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Let G be a simple graph with n vertices. Let A,(G) =aD(G) + (1 - «)A(G), where 0<a <1 and A(G) and D(G) denote the
adjacency matrix and degree matrix of G, respectively. EE (G) =Y e" is called the a-Estrada index of G, where A,,---, A,

denote the eigenvalues of A, (G). In this paper, the upper and lower bounds for EE (G) are given. Moreover, some relations

between the a-Estrada index and a-energy are established.

1. Introduction

Let G=(V(G), E(G)) be a simple undirected graph with n
vertices, where V(G) denotes the vertex set of G and E(G)
denotes the edge set of G. Let A(G) and D(G) denote the
adjacency matrix and degree matrix of G, respectively. The
Laplacian (signless Laplacian) matrix of G is L(G) = D(G) —
A(G)(Q(G) =D(G) + A(G)). In [1], Nikiforov defined A,
(G)=aD(G) + (1 -a)A(G) (0<a<1) and studied some
problems of A,(G) (for example, spectral extremal prob-
lems). Some results on A,(G) have been obtained, including
bounds of the eigenvalue of A, (G) and the positive semidefi-
niteness of A,(G) [1, 2], etc. For more spectral properties of
A, (G), see [3-6].
The Estrada index [7] of G is defined as

m@:i&, (1)

where A, -+-, A, are eigenvalues of A(G). The Estrada index
can be used to measure the folding degree of long-chain
proteins [8, 9] and subgraph centrality in complex net-
works [10-13].

The Laplacian Estrada index and signless Laplacian
Estrada index of G are defined as LEE(G)=)" e* and

SLEE(G) = Y I | e%, respectively, where y,, -+, y,, and g, -+,
q, are eigenvalues of L(G) and Q(G), respectively [14, 15].
Some mathematical and chemical properties of EE(G), LEE
(G), and SLEE(G) are investigated extensively in mathemat-
ical chemistry [14, 16-25]. For other generalized Estrada
index, see [26, 27].

In [28], Guo and Zhou proposed the a-Estrada index as

where A, -+, A, are eigenvalues of A_(G). Obviously, EE,(G)
is the Estrada index; note that EE,,, is somewhat different
from the signless Laplacian Estrada index, which is defined
to be SLEE(G) =Y e*", where A, are the eigenvalues of

Ap(G).

The paper is organized as follows: In Section 2, some
bounds for EE (G) are obtained in terms of the number of
vertices, edges, and triangles of G. We also give some new
bounds for EE,(G) through different numerical inequalities.
Furthermore, some relations between the a-Estrada index
and a-energy are established. In Section 3, we compare our
new bounds to the existing results for the a-Estrada index
by certain graphs, benchmark graphs, and random graphs.
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In Section 4, we summarize the results of the paper, and the
future work is envisaged.

2. Some Bounds for the a-Estrada Index
In what follows, let tr(M) denote the trace of matrix M. Let d;

denote the degree of vertex i.

Lemma 1 (see [1, 5]). Let G be a graph with m edges and
t triangles. Then

tr(A4(G)) = 2am, 3)

r(A2(G) =21 -afm+a’ Y &, @)

(4

tr(A)(G)) = Y dl+3a(l-a) ) di+6(1-a)’t.

i€V(G) ieV(G)
()

In this section, let 7(G) = {{i, j, k} c V(G): i, j, kforma
triangle of G}; let 8 and & denote the numbers of subgraphs
of G which are isomorphic to path P; and cycle C,,
respectively.

Proposition 2. Let G be a graph with m edges. Then

tr(Aj(G)) =t Y dral(1-a) Y &

i€V (G) i€V (G)
+8a(l-a)’ Y (di+d;+dy)
{hikFer() (6)
+402(1 - )? Z d;d;
{1} €E(G)

+(1—a)'(2m+ 4B + 8E).

