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The concept of logarithmic representation of infinitesimal generators is introduced, and it is applied to clarify the algebraic
structure of bounded and unbounded infinitesimal generators. In particular, by means of the logarithmic representation, the
bounded components can be extracted from generally unbounded infinitesimal generators. In conclusion, the concept of module
over a Banach algebra is proposed as the generalization of the Banach algebra. As an application to mathematical physics, the
rigorous formulation of a rotation group, which consists of unbounded operators being written by differential operators, is
provided using the module over a Banach algebra.

1. Introduction

Based on the logarithmic representation of infinitesimal
generators, a module over a Banach algebra is introduced.
Let us call such an algebraic subject the BðXÞ-module,
where X and BðXÞ stand for a Banach space and its oper-
ator algebra, respectively. The BðXÞ-module does not cor-
respond only to the extension of the Banach algebra but
also to the general authorization of the Lie algebra consist-
ing of differential operators. This algebraic entity is an
operator algebra being introduced based on the framework
of logarithmic representation of operators. There are two
concepts, which are to be bridged in this paper: a set of
infinitesimal generators generating groups or semigroups
of operators and the elements of the Lie algebra. The fol-
lowing statements are valid:

(i) The sum of two closed operators are not necessarily a
closed operator so that the sum of two infinitesimal
generators are not necessarily an infinitesimal
generator

(ii) The sum of two elements in the Lie algebra are neces-
sarily an element of the Lie algebra

Here is a contradiction in some general situations, as seen
in the relation between the Lie group and the Lie algebra in
which the Lie algebra corresponds to a set of infinitesimal
generators. Besides, these two statements are true if the two
infinitesimal generators are bounded operators. More sub-
stantially, the product cannot be justified without limiting
ourselves to (sub)sets of bounded operators. In this paper,
by means of the logarithmic representation of infinitesimal
generators of invertible evolution operators, a set of generally
unbounded infinitesimal generators is characterized as an
algebraic module over a Banach algebra. The logarithm of
operators is a key to make a bridge for these contradicting
statements.

The logarithm of an injective sectorial operator was
introduced by Nollau [1] in 1969. After a long time, the log-
arithm of sectorial operators was studied again from 1990s
[2–4], and its utility was established with respect to the defi-
nition of the logarithms of operators [5, 6] (for a review of
sectorial operators, see Hasse [7]). While the sectorial opera-
tor has been a generic framework to define the logarithm of
operators, the sectorial property is not generally satisfied by
the evolution operators. In this sense, it is necessary to intro-
duce a reasonable framework for defining the logarithm of
nonsectorial infinitesimal generators.
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In this paper, the theory of BðXÞ nor-module is intro-
duced. The utility of the theory is confirmed in the applica-
tion to the solvability of abstract Cauchy problem, the
generalization of the Cole-Hopf transform, and the founda-
tion of the rotation group in the latter parts of Sections 2, 3,
and 4.

This paper is the completion of the recent studies shown
in Refs. [8–15]. By organizing the preceding works into a log-
ical order, the several statements are renewed. First, the gen-
eralized version of logarithmic representation (Corollary 8) is
possible using the concept of alternative infinitesimal gener-
ator. Even without any additional assumptions, it enables us
to generalize the logarithmic representation for infinitesimal
generators of noninvertible evolution operators. Although
this fact is taken for granted in the lately published papers
of Refs. [8–15], it is mentioned within a logical process for
the first time. Second, although the relativistic formulation
is introduced for changing the evolution direction as seen
in the application of the Cole-Hopf transform, it should
not be restricted to the application of the Cole-Hopf trans-
form. The relativistic formulation of abstract evolution
equation is a kind of generalization of abstract evolution
equations. More clearly, it generalizes the concept of
abstract evolution equation to the abstract equation. Con-
sequently, the theory of BðXÞ-module is written in the rel-
ativistic form.

2. Logarithmic Representation of Operators

2.1. Banach Algebra. Let ðA, k⋅kÞ be a Banach space (for a
textbook, see [16]). A mapping

A × A⟶ A,  x, yð Þ⟶ x ⋅ y, ð1Þ

is called a multiplication on A, if it is bilinear and associative.
k⋅k is said to be a submultiplicative norm if kx ⋅ yk ≤ kxkkyk
for each x, y ∈ A. The Banach space A together with a multi-
plication and submultiplicative norm is called a Banach
algebra.

Let X be a Banach space. Denote by BðXÞ, the set of all
bounded linear operators f : X⟶ X. Then, A = BðXÞ is an
example of a Banach algebra with multiplication as composi-
tion and norm defined by

fk k = sup f xð Þk k: xk k ≤ 1f g, ð2Þ

where f ∈ BðXÞ. BðXÞ is called the operator algebra of X. Let
A be a Banach algebra and let X be a Banach space. X is said
to be

(i) A left Banach A-module if there exists a bilinear
mapping ⋅ : A × X⟶ X, ða, xÞ⟶ a ⋅ x, called left
module action, such that ka ⋅ xk ≤ kakkxk and

abð Þ ⋅ x = a ⋅ b ⋅ xð Þ, a, b ∈ A and x ∈ X: ð3Þ

(ii) A right Banach A-module if there exists a bilinear
mapping ⋅ : A × X ⟶ X, ðx, aÞ⟶ x ⋅ a, called

right module action, such that kx ⋅ ak ≤ kakkxk and

x ⋅ abð Þ = x ⋅ að Þ ⋅ b, a, b ∈ A and x ∈ X: ð4Þ

(iii) A Banach A-module if it is a left and right Banach A
-module and

a ⋅ x ⋅ bð Þ = a ⋅ xð Þ ⋅ b, a, b ∈ A and x ∈ X: ð5Þ

As an example of the Banach algebra, BðXÞ is taken in the
following. Then, X is a Banach BðXÞ-module under

B Xð Þ × X ⟶ X, f , xð Þ⟶ f xð Þ,
X × B Xð Þ⟶ X, x, fð Þ⟶ f xð Þ:

ð6Þ

The Banach space, Banach algebra, and Banach BðXÞ
-module (BðXÞ-module, for short) are the basic concepts in
this paper.

