 0,
ð22Þ

u x, y, tð Þ = epx − 1
ep − 1 + epy − 1

ep − 1

+ 〠
∞

q=1

−1ð Þqqπ
qπð Þ2 + p2/4

ep x−1ð Þ/2+p y−1ð Þ/2 sin

� qπx + qπyð Þe− qπð Þ2/p+p/4½ �t:

ð23Þ

In the paper, T = 0:5, τn = 0:01, p = 100. The initial and
boundary values can be computed through the exact solu-
tion. The tested results display in Table 1, in which there
are four criteria containing Max. error, Aver. error, CPU
time, and Conv. rate. Max. error means the maximal absolute
error between analysis solution and difference solution; Aver.
error means the average absolute error; CPU time means the
running time of system; Conv. rate means convergence rate
between the two interfacing mesh numbers. The nonuniform
mesh follows the rule: fk/K + ðλx/πÞ sin ðπk/KÞgKk=0 in x −
direction and fj/J + ðλy/πÞ sin ðπj/JÞgJ

j=0 in y − direction,
where K and J point to intervals of spatial direction and K
= J , whereas λx and λy mean telescopic transformation coef-
ficient and λx = λy . There exist six difference schemes that are
compared on another for the example in Table 1, which are
the schemes in Ref. [26] on the uniform and the nonuniform
grid, the schemes in Ref. [27] on the uniform and the nonuni-
form grid, and the proposed schemes on the uniform and the
nonuniform grid. The schemes in Ref. [27] and the proposed
schemes all chose the five spatial intervals 16, 32, 64, 128, 256,
and λx = λy = 0:7 and the four aforementioned criteria. Only
the schemes in Ref. [26] choose the five spatial intervals 16,
32, 64, 128, and λx = λy = 0:4 and the three aforementioned
criteria with the exception of Aver. error.

With regard to Max. error and Aver. error, the schemes
on the uniform grid are inferior to the schemes on the non-
uniform grid; the proposed schemes are superior to the other
schemes, and the schemes (nonuniform) in Ref. [27] are
superior to the scheme (nonuniform) in Ref. [26], and the
tendency becomes more obviously as KðJÞ rises. When KðJ
Þ is 128, the maximal absolute error of the scheme in Ref.
[27] (uniform) is 3:1469 × 10−4, and the maximal absolute
error of the scheme in Ref. [27] (nonuniform) is 9:3004 ×
10−7; the maximal absolute error of the scheme in Ref. [26]
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(uniform) is 3:15 × 10−4, and the maximal absolute error of
the scheme in Ref. [26] (nonuniform) is 4:42 × 10−5; the
maximal absolute error of the proposed scheme (uniform)
is 3:1447 × 10−4, and the maximal absolute error of the pro-
posed scheme (nonuniform) is 6:9033 × 10−7. When KðJÞ is
256, the average error of the scheme in Ref. [27] (uniform)
is 6:1742 × 10−7, and the average error of the scheme in Ref.
[27] (nonuniform) is 6:4492 × 10−9; the average error of the
proposed scheme (uniform) is 5:9061 × 10−7, and the average
error of the proposed scheme (nonuniform) is 3:4536 × 10−9.
In terms of CPU time, the scheme (nonuniform) in Ref. [27]
spends the most time among the schemes when KðJÞ is 32,
64, 128, and 256, and the tendency becomes more obviously
as KðJÞ rises; the schemes in Ref. [26] spend much more time
than the proposed schemes do. Typically, the running time of
the schemes on the uniform grid is less than that of the

schemes on the nonuniform grid. It just means that the latter
complies with a time-for-space rule, which refers to it may
improve the spatial accuracy of an algorithm by adding its
running time.

4.2. Quenching Case without Convection Term. When c1ðx,
yÞ = 0 and c2ðx, yÞ = 0, with the initial and boundary condi-
tions Eqs. (6) and (7), the original Eq. (5) can be described as

α2x2 + β2y2
� �q/2

ut =
1
α2

uxx +
1
β2 uyy

+ 1
1 − uð Þθ

, x, yð Þ ∈ 0, 1ð Þ

× 0, 1ð Þ, t ∈ 0, Tð Þ:

ð24Þ

Table 1: The parameter values for common example.

Schemes K Jð Þ Max. error Aver. error CPU time Conv. rate

The scheme in Ref. [26] (uniform)

16 2:59 × 10−1 — 1000 —

32 5:65 × 10−2 — 1344 2.30

64 5:50 × 10−3 — 6766 3.44

128 3:15 × 10−4 61328 4.17

The scheme in Ref. [26] (nonuniform)

16 1:12 × 10−1 — 844 —

32 1:22 × 10−2 — 1625 3.34

64 6:84 × 10−4 — 11188 4.25

128 4:42 × 10−5 — 135344 4.00

The scheme in Ref. [27] (uniform)

16 2:4859 × 10−1 1:7858 × 10−2 47 —

32 5:7032 × 10−2 1:9148 × 10−3 172 5.0033

64 5:5382 × 10−3 1:4565 × 10−4 702 3.7166

128 3:1469 × 10−4 9:6850 × 10−6 2948 3.9106

256 1:9710 × 10−5 6:1742 × 10−7 11794 3.9714

The scheme in Ref. [27] (nonuniform)

16 8:1898 × 10−3 8:7725 × 10−4 358 —

32 2:9724 × 10−4 2:9996 × 10−5 2855 7.9861

64 1:5573 × 10−5 1:6521 × 10−6 14914 4.1824

128 9:3004 × 10−7 1:0224 × 10−7 35006 4.1964

256 1:3364 × 10−7 6:4492 × 10−9 165969 4.7029

The proposed scheme (uniform)