Proof. Since tr(ARB)=

we have

tr(BA) for any o, B eR™",

tr(D(GA(G?) = Y d},

ieV(G)
tr((D(G)A(G))?) =2 dd,, )
(i} €E(G)
r(D(G)A(G) =2 Y (di+d;+d,).
{i,jk}er(G)

It is known that tr(A*(G)) = 2m + 43 + 8& (see [29]) Let

) =
o = aD(G) and B = (1 — a)A(G) Taking the trace ofAlX( ),
we have
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(o + B)) = te((h + BY(f + B))
(L +AB+BA+RB*) (A + AB

+ RBA + RB))
=tr(* +4° B + 4A B’ + 2(ARB)’ + B*)
=at Z d4+4¢x -« Z (Jl3
i€V(G) ieV(G
+8a(l-a)’ Z (d,-+dj+dk)
(ijk}er(G)
+4*(1-a)® ) dd,

{ij}€E(G)
+(1-a)*(2m+4p + 8F).
(8)

In the following, we give a lower bound for the a-Estrada
index of a graph by using the parameter a, the vertex number,
the edge number, and the numbers of subgraphs of G.

Theorem 3. Let G be a graph with n vertices, m edges, and t
triangles. Then

EE,(G)>n+ (2a+ (1-a)’+ é(z —oc)4)m

2 2m2 4, 5. 5 2
+(20c +20¢(1—0c))7+§(0c +0c(1—(x))

> 2mt 1
-%+ T (- a)Pt+ sa(l- 0
+ éo/(z —a)’y+ é(z - ) (B+26),
(9)
where y =Y i nep(6)4idj § = Xiijuyer(c) (di + d; + di).
Proof. By defining EE (G), we have
~k
ootr(Aa(G))
EE(X(G) - kZ(:) k! 4
tr(A2(G tr(A)(G
EE“(G)2n+tr(A‘x(G))+ r< ;( )> + r< ;( )>
tr(AL(G)
* ( al )
(10)

According to the Holder inequality, we have 2m =

~ Ut
Yiev(e)di < nl! 1)/t(zz‘ev(c)d;)

Hence

for any positive integer t.

Y diz (Zm)t. (11)
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By (3)-(11) and Proposition 2, we have
o« Y d+3a(1-a) Zd2+61—
icV(G) icV(G
1 4 4 2 2 3
+ﬁ<“'z dl-+4oc(1—oc)‘ d;
ieV(G) ieV(G)

+8a(l-a)’ Z (d;+d;+dy) +4a’(1-a)’y
{i.jk}er(G)

+(1-a)*(2m+ 4B+ 8F)) + 2am = n + 2am

1 4m?
+2<2(1— a) m+oc2m>

n

1/ ,8m° , 4m? 5
+g<oc 7+30¢(1—(x) T+6(1—0c) t

1 16m* 32m’
+— <(x4 +a?(1—a)* =~ +8a(l1-a)’C
n

24 n?
402 (1- )Py + (1 a)*(2m + 4B + 88))
=n+ <2a+(1—0‘)2+ 112(1—a)4>m
+ (2% +2a(1 - )2)7%2 + g(“ +a’(1- )2)’:_23
- gocU:—: +(1-a)t+ %“(1 )
+ éaz(l —a)’y + é(l - a)'(B+28),
(12)

where y =1 hep6)didj = 2ijkyer(a) (di + dj + d).

Corollary 4. Let G be an r-regular graph with n vertices and
t triangles. Then

EE,(G)>n+ <a+ ;(I—a)2+214(1—(x)4>nr

é(tx2+oc(1— ))nr2+( o +ioc (1—0c)2>

1
nr’ + ﬂ(xé‘nr‘} +(I-a)’t+a(l-a)rt
1
S(1-a)’(B+22).
(13)
Proof. Since G is an r-regular graph, then m=(1/2)nr,

Y= ZijeE(G)d d;= (12)nr’, §= Zi,j,ker(G)(di +d;+ di) =3rt.
By Theorem 3, we have

EE,(G)>n+ ((x +

1
+ ﬂ(l —¢x)4)nr

1 1 1
+ (Eaz + Eoc(l - oc)z) nr’ + < (o + (1 —a)*)nr’

S0 -ay

1
+ ﬂo/‘nr‘* +(1-a)Pt+a(l-a)rt

—a)*(B+28)

1
+ ﬂ(l —a)4)nr

1 1
+ <2a2 + Ea(l - (x)z) nr’ + (1 —(x)3t

1 1
+ —a’(1 —a)y’nr’+ —(1
12 6

1
=n+ ((x+§(1—(x)2

1 1 1
+ —oc3+—0c2(1—¢x)2 nr* + —o*nrt
6 4 24

1
+a(l —a)y’rt+—(1

< (1-a)"(B+22).