2.2. Two Parameter Group on Banach Spaces. All the discus-
sion begins with the definition of groups on the Banach
spaces that will be generalized to a well-defined semigroup
in later sections. Let ðX, k⋅kÞ be a Banach space and BðXÞ
its Banach algebra. In particular, BðXÞ is an example of a
Banach algebra.

A two parameter group is defined on X. Let X be a
Banach space and T ∈ ð0,∞Þ. A two parameter group on X
is an operator valued mapping ðt, sÞ⟶Uðt, sÞ from ½−T ,
T� into BðXÞ with the semigroup properties:

U t, rð ÞU r, sð Þ =U t, sð Þ, r, s, t ∈ −T , T½ �, ð7Þ

U s, sð Þ = I, s ∈ −T , T½ �, ð8Þ
and the strong continuity; for each s ∈ ½−T , T� and x ∈ X,

the map t⟶Uðt, sÞx is continuous on ½s, T�. Both Uðt, sÞ
and Uðs, tÞ are assumed to be well-defined to satisfy

U s, tð ÞU t, sð Þ =U s, sð Þ = I, ð9Þ

where Uðs, tÞ corresponds to the inverse operator of Uðt, sÞ.
Since Uðt, sÞUðs, tÞ =Uðt, tÞ = I is also true, the commuta-
tion between Uðt, sÞ and Uðs, tÞ follows. Operator Uðt, sÞ,
which is called the evolution operator in the following, is a
generalization of exponential function; indeed, the properties
shown in equations (7)–(9) are satisfied by taking Uðt, sÞ as
et−s. Evolution operator is an abstract concept of exponential
function valid for both finite and infinite dimensional Banach
spaces. Due to the validity of equation (9), the invertible evo-
lution family is to be associated with some linear evolution
equations of hyperbolic type and those of dispersive type.
In the same context, the obtained results can be directly
applied to some semilinear evolution equations (for a text
book, see [17]). For example, the solutions of linear and non-
linear wave equations are written by the evolution operator
Uðt, sÞ defined above.
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Let Y be a dense Banach subspace of the Banach space X
and the topology of Y be stronger than that of X. The space
Y ⊂ X is assumed to be Uðt, sÞ-invariant; for any t, s satisfy-
ing −T ≤ t, s ≤ T ,Uðt, sÞY = Y . Following the definition of
C0-(semi) group (cf. the assumptionH2 in Section 5.3 of Pazy
[18] or corresponding discussion in Kato [19, 20]), Uðt, sÞ
trivially satisfy the boundedness in the present setting; there
exist real numbers M and β such that

U t, sð Þk kB Xð Þ ≤Meβt ,  U t, sð Þk kB Yð Þ ≤Meβt: ð10Þ

that are practically reduced to

U t, sð Þk kB Xð Þ ≤MeβT ,  U t, sð Þk kB Yð Þ ≤MeβT , ð11Þ

when the interval is restricted to be finite ½−T , T�. Since C0
semigroup theory [21–23], is essentially based on the Laplace
transform of operators, the satisfaction of equation (10) is
discussed here; Meβt in equation (10) arises from the condi-
tion for the existence theorem for the Laplace transforms (for
example, see [24]), andM ′ =MeβT is regarded as a finite real
number in the present setting.

Next, for the well-defined Uðt, sÞ, the counterpart of the
logarithm in the abstract framework is introduced. There
are two concepts associated with the logarithm of operators;
one is the infinitesimal generator, and the other is t-differ-
ential ofUðt, sÞ. These two concepts are connected as follows.

Definition 1 (preinfinitesimal generator). For −T ≤ t, s ≤ T ,
the weak limit

wlim
h→0

h−1 U t + h, sð Þ −U t, sð Þð Þus
= wlim

h→0
h−1 U t + h, tð Þ − Ið ÞU t, sð Þus,

ð12Þ

is assumed to exist for certain us, which is an element of a
dense subspace Y of X. A linear operator AðtÞ: Y ⟶ X is
defined by

A tð Þut ≔wlim
h→0

h−1 U t + h, tð Þ − Ið Þut , ð13Þ

for ut ∈ Y and −T ≤ t, s ≤ T . The operator AðtÞ for a whole
family fUðt, sÞg−T≤t,s≤T is called the preinfinitesimal
generator.