16 2:5865 × 10−1 1:7571 × 10−2 78 —

32 5:6511 × 10−2 1:9107 × 10−3 297 4.9902

64 5:5041 × 10−3 1:4562 × 10−4 1217 3.7138

128 3:1447 × 10−4 9:6804 × 10−6 5148 3.9110

256 1:9357 × 10−5 5:9061 × 10−7 20951 4.0348

The proposed scheme (nonuniform)

16 8:1405 × 10−3 8:7581 × 10−4 421 —

32 2:9716 × 10−4 2:9989 × 10−5 1857 7.9849

64 1:5491 × 10−5 1:6490 × 10−6 6911 4.1847

128 6:9033 × 10−7 8:9949 × 10−8 24585 4.1964

256 4:1212 × 10−8 3:4536 × 10−9 131243 4.7029
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For the situation of c1ðx, yÞ = 0 and c2ðx, yÞ = 0, we take
advantage of Eq. (15) to approximate Eq. (24) and gain
quenching case without convection term. We set the three
parameters q = 0, a = β =

ffiffiffiffiffi
10

p
, and θ = 1 to the case which

had been illustrated in Refs [19, 20]. In this case, the initial
temporal step is configured as τ0 = 4:166677 × 10−5, and the
initial space step is configured as h0 = 1/90.

Table 2 offers quenching performances of the three differ-
ent schemes, which are from Refs [19, 20] besides the pro-
posed method on adaptive mesh, for q = 0, a = β =

ffiffiffiffiffi
10

p
, and

θ = 1 without convection term. The criteria in Table 2 are
explained as follows. ðxmax, ymaxÞ refers to the point of quench-
ing location,Tmax refers to the quenching time,max u refers to
the maximum temperature value immediately before quench-
ing happens, and max ut refers to the maximum variation of
temperature with respect to time immediately before quench-
ing happens. For the three schemes, their quenching locations
are all ð0:5, 0:5Þ. There are subtle differences among the three
schemes for quenching time andmax u. Tmax of the proposed
scheme is 0.5990174307488624, and max u of the proposed
scheme is 0.9901182463562488. But there are greater differ-
ences among the three schemes formax ut .max ut of the pro-
posed scheme is 83.20947696438735 while those of the
schemes in Refs [19, 20] are 148.887767 and 1249.917563.
There is no effect of the differences on quenching research.
Figure 1 offers the three-dimensional scenes of u and ut with
regard to spatial variables x, y when the time t is
0.5990174307488624, respectively. From the two 3D surfaces
at the time Tmax = 0:5990174307488624 that is immediately
before quenching occurs, it is found that u⟶ 1− and ut
⟶ 84− at the quenching location ðxmax, ymaxÞ = ð0:5, 0:5Þ
and the quenching time Tmax = 0:5990174307488624.

4.3. Quenching Case with Convection Term b/ð1 + αx + βyÞ.
We will investigate what role degeneration parameter q, con-
vection parameter b, and combustion chamber size α(β) in
Eqs. (5)–(7) play during the quenching process and enumer-
ate the representative Case 5.0 to show special quenching fea-
tures when c1ðx, yÞ = bx/ð1 + αx + βyÞ and
c2ðx, yÞ = by/ð1 + αx + βyÞ, where bx and by take the con-
stants and convection parameter b = bx = by. When singular-
ity parameter θ is larger than 1, the quenching situation is
complex. Therefore, we only consider quenching cases of θ
= 1. In numerical samples, bx and by range from -200 to
200; α2 range from 15 to 300000. These are the same to Sec-
tion 4.4. To better illustrate the problems, we choose some
representative data from lots of tests to discuss quenching
phenomena in the next paragraphs. For the convection
model b/ð1 + αx + βyÞ, we set h0  = 1/70 as the initial x
− (y − ) step and τ0 = 0:0008 as the initial t − step.

Tables 3–6 offer some typical quenching cases to demon-
strate the relationship between the three groups of parame-
ters and quenching phenomena. Case 5.0 recorded as a
reference in Table 3, i.e., q = 1, bx = by = 3, α = β = 15, is com-
pared with other cases in Tables 3–5. Table 6 displays the
specific quenching data of Case 5.0. Figures 1–3 show the
quenching statuses of Case 5.0 relative to u, ut , x, y, and t.

Except Case 5.0, there are ten quenching cases chosen in
Table 3. The ten items list as follows: Case 5.1.1 is q = 0:1,
bx = by = 3, α = β = 15; Case 5.1.2 is q = 0:2, bx = by = 3, α = β

= 15; Case 5.1.3 is q = 0:4, bx = by = 3, α = β = 15; Case 5.1.4
is q = 0:6, bx = by = 3, α = β = 15; Case 5.1.5 is q = 0:7, bx =
by = 3, α = β = 15; Case 5.1.6 is q = 0:9, bx = by = 3, α = β =
15; Case1.1.7 is q = 1:1, bx = by = 3, α = β = 15; Case1.1.8 is q
= 1:2, bx = by = 3, α = β = 15; Case 5.1.9 is q = 1:3, bx = by =
3, α = β = 15; Case 5.1.10 is q = 1:4, bx = by = 3, α = β = 15.
Although the program may run when q ≥ 1:5, it is hard to
form quenching behaviors. If q belongs to the definition
domain ½0:1, 1:4�, the quenching phenomena will occur.
From serial numerical cases, we can easily see the perfor-
mances of quenching location and time. The quenching loca-
tion ðxmax, ymaxÞ declines as q evolves and finally converges to
ð0:04285714285714286, 0:04285714285714286Þ. There is an
intermediate point q = 0:9 dividing the definition domain as
½0:1, 0:9� and ½1:0, 1:4�. The quenching location xmax and
ymax do decline as q evolves in the first subdomain and con-
verge to ð0:04285714285714286, 0:04285714285714286Þ in
the second subdomain. The quenching time Tmax reaches
the maximum 9.686902288384093 when q = 1:4. Tmax and
qare in positive proportion when q in ½0:1, 1:4�.