(14)
Also, we give another lower bound for the a-Estrada
index of a graph including the parameter «, the vertex num-

ber, the edge number, and the numbers of triangles of G.

Theorem 5. Let G be a graph with n vertices, m edges, and t
triangles. Then

EE,(G)

+2(1-a)’nt.

(15)

5 5 32m?
>/ n? + (802 +8a(1 - a)’)m? + (2(1 - &) + 4a?) mn + o 3
n

Proof. Let A, ---, A, be eigenvalues of A (G). By the Taylor
expansion theorem, then

X2 3

x * 16
621+x+5+§’ ( )

with equality if and only if x = 0.

EE
i=1 j=1
noon (L+A) (4 +A)
j it
2;;(1+A +/\+ 5 + 30
n o n 2 Az /12/\
=ZZI+A+/\+A/\+A’ A~
5 4 2 2 2
j
/\,AJZ ;
+ —’ + —).
2 6 6
(17)
By (3), we have
Z)Li:Z(xm. (18)

i=1



So

n n

(Ai+A))=n Z)Li+nz/\j=4(xmn,
=1

M=
NGE

i=1 j=1 i=1
n n n 2 (19)
Z Z Z ; =4a’m?.
i=1 j=1 i=1
By (4) and (11), we have
4 2
Y Ai=2(1- o)+ o (20)
n

(21)

a 8 4
Z)szfﬂ +3(x(1—(x)2£ +6(1-a)’t. (22)
. n n

So
no )ﬁ A3
Z Z Z/\ >2(l -« nt+4oc(1—0c)2m2
-1 j=1
8a’m’
+
3n

(23)
Summarize the above conclusions, we have

EEa(G)2 >n? + damn + 4a’m* +2(1 - oc)zmn +4a’m?

8 3.3
+aa(l—a)m?+ 2 21— )t

8 3.3

+4a(1 —oc)2m2+ am

3n

=n’ + (8a” +8a(1 - a)*)m” + (2(1 - &)’ + 4a’)mn
32m’
TP il 2(1- oc)3nt.
3n

(24)

In order to prove Theorem 8, we give two lemmas
as follows:
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Lemma 6 (see [27]). Let x,,x,,--+,x, be nonnegative real
numbers, and k> 2, then

n ki2
i)

Lemma 7 (see [30]). Let G be a graph with n vertices and
m edges. Then

M:

I
—

Inspired by literatures [14, 18], we obtained some bounds
on the a-Estrada index by arithmetic-geometric inequality.

Theorem 8. Let G be a graph with n vertices and m edges.
Then

\/n +4am +n(n— 1)t <EE (G)<n+2am—1-w+ e,

(27)

where =1/ (2(1 - 0m(n - 1) + 20m? - a2(n ~ 1) (n ~ 2)m)/(n - 1).

Proof. Let A, ---, A, be eigenvalues of A (G). Then

Zeu +ZZe i, (28)

i<j

By the arithmetic-geometric inequality, we have
2/(n(n-1))
ZZe*el>nn—1 (He )
i<j

i<j
1\ 2/(n(n-1))
el ) e

n 2/n
2N

=nn-1)]e =n(n—1)e4“””".

By the Taylor expansion theorem, we have

; Z % (30)

M:
||
e

a:N'Si

W
LA
W
L
o
v
(=}
T
L
o
v
S
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Let 1 € [0, 4], we have

n
Zenf >n+4am+1
i=1

£M=

Ak
2 X

=n+4am—in— 2mm+tz Z
11k>0

=(1-n+ (4a - 2ix)m +EE,(G).