Let t-differential of Uðt, sÞ in a weak sense [13] be
denoted by

∂tU t, sð Þus = A tð ÞU t, sð Þus: ð14Þ

Equation (14) is regarded as a differential equation satis-
fied by uðtÞ =Uðt, sÞus that implies a relation between AðtÞ
and the logarithm:

A tð Þ = ∂tU t, sð Þ½ �U s, tð Þ: ð15Þ

The relation between AðtÞ and the logarithm is discussed

in the next Section 2.3. Preinfinitesimal generators are not
necessarily infinitesimal generators without assuming a
dense property of domain space Y in X. For example, in t
-independent cases, an operator AðtÞ defined by equation
(13) is not necessarily a densely defined and closed linear
operator, whileAðtÞmust be a densely defined and closed lin-
ear operator with its resolvent set included in fλ ∈ℂ : Reλ
> βg for AðtÞ to be the infinitesimal generator. On the other
hand, infinitesimal generators are necessarily preinfinitesi-
mal generators. That is, only the exponentiability with a cer-
tain ideal domain is valid to the preinfinitesimal generators.
The definition of preinfinitesimal generator is useful in terms
of providing the algebraic structure. Let a set of preinfinitesi-
mal generators be denoted by GðXÞ. It is trivial that BðXÞ ⊂
GðXÞ.
2.3. Logarithmic Representation of Preinfinitesimal
Generator. The logarithmic representation of infinitesimal
generator is introduced in order to clarify the structure of
infinitesimal generators [8]. The logarithm of Uðt, sÞ is
defined by the Dunford-Riesz integral [25]. The boundedness
of Uðt, sÞ on X makes the problem rather easy. Indeed, the
boundedness allows us to introduce the translation on the
complex plane as a tool to realize the parallel displacement
of the entire spectral set. On the other hand, two difficulties
inherent to the logarithm

(i) Singularity of logarithm at the origin

(ii) Multivalued property of the logarithm

arise. By introducing a constant κ ∈ℂ, the singularity can be
handled. This simple treatment is definitely practical to well-
define the logarithm of nonsectorial operators. By introduc-
ing a principal branch (denoted by “Log”) of the logarithm
(denoted by “log”), the multivalued property is handled.
Indeed, for any complex number z ∈ C, a branch of logarithm
is defined by

Logz = log zj j + i arg Z, ð16Þ

where Z is a complex number chosen to satisfy ∣Z ∣ = ∣ z ∣ ,
−π < arg Z ≤ π, and arg Z = arg z + 2nπ for a certain integer
n.

Lemma 2. (logarithmic representation of operators). Let t and
s satisfy 0 ≤ t, s ≤ T . For a given Uðt, sÞ defined in Section 2.2,
its logarithm is well defined; there exists a certain complex
number κ satisfying

Log U t, sð Þ + κIð Þ = 1
2πi

ð
Γ

Logλ λI −U t, sð Þ − κIð Þ−1dλ,

ð17Þ

where an integral path Γ, which excludes the origin, is a circle
in the resolvent set of Uðt, sÞ + κI. Here, Γ is independent of t
and s. LogðUðt, sÞ + κIÞ is bounded on X.
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Proof. The logarithm Log holds the singularity at the origin
so that it is necessary to show a possibility of taking a simple
closed curve (integral path) excluding the origin in order to
define the logarithm by means of the Dunford-Riesz integral.
It is not generally possible to take such a path in case of κ = 0:

First, Uðt, sÞ is assumed to be bounded for 0 ≤ t, s ≤ T
(equation (10)), and the spectral set of Uðt, sÞ is a bounded
set in ℂ. Second, for κ satisfying

κj j >MeβT , ð18Þ

the spectral set of Uðt, sÞ + κI is separated with the origin.
Consequently, it is possible to take an integral path Γ includ-
ing the spectral set of Uðt, sÞ + κI and excluding the origin.
Equation (17) follows from the Dunford-Riesz integral. Fur-
thermore, by adjusting the amplitude of κ, an appropriate
integral path always exists independent of t and s. LogðUðt
, sÞ + κIÞ is bounded on X, since Γ is included in the resolvent
set of ðUðt, sÞ + κIÞ [Q.E.D.: Lemma 2]. ?

According to this lemma, by introducing nonzero κ, the
logarithm of Uðt, sÞ + κI is well-defined without assuming
the sectorial property to Uðt, sÞ. On the other hand, equation
(17) is valid with κ = 0 only for limited cases.

Theorem 3. (logarithmic representation of infinitesimal gen-
erators). Let t and s satisfy −T ≤ t, s ≤ T and Y be a dense sub-
space of X. For Uðt, sÞ defined in Section 2.2, let AðtÞ ∈GðXÞ
and ∂tUðt, sÞ be determined by equations (13) and (14),
respectively. If AðtÞ and Uðt, sÞ commute, preinfinitesimal
generators fAðtÞg−T≤t≤T are represented by means of the loga-
rithm function; there exists a certain complex number κ ≠ 0
such that

A tð Þus = I + κU s, tð Þð Þ∂tLog U t, sð Þ + κIð Þus, ð19Þ

where us is an element in Y . Note that Uðt, sÞ defined in Sec-
tion 2.2 is assumed to be invertible.