We choose ten items written in Table 4 to display the
quenching characteristics related to the parameters bx and
by. Case 5.2.1 is q = 1, bx = by = −5, α = β = 15; Case 5.2.2 is
q = 1, bx = by = −3, α = β = 15; Case 5.2.3
isq = 1, bx = by = 0, α = β = 15; Case 5.2.4 is q = 1, bx = by = 2
, α = β = 15; Case 5.2.5 is q = 1, bx = by = 4, α = β = 15; Case
5.2.6 is q = 1, bx = by = 5, α = β = 15; Case 5.2.7 is q = 1, bx =
by = 6, α = β = 15; Case 5.2.8 is q = 1, bx = by = 8, α = β = 15;
Case 5.2.9 is q = 1, bx = by = 9, α = β = 15; Case 5.2.10 is q =
1, bx = by = 10, α = β = 15; bx and by in Eq. (5) are theoreti-
cally equivalent, i.e., b = bx = by. A valid scope of b is ½−5, 10
� for these cases. Because quenching occurs fastest when b
takes 4, b = 4 is thought as a special point for quenching time.
Quenching time is inversely proportional to b when b ∈ ½−5
, 4� and positively proportional to bwhen b ∈ ½4, 10�. Quench-
ing location ðxmax, ymaxÞ rises as b increases when b ∈ ½−5, 5�
and takes ð0:02857142857142857, 0:02857142857142857Þ
when b ≥ 6.

Table 2: Quenching performances of different schemes for q = 0, a = β =
ffiffiffiffiffi
10

p
, and θ = 1 without convection term.

Schemes xmax ymax Tmax max u max ut
The proposed scheme 0.500 0.500 0.5990174307488624 0.9901182463562488 83.20947696438735

The scheme in [19] — — 0.58712499993751 0.990432 148.887767

The scheme in [20] 0.500 0.500 0.587554 0.999263 1249.917563
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Table 5 offers seventeen referencing cases. The first ten
items are Case 5.3.1 is q = 1, bx = by = 3, α/β = 1, α2 = 15;
Case 5.3.2 is q = 1, bx = by = 3, α/β = 1, α2 = 1227; Case 5.3.3
is q = 1, bx = by = 3, α/β = 1, α2 = 1228; Case 5.3.4 is q = 1, bx

= by = 3, α/β = 1, α2 = 1229; Case 5.3.5 is q = 1, bx = by = 3, α
/β = 1, α2 = 2900; Case 5.3.6 is q = 1, bx = by = 3, α/β = 1, α2
= 2999; Case 5.3.7 is q = 1, bx = by = 3, α/β = 1, α2 = 3000;
Case 5.3.8 is q = 1, bx = by = 3, α/β = 1, α2 = 8 × 104; Case
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Figure 1: (a) The 3D plots of u immediately before quenching occurs, and (b) the 3D plots of ut immediately before quenching occurs. The
parameters are q = 0, a = β =

ffiffiffiffiffi
10

p
, and θ = 1 without convection term.

Table 3: Quenching data of q based on convection term b/ð1 + αx + βyÞ.

Case name xmax ymax Tmax max u max ut
Case 5.0 0.04285714285714286 0.04285714285714286 3.428404873627137 0.9920620807720361 125.6265973017968

Case 5.1.1 0. 1 0.1 0.6470842629145379 0.9933649818060033 136.4723853886283

Case 5.1.2 0.08571428571428572 0.08571428571428572 0.7824847046607435 0.9903819718639215 87.67058865539519

Case 5.1.3 0.07142857142857143 0.07142857142857143 1.109942679446164 0.9908479463229512 86.47536110256003

Case 5.1.4 0.05714285714285714 0.05714285714285714 1.572860422734615 0.9902786764164395 83.87879039070892

Case 5.1.5 0.05714285714285714 0.05714285714285714 1.88098095097722 0.9920140466370957 101.1277413288689

Case 5.1.6 0.05714285714285714 0.05714285714285714 2.771928557465351 0.9920059842963465 96.8866420271182

Case 5.1.7 0.04285714285714286 0.04285714285714286 4.293156056984269 0.9908925785572684 107.7822215514385

Case 5.1.8 0.04285714285714286 0.04285714285714286 5.485318052886954 0.9920945867539992 126.7837317275917

Case 5.1.9 0.04285714285714286 0.04285714285714286 7.182200512059787 0.9903718441627313 102.1421834048094

Case 5.1.10 0.04285714285714286 0.04285714285714286 9.686902288384093 0.992048580687276 127.8241083054763

Table 4: Quenching data of bx and by based on convection term b/ð1 + αx + βyÞ.