By substituting the above formula and solving for
EE,(G), we obtain

EEO,(G)2 > (1-1)n+ (4a — 21)m + (EE(G) + n(n — 1)e*™",

2

+\/(1—1)n+(406—2106)m+IZ+I’I(1’1—1

EE,(G) > é Jetamin,
(32)

It is elementary to show for n > 2; let the function

2

+\/(1—x)n+(4oc—2(xx)m+ xz +n(n

_ 1)e4am/n)

fe)=3

(33)

where 0 <a<1; then f(x) monotonically decrease in the
interval [0,4]. Let x=0; f(x) is max; that is to say, 1=0,
EE,(G) is a better lower bound.

By Lemmas 6 and 7, we have

EE,(G) = n+2am + ZZ

i= 1k>2

<n+2¢xm+z Z‘

i=1 k=2

—n+2cxm+z ZM|

k>2 ti=1

" k2
<n+2(xm+zk' (ZA?)

k=2

—n+2(xm+z

" ki2
oc)2m+oc22di2
k>2 i=1
om kI2
<n+20cm+z ( a)2m+a2m(—+n—2))
k>2 n—1

=n+22am-1- w+zk'
k=0

=n+2am-1-w+e*,
(34)

where w = \/(2(1 —a)?m(n—1) +202m? — a2(n—1)(n—2)m)/(n - 1).

In what follows, let A; and A, be the largest and the smal-
lest of A_(G), respectively.

Lemma 9 (see [1]). Let G be a graph on n vertices with m
edges. Then

P (35)
n

The equality holds if and only if G is a regular graph.

Theorem 10. Let G be a graph on n vertices with m edges.
Then

2
EE,(G)2 " + (n—1) + 20m — " (36)
n

Proof. Consider the function

fx)=(x-1)=-Inx, x>0. (37)
Obviously, the function f(x) is decreasing in x € (0, 1]
and increasing in x € [1,4+00); then f(x) > f(1) =0, imply-
ing that
x=21+lnx, x>0. (38)
The equality holds if and only if x=1. By Lemma 1, we
have

EE,(G)=eM + (n-1)

Z Inet

k>2

+ 3 X (39)

k>2

=eh +(n-1)
=eM + (n—1)+2am—1,.

Define another function
D(x)=€e"+(n-1)+2am—-x, x>0. (40)

Clearly, this is an increasing function on x € (0,+00).
On the other hand, by Lemma 9,

A >2_m>0 (41)

Then,
D) =D (2’”> : (42)

Finally, we get

2
—1)+2(xm——m. (43)
n

EE,(G) 2 e + (n
From Theorem 10, we have the following result.

Corollary 11. Let G be a r-regular graph with n vertices. Then

EE,(G)ze +(n—1)+anr—r. (44)



In the following, we also obtained some other bounds for
the a-Estrada index through Sarasija’s [31], Ozeki’s [32],
Polya’s [33], and Guo’s [34] inequalities, respectively.

Lemma 12 (see [31]). Let x;,x,, -
numbers. Then

-, x, be nonnegative real

(45)

Theorem 13. Let G be a graph on n vertices with m edges.
Then

2 2
(2?716)"'/2) _ neZam/n n N
— <EE (G)< E 2
n-1 «(0) ¢ (46)

i=1

_ n(n _ I)eZum/n.

Proof. By Lemma 1 and Lemma 12, let x; = e (i=1,2, -+, n);
we have

Then

n
Z eAi —ne

i=1

n n
2am/n <n Z e)t[ _ Ze/\ 12
i=1

<(n- l)ie)u -n(n- 1)62am/n. (48)

Consider the left and right sides of inequality, respec-
tively, we have

n
et -

i=1

2am/n<nze P <Ze/\/2>
b
(z(z le/\,/Z)Z _
i=

n—1

(49)
neZam/n

EE,(G) >
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Similarly,

(Z e)» /2) _ _ l)eZam/n. (50)

Lemma 14 (see [32]). If a; and b; are positive real numbers for
1<i<n, then

CALONCO RIS

(51)
where M, =max,_.,a;, M,=max,.b, m;=min,__.a
and m,=min_,_,b

M:

I
—

i

i

Theorem 15. Let G be a graph on n vertices with m edges.
Then

EE, (Zeﬁ>—"z

Equality holds if and only if G=K,,.