Proof. For Uðt, sÞ defined in Section 2.2, operators Log ðUðt
, sÞ + κIÞ and Log ðUðt + h, sÞ + κIÞ are well-defined for a cer-
tain κ (Lemma 2). The t-differential in a weak sense is for-
mally written by

wlim
h→0

1
h

Log U t + h, sð Þ + κIð Þ − Log U t, sð Þ + κIð Þf g

=wlim
h→0

1
h

1
2πi

ð
Γ

Logλ λI −U t + h, sð Þ − κIð Þ−1�
− λI −U t, sð Þ − κIð Þ−1�dλ

=wlim
h→0

1
2πi

ð
Γ

Logλ
�

λI −U t + h, sð Þ − κIð Þ−1

� U t + h, sð Þ −U t, sð Þ
h

λ −U t, sð Þ − κIð Þ−1
�
dλ,

ð20Þ

where Γ, which is possible to be taken independent of t, s, and
h for a sufficiently large certain κ, denotes a circle in the resol-
vent set of bothUðt, sÞ + κI and Uðt + h, sÞ + κI. A part of the

integrand of equation (20) is estimated as

λI −U t + h, sð Þ − κIð Þ−1 U t + h, sð Þ −U t, sð Þ
h

�����
� λI −U t, sð Þ − κIð Þ−1

�
v
����
X

≤ λI −U t + h, sð Þ − κIð Þ−1 B Xð Þ
��� ���n���

� U t + h, sð Þ −U t, sð Þ
h

λI −U t, sð Þ − κIð Þ−1
�
v
����
X

,

ð21Þ

for v ∈ X. There are two steps to prove the validity of equa-
tion (20).

Step 1. The former part of the right hand side of equation
(21) satisfies

λI −U t + h, sð Þ − κIð Þ−1� ��� ��
B Xð Þ <∞, ð22Þ

since λ is taken from the resolvent set of Uðt + h, sÞ − κI. In
the same way, the operator ðλ −Uðt, sÞ − κÞ−1 is bounded
on X and Y . Then, the continuity of the mapping t⟶
ðλ −Uðt, sÞ − κÞ−1 as for the strong topology follows:

λI −U t + h, sð Þ − κIð Þ−1 − λI −U t, sð Þ − κIð Þ−1�� ��
B Xð Þ

≤ λI −U t + h, sð Þ − κIð Þ−1�� ��
B Xð Þ

� U t + h, sð Þð Þ −U t, sð Þ λI −U t, sð Þ − κIð Þ−1�� ��
B Xð Þ:

ð23Þ

Step 2. The latter part of the right hand side of equation (21)
is estimated as

U t + h, sð Þ −U t, sð Þ
h

λI −U t, sð Þ − κIð Þ−1u
���� ����

X

= 1
h

ðt+h
t

A τð ÞU τ, sð Þ λI −U t, sð Þ − κIð Þ−1u dτ
���� ����

X

≤
1
hj j
ðt+h
t

A τð ÞU τ, sð Þk kB Y ,Xð Þ λI −U t, sð Þ − κIð Þ−1�� ��
B Yð Þ

� uk kYdτ,
ð24Þ

for ∈Y . Because kAðτÞUðτ, sÞkBðY ,XÞ <∞ is true by assump-
tion, the right hand side of equation (24) is finite. Equation
(24) shows the uniform boundedness with respect to h; then,
the uniform convergence ðh⟶ 0Þ of equation (20) follows.
Consequently, the weak limit process h⟶ 0 for the inte-
grand of equation (8) is justified, as well as the commutation
between the limit and the integral.
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According to equation (20), interchange of the limit with
the integral leads to

∂tLog U t, sð Þ + κIð Þu

= 1
2πi

ð
Γ

dλ
�
Logλð Þ λI −U t, sð Þ − κIð Þ−1wlim

h→0

� U t + h, sð Þ −U t, sð Þ
h

� 	
λI −U t, sð Þ − κIð Þ−1



u,

ð25Þ
for ∈Y . Because it is also allowed to interchange AðtÞ with
Uðt, sÞ,

∂tLog U t, sð Þ + κIð Þu
= 1
2πi

ð
Γ

Logλð Þ λI −U t, sð Þ − κIð Þ−1A tð ÞU t, sð Þ

� λI −U t, sð Þ − κIð Þ−1dλu
= 1
2πi

ð
Γ

Logλð Þ λI −U t, sð Þ − κIð Þ−2U t, sð ÞdλA tð Þu,

ð26Þ
for ∈Y . A part of the right hand side is calculated as

1
2πi

ð
Γ

Logλð Þ λI −U t, sð Þ − κIð Þ−2U t, sð Þdλ

= 1
2πi

ð
Γ

1
λ

λI −U t, sð Þ − κIð Þ−1U t, sð Þdλ

= 1
2πi

ð
Γ

1
λ

λI −U t, sð Þ − κIð Þ−1

� λI − κI − λI −U t, sð Þ − κIð Þf gdλ
= 1
2πi

ð
Γ

1
λ

λI −U t, sð Þ − κIð Þ−1dλ

−
1
2πi

ð
Γ

κ

λ
λI −U t, sð Þ − κIð Þ−1dλ − 1

2πi

ð
Γ

1
λ
dλ

= 1
2πi

ð
Γ

λI −U t, sð Þ − κIð Þ−1dλ

−
1
2πi

ð
Γ

κ

λ
λI −U t, sð Þ − κIð Þ−1dλ

= 1
2πi

ð
Γ

λI −U t, sð Þ − κIð Þ−1dλ − κ U t, sð Þ + κIð Þ−1

� 1
2πi

ð
Γ

1
λ

U t, sð Þ − κIð Þ−1 λI −U t, sð Þ − κIð Þ−1dλ
� �

= 1
2πi

ð
Γ

λI −U t, sð Þ − κIð Þ−1dλ − κ U t, sð Þ + κIð Þ−1

� 1
2πi

ð
Γ

λI −U t, sð Þ − κIð Þ−1dλ − 1
2πi

ð
Γ

1
λ
dλ

� �
= I − κ U t, sð Þ + κIð Þ−1� � 1

2πi

ð
Γ

λI −U t, sð Þ − κIð Þ−1dλ

= I − κ U t, sð Þ + κIð Þ−1� � 1
2πi

= r 〠
∞

n=1

U t, sð Þn
νn+1

dν

= I − κ U t, sð Þ + κIð Þ−1,
ð27Þ

due to the integration by parts, where jλ − κj = jνj = r is a
properly chosen circle large enough to include Γ. ð2πiÞ−1Ð

Γ

λ−1dλ = 0 is seen by applying dLogλ/dλ = 1/λ. ð2πiÞ−1Ð jνj=r
∑∞

n=1Uðt, sÞnν−n−1dν = I follows from the singularity of
ν−n−1.