Case name xmax ymax Tmax max u max ut
Case 5.2.1 0.1714285714285714 0.1714285714285714 8.379050080786115 0.990231496274097 27.01166111192879

Case 5.2.2 0.1285714285714286 0.1285714285714286 6.144661979620801 0.9902084486956095 35.54184621151833

Case 5.2.3 0.08571428571428572 0.08571428571428572 4.133262574622704 0.9902265728041954 52.5010571873496

Case 5.2.4 0.05714285714285714 0.05714285714285714 3.540661768514728 0.9901040464540505 75.11254034765163

Case 5.2.5 0.04285714285714286 0.04285714285714286 3.389328541055185 0.992283726259128 128.3227508596781

Case 5.2.6 0.04285714285714286 0.04285714285714286 3.449401822644199 0.9910523423231372 108.73967781816

Case 5.2.7 0.02857142857142857 0.02857142857142857 3.578376058086737 0.990585829058986 147.5334079485446

Case 5.2.8 0.02857142857142857 0.02857142857142857 4.018879993939997 0.9940259443236479 246.3627497716133

Case 5.2.9 0.02857142857142857 0.02857142857142857 4.341185345099308 0.9904731250696808 143.5523827878386

Case 5.2.10 0.02857142857142857 0.02857142857142857 4.731222306735877 0.9969319295625433 506.9119438251631
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5.3.9 is q = 1, bx = by = 3, α/β = 1, α2 = 1:1 × 105; Case 5.3.10
is q = 1, bx = by = 3, α/β = 1, α2 = 1:43 × 105. We configure
15 ≤ α2 ≤ 1:43 × 105 and α/β = 1 for the prior ten items.
Experiments show even if α2 reaches 105, quenching phe-
nomena still happen. Furthermore, if α2 falls in the interval
½15, 1:43 × 105�, then quenching phenomena will occur nor-
mally, and quenching location xmax and ymax do not decrease
monotonously as α2 declines. When α2 lies in the area of ½
1228, 1:43 × 105�, ðxmax, ymaxÞ always keeps ð
0:01428571428571429, 0:01428571428571429Þ. In terms of
quenching time, there is no obvious linear relationship

between Tmax and α2 in a small range of the definition field
of α2. If the measurement scale is enlarged in the domain of
α2, especially when α2 reaches 2900, Tmax will rise with the
increase of α2, i.e., Tmax is 3.376127343223672 when α2 is
2900 and Tmax is 39.49651984658089 when α2 is 1:43 × 105.

We take Case 5.0 to demonstrate specific quenching phe-
nomena. In this case, quenching occurs at T5 ∗ =
3:428404873627137, x5 ∗ = 0:04285714285714286, and y5
∗ = 0:04285714285714286 with the parameters q = 1, bx =
by = 3, α = β = 15. The next context declares more details
about quenching. Let us observe the performances of the

Table 5: Quenching data of α and β based on convection term b/ð1 + αx + βyÞ.

Case name xmax ymax Tmax max u max ut
Case 5.3.1 0.20 0.20 3.621624575204209 0.991718707508642 86.83309533401254

Case 5.3.2 0.02857142857142857 0.02857142857142857 3.609153368630949 0.9907185674353032 73.0239115821952

Case 5.3.3 0.01428571428571429 0.01428571428571429 3.609390601249229 0.9912265622789864 150.6673183543721

Case 5.3.4 0.01428571428571429 0.01428571428571429 3.609274948219342 0.9919688690187356 165.4554013002607

Case 5.3.5 0.01428571428571429 0.01428571428571429 3.376127343223672 0.9902039498799047 90.20671661807094

Case 5.3.6 0.01428571428571429 0.01428571428571429 3.378639256536471 0.9927000295904764 120.3354981361145

Case 5.3.7 0.01428571428571429 0.01428571428571429 3.378668197610872 0.9923048003313988 113.9606848017258

Case 5.3.8 0.01428571428571429 0.01428571428571429 23.38176644203467 0.9900781386538231 17.60457567575462

Case 5.3.9 0.01428571428571429 0.01428571428571429 31.0931917834407 0.9900013538386812 14.90527975955028

Case 5.3.10 0.01428571428571429 0.01428571428571429 39.49651984658089 0.990003317828528 13.07949247781412

Table 6: The maximal values and locations of u and ut for q = 1, bx = by = 3, α = β = 15 based on convection term b/ð1 + αx + βyÞ.

t x y maxx,yu maxx,y utð Þ
3.428290495431297 0.04285714285714286 0.04285714285714286 0.983134449815426 53.0703838235108

3.428342645817735 0.04285714285714286 0.04285714285714286 0.863372971410449 68.08063220416238

3.428379787989620 0.04285714285714286 0.04285714285714286 0.9893206357439858 90.30503152559813

3.428404873627137 0.04285714285714286 0.04285714285714286 0.9920620807720361 125.6265973017968