(et _e)tn)% (52)

Proof. Let a;=¢" and b, = 1; then m, =e*, M, =", and
m, = M, =1, respectively. According to Lemma 14, we have

5)(3)- () 5oy o

Then

1 2
EE2(G)2n (Z e”‘t) nz ( - e’\") ,

)

i=1

EE, n (g e”*) nz

Lemma 16 (see [33]). Suppose a; and b; are positive real num-
bers for 1 <i<n; then

2 2
L L 1 M,.M m,m L
af bf < - ey 12 ab; |,
(S ) (30) =5 ( e e (3

(55)
where M, =max,_;,a; M, =max,__,b;,
m,= mlnliignb

M _e)t,,)Z.

m; =min;.;.,4a;

i
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Theorem 17. Let G be a graph on n vertices with m edges.
Then

2\ /n(TiLe?h) Vehieh . (56)

>
EE.(G) 2 el + et

Proof. Let a,=¢" and b, = 1; then m, =e*, M, =, and
m, =M, =1, respectively. By Lemma 16, we have

(E)(E)<3 ) ()

Then

(57)

2y/n(Eneh) Vet (58)

EE _(G) >
«(G) eM + el

Lemma 18 (see [34]). For a;,a,,
P, >0 such that Y ,p,=1. Then

5,20 and p;,py s
n n 1 n n
Zpi - Ha‘f‘znT<nZal Haf’") (59)
i=1 i=1 i=1

where T =min {p,,p,, -

a,=a,=--=4a,.

- P, }. Equality holds if and only if

Theorem 19. Let G be a graph with n vertices with m edges.
Then

EE,(G)=eM +2(n—1)A~ (n— 1), (60)

where A = e(2¢xm(2n 1)-nA;)/(2n(n-1))

if G=K,.

. Equality holds if and only

Proof. Let py =1/2n, p;= (2n—-1)/(2n(n - 1)) fori=2, ---, n,

a;= eiand for i=2,--,n. Obviously, T =min {1/2n,
(2n-1)/(2n(n—-1))} = 1/2n, according to Lemma 18; we
have
A n n n
et 2n-1 1 11 1 A n
PR i > — i i
2n 2n n—1 lZe _2<n;e izle ’

where A = e/\1/2nHﬁize((2n—1)Ai)/(2n(n—1)).

We consider A is

/(2n(n-1))

_eA/ane ((2n-1)A,

((Zn—l)
— (=D )@n(n-1) i

— (=D @n(n-1))

— 6(201111(211—1)—71/\1 )/(2n(n-1)) )

M=

Ai> 1(2n(n-1)) (62)

((2n-1)(2am=A,))/(2n(n-1))

I
8]

Since
eh + 2n—1 i A A A> i A 2am/n
. eti — M _ > et
2n 2n(n-1)\ 4 n& 2
(63)
then
EE,(G) > +2(n-1)A - (n-1)&*"", (64)
equality holds that is et = ¢!2 = ... = ¢M ifand only if G= K.

In the Hiickel molecular orbital theory, graph energy is
defined as the sum of the absolute values of the eigen-
values of the adjacency matrix of the molecular graph
[35, 36]. In [28], the a-energy of G is defined as ¢,(G) =
YiilA;— (2am/n)|, where A, -, A, are the eigenvalues of
A,(G). New bounds for the a-Estrada index in terms of
the a-energy of the graph G are established.

In [37], the Estrada index-like quantity is defined by

EE(G) = i eni, (65)

where x,, x,, --+, x,, are arbitrary real numbers and Xx is their
arithmetic mean. Let x,, x,, -+, x, and X be A;,---, A, and 2
ami/n, respectively. Evidently, EE (G) = e**™"EE,(G), and
therefore, results obtained for EE (G) can be immediately
restated for EE,(G) and vice versa.