Consequently,

A tð Þus I − κ U t, sð Þ + κIð Þ−1� �−1∂tLog U t, sð Þ + κIð Þus
= U t, sð Þ + κIð ÞU t, sð Þ−1∂tLog U t, sð Þ + κIð Þus
= I + κU s, tð Þð Þ∂tLog U t, sð Þ + κIð Þus,

ð28Þ

is obtained for us ∈ Y [Q.E.D.: Theorem 3]. ?
The meaning of logarithmic representation is examined

by focusing on ∂tLogðUðt, sÞ + κIÞ. What is introduced by
equation (19) is a kind of resolvent approximation of AðtÞ

∂tLog U t, sð Þ + κIð Þ = I + κU s, tð Þð Þ−1A tð Þ, ð29Þ

in which AðtÞ is represented by the resolvent operator of U
ðs, tÞ. As seen in the following, it is notable that there is no
need to take κ⟶ 0. This point is different from the usual
treatment of resolvent approximations; indeed, it is impossi-
ble to take κ⟶ 0 if the origin is not included in the resol-
vent set of Uðt, sÞ. On the other hand, it is also seen by
equation (19) that

∂tLog U t, sð Þ + κIð Þ = U t, sð Þ + κIð Þ κ=0j A tð Þ U t, sð Þ + κIð Þ−1,
ð30Þ

shows a structure of similarity transform, where ðUðt, sÞ + κ
Þjκ=0 means Uðt, sÞ + κ satisfying a condition κ = 0: This
asymmetric similarity transform from left and right hand
sides are remarkable, and it becomes symmetric if κ = 0�. A
part ∂tLogðUðt, sÞ + κIÞ plays an essential role in the follow-
ing discussion.

3. Regularized Evolution Operator

3.1. Alternative Infinitesimal Generator. The alternative
infinitesimal generator is introduced in order to extract
bounded parts from the preinfinitesimal generator A [9].
The operator AðtÞ ∈GðXÞ is generally unbounded in X. A
bounded operator aðt, sÞ on X is introduced.

Definition 4 (alternative infinitesimal generator). Let κ be a
certain complex number. For a certain vs ∈ X, the alternative
infinitesimal generator ∂taðt, sÞ to AðtÞ ∈GðXÞ is defined
using

a t, sð Þvs ≔ Log U t, sð Þ + κIð Þvs, ð31Þ

on X, where ∂t denotes t −differential in a weak sense.

In the present setting assuming the existence of ∂tUðt, sÞ
and therefore AðtÞ, the operator ∂taðt, sÞ exists. According to
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the logarithmic representation,

A tð Þus = I − κ U t, sð Þ + κIð Þ−1� �−1∂ta t, sð Þus, ð32Þ

is obtained. Since aðt, sÞ is a bounded operator defined by the
Dunford-Riesz integral, vs in the definition of alternative
infinitesimal generator can be taken from X. Since κ is chosen
to separate the spectral set of Uðt, sÞ + κI from the origin, the
inverse operator of Uðt, sÞ + κI always exists, as κ is taken
from fλ ∈ℂ ; jλj >MeβTg.

Definition 5 (regularized evolution operator). The alternative
infinitesimal generator ∂taðt, sÞ generates the regularized
evolution operator

ea t,sð Þ = 〠
∞

n=0

a t, sð Þn
n!

, ð33Þ

which is represented by the convergent power series.

The operator eaðt,sÞ is regularized in the following sense;
the inverse evolution operator e−aðt,sÞ always exists, if eaðt,sÞ
exists. This fact, which arises from the boundedness of aðt, s
Þ, is true, even if negative time evolution Uðt, sÞ−1 =Uðs, tÞ
is not well-defined, and only positive time evolution Uðt, sÞ
is given ðt > sÞ.

It is remarkable that

Logea t,sð Þ = Log U t, sð Þ + κIð Þ = a t, sð Þ, ð34Þ

is always satisfied, whileð
I + κU s, tð Þð Þ−1A tð Þdt = Log U t, sð Þ + κIð Þ, ð35Þ

is not necessarily satisfied because the limited range of imag-
inary spectral distribution is necessarily true only for the
right hand side. In this sense, aðt, sÞ corresponds to the
extracted bounded part of the infinitesimal generator AðtÞ.
The regularized trajectory in finite/infinite dimensional
dynamical systems (for textbooks, see [26, 27]) arises from
the regularized evolution operator. Note that, as the well-
defined ∂taðt, sÞ is not necessary for eaðt,sÞ to be well-defined,
only the well-defined aðt, sÞ is sufficient for eaðt,sÞ to be well-
defined. This fact essentially simplifies the discussion in
applying eaðt,sÞ in which there is no need to consider weak
differential.