3.428420657560073 — — 17.07446290189856 1:200141619871376 × 109
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Figure 2: The graphs of solution u and ut : (a) maxx,yu as t increases, and (b) maxx,yðutÞ as t increases from the initial moment to the
occurrence of quenching behavior with the parameters q = 1, bx = by = 3, α = β = 15 based on convection term b/ð1 + αx + βyÞ.
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solution u, the derivative function ut , and their time and
space locations of five stages relative to quenching for Case
5.0, which show in Table 6 and Figures 2–4. The first four
items reflect the four states before quenching occurs in
Table 6. The last item represents the quenching state in which
u is more than 1 and reaches 17.07446290189856, ut blows up
and reaches 1:200141619871376 × 109, the position of maxx,y
u is (0:5336298640841476 × 10‐5, 0.2902651144597507), and
the position of maxx,yðutÞ is (0:5702149685882448 × 10‐4,
0:5677032305886261 × 10‐4) when t = 3:428420657560073.
Figures 2(a) and 2(b) denote the profiles of both solution u
and derivative function ut. In the aforementioned figures, the
maximum values of u and ut grow from 0 to T5 ∗. As soon as
time variable t arrives at quenching spot ðx5∗,y5 ∗Þ and
quenching time T5 ∗, we have max u = 0:99206208077203618
andmax ðutÞ = 125:6265973017968. By locating the quenching
timeT5 ∗, we can draw the plots ofmaxx,yuðtÞ andmaxx,yutðtÞ.
Figures 3(a)–3(d) depict the function relationships between u
and x, between ut and x, between u and y, and between ut
and y, respectively, when t isT5 ∗. Owing to the identity of x

and y in the original equation, Figures 3(a) and 3(c) have the
same shape, and Figures 3(b) and 3(d) have the same shape.

Figure 4 depicts curve of the adaptive temporal steps as the
time variable progresses and graphs of the adaptive spatial steps
changing as the space variables change. Figures 4(a) and 4(b)
portray the distributions of spatial steps. The plots in
Figure 4(a) are similar to those in Figure 4(b), but there are
some subtle differences in their specific data. The blue curve
depicts the tendency of spatial steps varying before quenching
occurs, which underlines x5 ∗(y5 ∗). The green line refers to
spatial step distribution of uniform mesh with nonadaption,
which is extracted from the initial temporal layer. Mesh adap-
tation is stimulated at the position of red square sign, and τn
becomes gradually smaller and falls rapidly toward its floor
whent⟶ T5 ∗ in Figure 4(c). The red square mark represents
the moment t = 3:425399077950409 and the temporal step τn
= 5:990779506555022 × 10‐4 when the process approximates
to quenching time. The time adaption is triggered before the
moment T5 ∗ and lasts through the rest course of calculation.
So this quenching phenomenon is caught with the features of
maxx,yu⟶ 1− and maxx,yðutÞ⟶ 126− as t reaches T5 ∗.
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Figure 3: The graphs of (a) u as x increases, (b) ut as x increases, (c) u as yincreases, and (d) ut as y increases when t is T5 ∗ for convection
term b/ð1 + αx + βyÞ.
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There are three groups of 3D profiles of the solutions and
their temporal derivatives in Figure 5. Figures 5(a) and 5(b)
denote the two three-dimensional plots of u and ut when t =
0:40, respectively. Figures 5(c) and 5(d) denote the two three-
dimensional plots of uandutwhent = 3:428342645817735,
respectively. Figures 5(e) and 5(f) denote the two three-
dimensional plots of u and ut when t = T5 ∗, respectively.
Thought the 3D plots, we can get richer information. The first
group is the three-dimensional views from both u and ut at the
first 500th temporal layers in the excursion, in which maxx,yu
⟶ 0:2215 and maxx,yðutÞ⟶ 12:9459 when t = 0:40. The
second group is the three-dimensional views from both u and
ut including the penultimate temporal steps before T5 ∗, in
whichmaxx,yu⟶ 0:9863 and maxx,yðutÞ⟶ 68:0806 when
t = 3:428342645817735. The third group is the three-
dimensional views from both u and ut immediately before
quenching happens, in which maxx,yu⟶ 0:9921 and maxx,y
ðutÞ⟶ 125:6266 when t = 3:428404873627137. During the
temporal layers’ moving forward, the solution u changes
smoothly and then almost arrives at the peak value while t
approximates to T5 ∗. Its peak is the maximal value but before

quenching time and location. There is some subtle perturbation
at the initial temporal axis of the left boundary for the change
rate of the solution. Afterward, the temporal derivative varies
smoothly, and their maximums of each time axis increase
steadily. While t approaches to the quenching time T5 ∗, the
maximum ut also increases rapidly and infinitely and then
blows up at the next time layer of quenching time.

4.4. Quenching Example with Convection Term b/ðαx + βyÞ.
Similarly, we need to only consider θ = 1:0 and conduct a
series of simulation experiments to investigate the 2D
quenching regularity for the convection term b/ðαx + βyÞ
which is related to the three groups of elements: q and bx
and by, α, and β and exemplify the quenching behaviors of
the representative Case 6.0. The convection term b/ðαx + βy
Þ should written as c1ðx, yÞ = bx/ðαx + βyÞ and c2ðx, yÞ = by/
ðαx + βyÞ, where bx and by take the constants and convection
parameter b = bx = by. For Case 6.0, the initial x − step is h0
= 1/80, and the initial t − step is τ0 = 0:001. We choose some
representative data to record in Tables 7–10 from the simula-
tion results. Case 6.0 is regarded as the reference standard
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Figure 5: (a) The 3D plot of u when t = 0:40; (b) the 3D plot of ut when t = 0:40; (c) the 3D plot of u when t = 3:428342645817735; (d) the 3D
plot of ut whent = 3:428342645817735; (e) the 3D plot of u when t = T5 ∗; (f) the 3D plot of ut when t = T5 ∗. All is for Case 5.0.
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and defined as q = 0:8, bx = by = −2, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
.

Tables 7–10 and Figures 6–9 demonstrate specific quenching
information of Case 6.0.