Theorem 20. Let G be a graph on n vertices with m edges.
Then

EE,(G) < ¢2m/" (n —1-¢ (G)+ e<a(G>) . (66)

Proof. Note that Y7, (A, —
have

(2am/n)) =0. By Lemma 9, we



¢”2aMMEE_(G) = EEy(G)

k=2 Kl
n _ k
cns Z |A; (2alm/n)| (67)
i=1 k=2 k!
1
<n+ Z FQW(G)]‘

In order to prove Theorems 21 and 22, let A, — (2am/n)
=6;(i=1,---,n), and let &, >8,>--25,>0>--->5,. By
Lemma 1, we obtained Y 1, §; = 0. The a-energy of the graph
G is 64(G) = X1L110i]; then (6,(G))/2 = X520 07 = X500 -

In the following, some relations between the a-Estrada
index and a-energy are established.

Theorem 21. Let G be a graph on n vertices with m edges.
Then

EE,(G) = &*m/n (‘(Z—G) ~8,+(k=1)+ e51> . (68)

Proof. Let x > 0, considering the following function:
f(x)=-1-x+¢, (69)

in which equality holds if and only ifx = 0. The function f(x)
is increasing in [0, +00). The f(x) > f(0), implying that

x<e—1,x20. (70)

By (70), we have

WG _ ¥ s
k
=5+ Y 9
i=2,8;20
k
<6, + Z (e‘sf - 1)
i=2,6,20
k (71)
=0, —(k-1)+ Y &i-¢"
i=1,8;20
k n
<6 - (k-1)+ Z &+ & — e
i=1,8;20 i=k+1,8,<0

=8, — (k- 1)+ EE,(G) - €.
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Theorem 22. Let G be a graph on n vertices with m edges.
Then

EE,(G) > %™ (ke((G)/Zk +(n- k)e—C(G)/(Z(n—k))), (72)

a

in which equality holds if and only if§; =--- =6, and &,
—

n

Proof. By the Mean Quadratic inequality, we have

k
Z eSi > ke(81+82+~~~+6k)/k — ke((G)/Zk. (73)
i=1,0,20
Similarly,
Z 68[ > (l’l _ k)e_((G)/(z(”_k)). (74)
i=k+1,8,<0

Then

EE,(G) = &*""EE,(G)

> eZam/n (ke((G)/Zk + (I’l _ k)e—((G)/(Z(n—k))) . (75)

The equality holds in (75) if and only if equalities hold in
both (73) and (74). By the equality case in the Mean Qua-
dratic inequality, equality occurs in (73) and (74) if and only
if €% = ... = % and €% = --- = ¢%; that is to say, the equality
holds in (75) if and only if §; =--- =0, and 8, =---=6,,.
This means all negative eigenvalues and all nonnegative
eigenvalues which completes the proof.

3. Numerical Examples

In this section, we list some computational experiments to
compare our new bounds to previous results for certain con-
nected graphs, benchmark graphs, and random graphs,
where the results of the benchmark graphs and random
graphs are the average of 20 independent experiments. We
listed the lower bound of Theorem 1 (Th. 1) [23], the lower
bound of Theorem 10 (Th. 10), the lower bound of Theorem
13 (Th. 137), the upper bound of Theorem 2.1 (Th. 2.1) [38],
the upper bound of Theorem 13 (Th. 13*), and the numerical
value of EE(G) (see Table 1).