Using the relation between the logarithm and the expo-
nential functions,

U t, sð Þ = ea t,sð Þ − κI, ð36Þ

is valid. It shows a correspondence between eaðt,sÞ and Uðt, sÞ
at the level of an evolution operator. One difference is
whether the semigroup property is satisfied or not, and
another difference is whether the convergence power series
representation is always true or not. Meanwhile, at the level

of infinitesimal generators, there is a substantial difference
between aðt, sÞ and AðtÞ. That is, aðt, sÞ is always bounded
on X, while AðtÞ is not necessarily bounded on X. Because
of the boundedness of aðt, sÞ on X, the inverse operator
e−aðt,sÞ always exists if eaðt,sÞ exists. One of the essential ideas
is to generate eaðt,sÞ, instead of generating Uðt, sÞ.

Theorem 6. (modified semigroup property). Let κ be a certain
complex number. For the operator eaðt,sÞ on X, the semigroup
property is replaced with

ea t,sð Þ − ea t,rð Þea r,sð Þ = κ κ + 1ð ÞI − κ ea t,rð Þ + ea r,sð Þ
 �

, ð37Þ

ea s,sð Þ − I = κI: ð38Þ
The inverse relation is replaced with

ea s,tð Þea t,sð Þ − ea s,sð Þ = κ ea t,sð Þ + ea s,tð Þ
 �

− κ κ + 1ð ÞI: ð39Þ

In particular, the commutation

ea s,tð Þea t,sð Þ − ea t,sð Þea s,tð Þ = 0 ð40Þ

is necessarily valid.

Proof. Substitution of Uðt, sÞ = eaðt,sÞ − κI to Uðt, rÞUðr, sÞ =
Uðt, sÞ leads to the following relation:

U t, rð ÞU r, sð Þ = ea t,sð Þ − κI,

ea t,rð Þ − κI
 �

ea r,sð Þ − κI
 �

= ea t,sð Þ − κI:
ð41Þ

where by taking κ with a large ∣κ ∣ , κ is possible to be taken as
common to Uðt, sÞ with different t and s. Meanwhile, the
replacement of Uðt, sÞ = eaðt,sÞ − κI with Uðs, sÞ = I leads to
the following relation:

ea s,sð Þ = κ + 1ð ÞI: ð42Þ

That is, for κ ≠ 1, ðκ + 1Þ−1eaðs:sÞ behaves as the unit oper-
ator. Modified version of semigroup property (i.e., (38)) has
been proved. The inverse relation (39) follows readily from
equation (38). According to equation (15),

ea t,tð Þ − ea t,sð Þea s,tð Þ = κ κ + 1ð ÞI − κ ea t,sð Þ + ea s,tð Þ
 �

, ð43Þ

is valid. Combination with another relation

ea s,sð Þ − ea s,tð Þea t,sð Þ = κ κ + 1ð ÞI − κ ea s,tð Þ + ea t,sð Þ
 �

, ð44Þ

leads to the commutation:

ea t,sð Þea s,tð Þ − ea s,tð Þea t,sð Þ = 0, ð45Þ
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where eaðt,tÞ = eaðs,sÞ = ð1 + κÞI is utilized [Q.E.D.: Theorem
6]. ?

Equations (38) and (39) show the commutativity and vio-
lation of semigroup property by eaðt,sÞ. The right hand sides of
equations (38) and (39) are equal to zero for κ = 0: These sit-
uations correspond to the cases when the semigroup prop-
erty is satisfied by eaðt,sÞ, and it is readily seen that the
insufficiency of semigroup property arises from the introduc-
tion of nonzero κ.

The decomposition is obtained by the following structure
theorem for the regularized evolution operator. Note that the
decomposition of eaðt,sÞ also provides a certain relation
between the time-discretization and the violation of semi-
group property.

Theorem 7. (structure of regularized evolution operator). Let
κ be a certain complex number. For a given decomposition s
< r1, r2,⋯, rn < t of the interval ½s, t� with n ≥ 2, the operator
eaðt,sÞ on X is represented by

ea t,sð Þ = ea t,rnð Þea rn ,rn−1ð Þ ⋯ ea r2 ,r1ð Þea r1 ,sð Þ

+ κ κ + 1ð ÞI − κ ea t,r1ð Þ + ea r1 ,sð Þ
 �

+ 〠
n

κ=2

h
κ κ + 1ð Þ − κ ea t,rκð Þ + ea rκ ,rκ−1ð Þ

 �n o
� ea rκ−1,rκ−2ð Þ ⋯ ea r2 ,r1ð Þea r1 ,sð Þ

i
,

ð46Þ

where r0 and rn+1 in the sum are denoted as s = r0 and t = rn+1,
respectively.

Proof. According to equation (38), a decomposition

ea t,sð Þ = ea t,r1ð Þea r1 ,sð Þ + κ κ + 1ð ÞI − κ ea t,r1ð Þ + ea r1 ,sð Þ
 �

, ð47Þ

is true. Another decomposition

ea t,r1ð Þ = ea t,r2ð Þea r2 ,r1ð Þ + κ κ + 1ð ÞI − κ ea t,r2ð Þea r2 ,r1ð Þ
 �

, ð48Þ

is also true, and then

ea t,sð Þ = ea t,r2ð Þea r2 ,r1ð Þ + κ κ + 1ð ÞI − κ ea t,r2ð Þ + ea r2 ,r1ð Þ
 �n o