The effect of q on quenching problem can be illustrated
by continual experiments. A reasonable quenching behavior
will occur when q = 0 or q takes a value in ½0:4, 1:4�. When
q is 0.1, 0.2, 0.3, or q ≥ 1:5, it does not produce quenching
phenomena. There are quenching characteristics for q:

quenching location xmax is not equal to ymax when q takes
0, 0.5 while xmax is equal to ymax in the other cases; ðxmax,
ymaxÞ is ð0:0125, 0:0125Þ when q takes 0.6, 0.7, and 0.8; ð
xmax, ymaxÞ is ð0:025, 0:025Þ when q is in ½0:9, 1:4�. Quench-
ing time Tmax increases as q increases in the domain of q.
Table 7 gives some of these quenching cases, in which Case
6.1.1 isq = 0, bx = by = −2, α = β =

ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.1.2 is q =

0:4, bx = by = −2, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.1.3 is q = 0:5, bx =

Table 7: Quenching data of q based on convection term b/ðαx + βyÞ.

Case name xmax ymax Tmax max u max ut
Case 6.0 0.0125 0.0125 4.020449234557191 0.981186659892471 31.34049546140411

Case 6.1.1 0.025 0.0375 0.4893400471790108 0.9815547233986595 53.96815295250957

Case 6.1.2 0.025 0.025 1.40546552826671 0.9810673165994175 30.97740120847389

Case 6.1.3 0.025 0.0125 1.806856006612364 0.9835285046535343 34.84710326333095

Case 6.1.4 0.0125 0.0125 2.315800912037878 0.9860032076007205 48.09280080596852

Case 6.1.5 0.0125 0.0125 3.004283302198541 0.9847606913347033 41.42159866823076

Case 6.1.6 0.025 0.025 5.519520896140588 0.9804916164771977 15.56936805077945

Case 6.1.7 0.025 0.025 7.6129781181848 0.9806093675789447 13.71511944823688

Case 6.1.8 0.025 0.025 10.86315690956873 0.9803668713972701 11.86327696425435

Case 6.1.9 0.025 0.025 16.29059159714386 0.9800718066608986 10.23980977162735

Case 6.1.10 0.025 0.025 26.33869553245833 0.9802129067546791 9.042418195146764

Case 6.1.11 0.025 0.025 47.98116891173758 0.980293256909013 7.964013508962916

Table 8: Quenching data of bx and by based on convection term b/ðαx + βyÞ.

Case name xmax ymax Tmax max u max ut
Case 6.2.1 0.0625 0.0625 10.99093267786784 0.9804498472291583 8.583794969514605

Case 6.2.2 0.0375 0.0375 7.809655701953323 0.9804503193889351 12.7219405872281

Case 6.2.3 0.0375 0.0375 6.210534222541208 0.9809122863640634 13.14389285559599

Case 6.2.4 0.025 0.025 4.956004105630788 0.9818372265165442 18.9029625958216

Case 6.2.5 0.0125 0.0125 2.64799664630179 0.9810960736197033 31.29445994657764

Case 6.2.6 0.0125 0.0125 9.559656653594685 0.9813004101488958 33.42529207679014

Case 6.2.7 0.025 0.025 18.1622615973841 0.9808985418280476 18.03120629119135

Case 6.2.8 0.0375 0.025 38.77536139517031 0.9804090344629824 14.57573131335622

Case 6.2.9 0.0375 0.0375 59.07244177030795 0.9802503334133788 12.64186937140285

Case 6.2.10 0.0375 0.0375 89.05678402848356 0.9803538247671133 13.00866087970327

Table 9: Quenching data of α and β based on convection term b/ðαx + βyÞ.

Case name xmax ymax Tmax max u max ut
Case 6.3.1 0.5375 0.5375 8.240022739766165 0.9805231629517244 19.33141003501417

Case 6.3.2 0.1229 0.1229 6.240792928817466 0.9804429759036448 21.02610806687704

Case 6.3.3 0.0625 0.0625 3.431334351295505 0.9809418101698555 21.77295829105509

Case 6.3.4 0.0375 0.0375 3.441737958890371 0.9816372001957696 23.0950930660414

Case 6.3.5 0.025 0.025 3.750551299221261 0.9801324957943957 19.04800266218939

Case 6.3.6 0.025 0.025 4.024152273164159 0.9800420381170325 17.6646128655794

Case 6.3.7 0.025 0.025 4.065155138423362 0.9805944201781043 18.01149509967014

Case 6.3.8 0.0125 0.0125 4.06558591278706 0.9807065134704962 30.77480165240926

Case 6.3.9 0.0125 0.0125 3.520143605280937 0.9809208903166006 24.6618068728011

Case 6.3.10 0.0125 0.0125 13.44243402330071 0.9805575860550446 8.352004051122194
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by = −2, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.1.4 is q = 0:6, bx = by = −2,

α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.1.5 is q = 0:7, bx = by = −2, α = β =ffiffiffiffiffiffiffiffiffiffiffiffi

11000
p

; Case 6.1.6 is q = 0:9, bx = by = −2, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
;

Case 6.1.7 is q = 1, bx = by = −2, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.1.8

is q = 1:1, bx = by = −2, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.1.9 is q = 1:2

, bx = by = −2, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.1.10 is q = 1:3, bx = by

= −2, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.1.11 is q = 1:4, bx = by = −2, α

= β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.0 is between Case 6.1.5 and Case 6.1.6.