The C,;, Cy, and Cg are fullerenes (letter C is followed
by the number of carbon atoms). ER(1) is the Erdos-Rényi
random graph with n=100 and p=0.05. ER(2) is the
Erdos-Rényi random graph with n =100 and p=0.5. BA is
the Barabadsi-Albert random graph with n =100, m =5, and
ny=50. WS(1) is the Watts-Strogatz random graph with
n=100, K=6, and p=0.1. WS(2) is the Watts-Strogatz
random graph with n=100 and K=6, and p=0.5. GN is
the GN (Girvan-Newman) Benchmark graph with »n =128,
k=16, max k=16, mu=0.1, min c=32, and max c=32.
LFR is the LFR (Lancichinetti-Fortunato-Radicchi) Bench-
mark graph with #=1000, k=10, max k=40, mu=0.2,
min ¢=30, and max c=60 (for related parameters, see
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Graph(G) EE,(G) Th. 1 Th. 10 Th. 13 Th. 2.1 Th. 13"
P, 5.3563 4.1231 4.4603 4.6993 7.6522 6.3987
P, 7.6357 5.2915 5.9816 6.3059 12.3564 10.9177
Py 9.9153 6.4031 7.3530 7.9106 18.0940 16.6426
Py 12.1949 7.4833 8.6278 9.5146 25.0855 23.5733
Sis 7.8291 5.2915 5.9816 6.3404 12.3564 11.0214
Sia 10.5243 6.4031 7.3530 8.0103 18.0940 17.0413
Sis 13.4633 7.4833 8.6278 9.7098 25.0855 24.5493
C, 9.5243 5.6569 8.3890 7.2896 17.0940 13.8690
Cs 11.4961 6.7082 9.3890 8.7768 24.0855 20.1074
Cs 13.6967 7.7459 10.3890 10.3418 32.5671 27.7093
K,; 14.6687 7 12.6231 9.9628 31.5671 24.8515
K;; 24.1353 8.4853 22.0855 13.9547 66.7507 45.7738
K, 21.1891 6.3245 20.0855 10.6829 30.5671 27.7061
Ks 56.0696 8.0622 54.5981 22.8344 82.1710 76.3377
K 150.2526 9.7979 148.4132 45.1001 223.1460 201.5007
Petersen 34.2182 13.4164 26.0855 21.2832 227.1460 111.5495
Cyo 66.6083 22.8035 36.0855 41.2607 2.1861f° 423.9540
Cyo 132.0312 42.8952 56.0855 81.3404 5.4689f* 1.6522f°
Ceo 197.4502 62.9285 76.0855 121.4400 6.4640f° 3.6849f°
ER(1) 1.2052f° 105.2235 306.3649 378.3391 1.1098f1° 2.7655f*
ER(2) 8.7546f " 141.4779 5.6165f°" 8.8431f" 5.3795f%° 8.7546f
BA 1.9931f" 116.1895 3.9824f7 2.0157f° 1.4542f'8 1.9956f"
WS(1) 2.4416f° 105.8304 496.4287 625.7075 4.2572f"° 5.2145f*
WS(2) 1.5298f° 105.8301 496.5374 457.8648 4.2572f"° 3.5528f*
GN 1.4226f° 129.9692 132.2901 281.0178 8.0887f° 1.9561f*
LFR 5.5072f° 1.0093f° 1.3421f* 3.2617f° 1.4683f" 9.3818f7

[39, 40]). We use f* instead of 10* in Table 1. The results
are kept to four decimal places.

According to the information in Table 1, we know that
the lower bounds in Th. 2.10 and Th. 2.13~ are better than
the lower bound of Th. 1; the upper bound of Th. 2.13" is bet-
ter than the upper bound of Th. 2.1. We also get some other
results in Table 1 as follows: The lower bound of Th. 2.10 is
better than the lower bounds of Th. 2.13™ in the cycle graph,
bipartite graph, Petersen graph, ER(2), WS(2), and LFR; Th.
2.137 is good in other cases. For sparse graphs, Th. 2.137 is
good in most cases. For dense graph, Th. 2.10 is good in
most cases.

4. Conclusion

In this paper, we give some bounds on the a-Estrada index of
G, some relations between the a-Estrada index and «a-energy
are established. At the same time, we also analyze the
advantages and disadvantages of different bounds for cer-
tain connected graphs, benchmark graphs, and random

graphs by numerical experiments. Our future work will focus
on exploring the practical applications of the a-Estrada index
in physical, chemical, and network sciences.

Data Availability

The Estrada index is a spectral measure to character effi-
ciently the strongness of complex networks. These prior
studies (and datasets) are cited at relevant places within the
text as references [7-11, 29]. Since the paper is a theoretical
study, so no data were used to support this study.
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