� ea r1 ,sð Þ + κ κ + 1ð ÞI − κ ea t,r1ð Þ + ea r1 ,sð Þ
 �

= ea t,r2ð Þea r2 ,r1ð Þea r1 ,sð Þ + κ κ + 1ð Þ I + ea r1 ,sð Þ
 �

− κ ea t,r1ð Þ + ea r1 ,sð Þ + ea t,r2ð Þ + ea r2 ,r1ð Þ
 �

ea r1 ,sð Þ
n o

,

ð49Þ

follows by sorting based on κ and κðκ + 1Þ dependence. Fur-
ther decomposition shows

ea t,r2ð Þ = ea t,r3ð Þea r3 ,r2ð Þ + κ κ + 1ð ÞI − κ ea t,r3ð Þ + ea r3 ,r2ð Þ
 �

, ð50Þ

and then

ea t,sð Þ = ea t,r2ð Þea r2 ,r1ð Þea r1 ,sð Þ + κ κ + 1ð Þ I + ea r1 ,sð Þ
 �

− κ ea t,r1ð Þ + ea r1 ,sð Þ + ea t,r2ð Þ + ea r2 ,r1ð Þ
 �

ea r1 ,sð Þ
n o

= ea t,r3ð Þea r3 ,r2ð Þ + κ κ + 1ð ÞI − κ ea t,r3ð Þ + ea r3 ,r2ð Þ
 �n o

� ea r2 ,r1ð Þea r1 ,sð Þ + κ κ + 1ð Þ I + ea r1 ,sð Þ
 �

− κ ea t,r1ð Þ + ea r1 ,sð Þ + ea t,r2ð Þ + ea r2 ,r1ð Þ
 �

ea r1 ,sð Þ
n o

= ea t,r3ð Þea r3 ,r2ð Þea r2 ,r1ð Þea r1 ,sð Þ + κ κ + 1ð Þea r2 ,r1ð Þea r1 ,sð Þ

− κ ea t,r3ð Þ + ea r3 ,r2ð Þ
 �

ea r2 ,r1ð Þea r1 ,sð Þ + κ κ + 1ð Þ I + ea r1 ,sð Þ
 �

− κ ea t,r1ð Þ + ea r1 ,sð Þ + ea t,r2ð Þ + ea r2 ,r1ð Þ
 �

ea r1 ,sð Þ
n o

= ea t,r3ð Þea r3 ,r2ð Þea r2 ,r1ð Þea r1 ,sð Þ + κ κ + 1ð Þ
� I + I + ea r2 ,r1ð Þ

 �
ea r1 ,sð Þ

n o
− κ
n
ea t,r1ð Þ + ea r1 ,sð Þ

+ ea t,r2ð Þ + ea r2 ,r1ð Þ
 �

ea r1 ,sð Þ + ea t,r3ð Þ + ea r3 ,r2ð Þ
 �

� ea r2 ,r1ð Þea r1 ,sð Þ
o
,

ð51Þ

follows. For a certain n ≥ 2, a constitutional representation is
suggested by the deduction:

ea t,sð Þ = ea t,rnð Þea rn ,rn−1ð Þ ⋯ ea r2 ,r1ð Þea r1 ,sð Þ + κ κ + 1ð Þ
h
I + ea r1 ,sð Þ

+ ea r2 ,r1ð Þea r1 ,sð Þ
 �

+⋯+ ea rn ,rn−1ð Þ ⋯ ea r2 ,r1ð Þea r1 ,sð Þ
 �i

− κ
h
ea t,r1ð Þ + ea r1 ,sð Þ + ea t,r2ð Þ + ea r2 ,r1ð Þ

 �
ea r1 ,sð Þ

+ ea t,r3ð Þ + ea r3 ,r2ð Þ
 �

ea r2 ,r1ð Þea r1 ,sð Þ ⋯

+ ea t,rnð Þea rn ,rn−1ð Þ
 �

ea rn−1 ,rn−2ð Þ ⋯ ea r2 ,r1ð Þea r1 ,sð Þ
i
:

ð52Þ

Consequently,

ea t,sð Þ = ea t,rnð Þea rn ,rn−1ð Þ ⋯ ea r2 ,r1ð Þea r1 ,sð Þ + κ κ + 1ð Þ

� I + 〠
n

κ=2
ea rκ−1 ,rκ−2ð Þ ⋯ ea r2 ,r1ð Þea r1 ,sð Þ
h i !

− κ

 
ea t,r1ð Þ + ea r1 ,sð Þ
 �

+ 〠
n

κ=2

h
ea t,rκð Þ + ea rκ ,rκ−1ð Þ
 �

� ea rκ−1 ,rκ−2ð Þ ⋯ ea r2 ,r1ð Þea r1 ,sð Þ
i!

,

ð53Þ

is obtained. The statement is proved by sorting terms
[Q.E.D.: Theorem 7]. ?

Using the regularized evolution operator, the logarithmic
representation is readily generalized to the infinitesimal
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generators of invertible and noninvertible evolution opera-
tors. Indeed, according to the proof of Theorem 3, only the
boundedness of Uðt, sÞ on X and the resulting time-interval
symmetry is essential.

Corollary 8. (generalized logarithmic representation of infin-
itesimal generators). Let t and s satisfy −T ≤ t, s ≤ T , and Y be
a dense subspace of X. For noninvertible Uðt, sÞ, Uðt, sÞ is
defined in Section 2.2 without assuming

U t, sð Þ−1 =U s, tð Þ, ð54Þ

let AðtÞ ∈GðXÞ and ∂tUðt, sÞ be determined by equations (13)
and (14), respectively. If AðtÞ and Uðt, sÞ commute, preinfini-
tesimal generators fAðtÞg−T≤t≤T are represented by means of
the logarithm function; there exists a certain complex number
κ ≠ 0 such that

A tð Þus = I − κe−a t,sð Þ
 �−1

∂tLog U t, sð Þ + κIð Þus, ð55Þ

where us is an element in Y .