The paragraphs describe the relationship between bx(by)
and quenching features. We write ten cases in Table 8. Case
6.2.1 is q = 0:8, bx = by = −16, α = β =

ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.2.2 is

q = 0:8, bx = by = −10, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.2.3 is q = 0:8,

bx = by = −7, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.2.4 is q = 0:8, bx = by =

−5, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.2.5 is q = 0:8, bx = by = 1, α = β

=
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.2.6 is q = 0:8, bx = by = 12, α = β =ffiffiffiffiffiffiffiffiffiffiffiffi

11000
p

; Case 6.2.7 is q = 0:8, bx = by = 21, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
;

Case 6.2.8 is q = 0:8, bx = by = 40, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case

6.2.9 is q = 0:8, bx = by = 57, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.2.10 is

q = 0:8, bx = by = 80, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
; Case 6.0 is between

Case 6.2.4 and Case 6.2.5. Quenching behavior can be formed
when bx(by) takes the values in ½−16, 80�, in which the func-
tion curve of (b,Tmax) is concave and Tmax is smallest when

b  = 1. When b = −16, b = −13, b ∈ ½−10,−7�, b ∈ ½−5, 12�,
b ∈ ½21, 39�, or b ∈ ½57, 80�, quenching location xmax is equal
to ymax whereas when b takes other values in ½−16, 80�, xmax
is different from ymax.

We describe the influence of α and β on quenching results
just depending on quenching data in Table 9. Of course, we do
a great quantity of experiments, fromwhich some typical cases
chosen in Table 9. We set α/β = 1 and α2from 10 to 3:0 × 106
for Cases 6.3.1-6.3.10. Specifically, Case 6.3.1 is q = 0:8, bx =
by = −2, α/β = 1, α2 = 10; Case 6.3.2 is q = 0:8, bx = by = −2, α
/β = 1, α2 = 231; Case 6.3.3 is q = 0:8, bx = by = −2, α/β = 1,
α2 = 1000; Case 6.3.4 is q = 0:8, bx = by = −2, α/β = 1, α2 =
2756; Case 6.3.5 is q = 0:8, bx = by = −2, α/β = 1, α2 = 8648;
Case 6.3.6 is q = 0:8, bx = by = −2, α/β = 1, α2 = 10500; Case
6.3.7 is q = 0:8, bx = by = −2, α/β = 1, α2 = 10775; Case 6.3.8
is q = 0:8, bx = by = −2, α/β = 1, α2 = 10779; Case 6.3.9 is q =
0:8, bx = by = −2, α/β = 1, α2 = 19991; Case 6.3.10 is q = 0:8,
bx = by = −2, α/β = 1, α2 = 300000; Case 6.0 is between Case
6.3.8 and Case 6.3.9.

It does not form quenching status when α2 < 10 or α2

< 3:0 × 106. After α/β is defined as 1, α2 is evaluated from
10 to 3:0 × 106. We find that it is more likely to produce
quenching behaviors when α2 is between 10 and 3:0 × 106.
By means of continual tests, Cases 6.3.1-6.3.10 represent

Table 10: The maximal values and locations of u and ut for q = 0:8, bx = by = −2, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
based on convection term b/ðαx + βyÞ.

t x y maxx,yu maxx,y utð Þ
3.946999999999676 0.0125 0.0125 0.8195986394102188 2.499122191096586

3.999999999999671 0.0125 0.0125 0.8921719731921093 4.684299269080528

4.016999999999676 0.0125 0.0125 0.9488686925507734 10.88364621771482

4.019595682766669 0.0125 0.0125 0.9692844094996356 18.7880259490986

4.020449234557191 0.0125 0.0125 0.981186659892471 31.34049546140411

4.02068525061823 — — 5:358959032595640 × 1016 7:966445413263532 × 1019
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Figure 6: The graphs of solution u and ut : (a)maxx,yu as t increases, and (b)maxx,yðutÞ as t increases from the initial time to the occurrence of

quench behavior with q = 0:8, bx = by = −2, α = β =
ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
based on convection term b/ðαx + βyÞ.
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the ten special cases, and we can observe the quenching status
as follows. As far as quenching spatial characteristic is con-
cerned, quenching location does not monotonously increase
as α2 increases when α2 is in the definition domain. For
example, quenching location reaches the maximum ð0:5375
, 0:5375Þ when α2 = 10 and quenching location keeps the
coordination point of ð0:0125, 0:0125Þ when α2 is in ½10780
, 3:0 × 106�. Next, quenching temporal characteristic is con-
cerned. In fact, there does not exist strict linear relationship
between quenching time and α2. Comparatively, quenching
time is smaller in the former half than in the latter half of
the domain of α2. When the measurement scale is enlarged
in the domain of α2, especially when α2 reaches 19991,
Tmax increases with the increase of α2.

Quenching phenomena of Case 6.0 can be considered in
the following text. Its quenching time appears at T6 ∗ =
4:020449234557191, and its quenching position appears at ð
x6∗,y6 ∗Þ = ð0:0125, 0:0125Þ in this situation. Table 10 shows
six stages around quenching for Case 6.0. The items from the
first to the fifth describe the five stages of representation before
the occurrence of quenching, and the last item just notes the
quenching moment. maxx,yu is 5:358959032595640 × 1016 at
(2:0588245639243 × 10−4, 9:654095827421034 × 10−1), and

maxx,yðutÞ is 7:966445413263532 × 1019 at
(2:080224198836234 × 10−5, 9:824584434865121 × 10−1)
when quenching occurs. A comprehensive statement of
quenching states with the parameters q = 0:8, bx = by = −2, α
= β =

ffiffiffiffiffiffiffiffiffiffiffiffi
11000

p
is recorded in the next paragraphs. Although

there is slight perturbation in the left boundary of ut , it does
not influences on distribution of ut . It is evident that
Figures 6(a) and 6(b) give two pairs curves of both maxx,yu
andmaxx,yðutÞ. The first one is for the distribution of the solu-
tionmaxx,yuðtÞ as t varies, and the second one is for the distri-
bution of maxx,yutðtÞ as t increases. There is small
perturbation near the start-up of the adaptive procedure for
the left figure of maxx,yðutÞ. The four figures in Figure 7 give
function relationship physical quantities betweenu, ut , and
spatial variables. Figure 7(a) paints the contour of (x,u),
Figure 7(b) paints the contour of (x,ut), Figure 7(c) paints
the contour of (y,u), and Figure 7(d) paints the contour of (y
,ut). Similarly, Figures 7(a) and 7(c) have the same shape,
and Figures 7(b) and 7(d) have the same shape.

There are three graphics in Figure 8, which represent
three function relationships between spatial step in x −
direction and x, between spatial step in y − direction and y,
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Figure 7: The graphs of (a) u as x increases, (b) ut as x increases, (c) u as y increases, and (d) ut as y increases when t is T5 ∗ for convection
term b/ð1 + αx + βyÞ.
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based on convection term b/ðαx + βyÞ.

0
0.2

0.4
0.6

0.8

1

0
0.2

0.4
0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

x

u

y

0.2

0.4
0.6

0.8

0.2
0.4

0.6
0.8

xy

(a)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

8

16

24

32

xy

u
t

0.2
0.4

0.6
0 8

0.2
0.4

0.6
0.8 xy

(b)

Figure 9: (a) The 3D plot of u when t = T6 ∗ and (b) the 3D plot of ut when t = T6 ∗ for Case 6.0.
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and between temporal step and t, respectively. Figure 8(a)
depicts two curves, in which one is between initial spatial
steps hk and x, and another is between quenching spatial
steps hk and x. Figure 8(b) also describes two curves, in which
one is between initial spatial steps hk and y, and another is
between quenching spatial steps hk and y. The green lines
with gradient marks reflect the initial spatial step distribution
that is uniform regardless of x − direction or y − direction.
The red curves covered by blue squares reflect quenching
spatial steps that are self-adaptive when quenching occurs.
There is a blue curve with a red square marks in
Figure 8(c), which portrays temporal stepτnvaries as t
changes from 0 to T6 ∗. τn keeps 0.001 when 0 ≤ t <
4:019595682766669, but afterτn becomes
5:956827669919562 × 10−4 when t = 4:019595682766669
which signed as a red square,τn sharply declines up to
3:286760944343214 × 10−4 when t = T6 ∗.

The three-dimensional surfaces can render more reliable
information for both the solution u and the time derivative ut
which display in Figure 9. The group of surfaces is the three-
dimensional views of both u and ut when t is equal to T6 ∗. It
is smooth and steady that the solution u carries forward at
the temporal axis in Figure 9(a). Moreover, it is almost at
the middle position of each time axis that the case gives birth
to the peak value of u. When the position ðx6∗,y6 ∗Þ is at ð
0:0125, 0:0125Þ immediately before quenching occurs, the
peak value of the solution approaches 1. The three-
dimensional representation of Figure 9(b) reveals the evolu-
tion of the temporal derivative with regard to spatial vari-
ables. The temporal derivative of the solution varies
smoothly and reaches its maximums at the quenching
domain ð0:0125, 0:0125Þ. At last, the temporal derivative
becomes infinite when quenching occurs at another location
(2:080224198836234 × 10−5, 9:824584434865121 × 10−1),
which is not observed in Figure 9(b). It is obvious for Case
6.0 that quenching occurs based on maxx,yu⟶ 1− and
maxx,yðutÞ⟶ 32− as t reaches T6 ∗.

5. Conclusion

Relying on the analyses in this paper, we can sort up the rela-
tionship between the parameters q, bx(by), a(β), and quench-
ing behaviors. There exist four aspects concluded as follows.
First, the degenerate function acts within the normal range if
the degeneracy parameter q is larger than or equal to 0.4 but
not more than 1.3, and quenching time increases as q
increases. Second, there is a special point b∧ dividing the def-
inition domain of convection parameter b as the left and the
right subdomain, in which quenching phenomena occur nor-
mally and have a variety of features. Quenching time
decreases as b increases in the left subdomain, and quenching
time increases as b increases in the right subdomain.
Quenching location either decreases or convergences upon
a certain value as bincreases in the domain of b. Third, under
the condition of α/β = 1, the influence of α2 on quenching
result is researched. There exists still a special point α∧ cate-
gorizing the definition domain of α2 as two subdomains, in

which quenching phenomena occur normally and display
different spatial effects. Specially, with the rise of α2, quench-
ing location does not increases monotonously in the left hand
of α∧ and tends to a fixed coordinates in the right hand of α∧.
Additionally, if we rely on a small scale to observe the domain
of α2, then there is no linear relationship between quenching
time and α2. We investigate the definition by virtue of a big
scale to find that quenching time also increases when α2

become larger, especially when α2 reaches certain value;
quenching time increases as α2 rises. Fourth, it must be a
good choice to set θ as 1. Through experiments, it is hard
to produce quenching phenomena that can be formed when
θ ≥ 2. From the result analyses, it can be discovered that it is
meaningful to initially investigate the 2D singularity degener-
acy problem of quenching type based on the unsteady
convection-reaction-diffusion equation by using the high-
order difference scheme, which will probably lead to the
potentially support to research the next quenching problems.
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