Proof. The first line of equation (28) shows the validity of the
statement. Indeed, for the logarithmic representation, the
invertible property does not play any roles after introducing

nonzero κ ∈ℂ. In particular, ðI − κe−aðt,sÞÞ−1 is always well-
defined for a certain κ [Q.E.D.: Corollary 8]. ?

Using the regularized evolution operator, A similarity
transform representation (30) for ∂taðt, sÞ is written by

∂ta t, sð Þ = ea t,sð Þ
κ=0j A tð Þe−a t,sð Þ, ð56Þ

where the boundedness of aðt, sÞ allows us to define e−aðt,sÞ.
Due to the boundedness of aðt, sÞ on X, eaðt,sÞ is always
well-defined by a convergent power series. It leads to the
holomorphic property of eaðt,sÞ. Here is the reason why
eaðt,sÞ is called the regularized evolution operator.

In the following, the generalized logarithmic representa-
tion of infinitesimal generators is utilized. It enables us to
have the logarithmic representation not only for the C0-
groups but for the C0-semigroups.

3.2. Renormalized Abstract Evolution Equations. Evolution
equations are renormalized by means of the alternative infin-
itesimal generators and regularized evolution operator.

Corollary 9. (renormalized abstract evolution equations). If
aðt, sÞ with different t and s are further assumed to commute,

∂te
a t,sð Þvs = ∂ta t, sð Þ½ �ea t,sð Þvs leading to 

∂tv tð Þ = ∂ta t, sð Þ½ �v tð Þ,
ð57Þ

is satisfied for vs ∈ Y , where ∂t denotes t − differential in a
weak sense. This is a linear evolution equation satisfied by vð
tÞ = eaðt,sÞvs.

Proof. For the evolution operator

ea t,sð Þ = 〠
∞

n=0

a t, sð Þn
n!

, ð58Þ

the existence of ∂teaðt,sÞ is ensured by the existence of ∂taðt, sÞ.
Using the commutation between aðt, sÞ with different t and s,

∂t a t, sð Þf gn = n a t, sð Þf gn−1∂ta t, sð Þ, ð59Þ

is true, and the homogeneous-type abstract evolution equa-
tion is rephrased as an equation with bounded infinitesimal
generator

∂te
a t,sð Þvs = ea t,sð Þ ∂ta t, sð Þð Þvs, ð60Þ

for vs ∈ Y [Q.E.D.: Corollary 9]. ?

This is an abstract evolution equation obtained by the
replacement AðtÞ with ∂taðt, sÞ. Here, one essential idea is
to generate eaðt,sÞ instead of Uðt, sÞ; although eaðt,sÞ is easily
defined due to the boundedness of aðt, sÞ, the general
unboundedness of infinitesimal generator ∂taðt, sÞ in X is
ensured by the similarity transform (56). Under the commu-
tation assumption between AðtÞ and Uðt, sÞ, equation (60) is
rephrased as

∂te
a t,sð Þvs = ∂t U t, sð Þ + κIð Þvs = ∂tU t, sð Þvs,

ea t,sð Þ ∂ta t, sð Þð Þvs = U t, sð Þ + κIð Þ∂t Log U t, sð Þ + κIð Þð Þvs
= U t, sð Þ + κIð Þ U t, sð Þ + κIð Þ−1U t, sð ÞA tð Þvs
=U t, sð ÞA tð Þvs = A tð ÞU t, sð Þvs,

ð61Þ

where Theorem 3 is applied. Consequently,

∂tU t, sð Þvs = A tð ÞU t, sð Þvs, ð62Þ

is obtained. Note again that eaðt,sÞ does not satisfy the semi-
group property, while Uðt, sÞ satisfies it.
3.3. Linearized Infinitesimal Generator. The linearity of the
semigroup is not assumed in the preceding discussion so that
the operator Uðt, sÞ can be taken as either linear or nonlinear
semigroup. Let us assume a more general situation, in which

(i) The existence of Uðt, sÞ satisfying equation (7) is
locally ture for t, s ∈ ½−T , T�

(ii) The existence of the infinitesimal generator of Uðt, sÞ
is not clear

This situation corresponds to the situation when only the
unique local existence of their solutions the nonlinear partial
differential equations is ensured. One of the important appli-
cation of the renormalized abstract evolution equation is the
linearization, which enables to analyze the local profile of
nonlinear semigroup.
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Corollary 10. (linearized evolution equation). For −T ≤ t, s
≤ T , the two parameter group is defined on X. Let either linear
or nonlinear semigroup Uðt, sÞ defined on a Banach space X
satisfy equation (7). Let Uðt, sÞus be the solution of nonlinear
equation:

∂tu t, sð Þ = F u t, sð Þð Þ: ð63Þ

If the logarithmic representation LogðUðt, sÞ + κIÞ is true,

∂tv tð Þ = I − κ U t, sð Þ + κIð Þ−1� �−1∂ta t, sð Þ
h i

v tð Þ, ð64Þ

is the linearized equation, where note that aðt, sÞ includes a
parameter κ ∈ℂ. If the logarithmic representation is true
for κ = 0, the infinitesimal generator of linearized problem
is simply represented by ∂taðt, sÞjκ=0∂tLogðUðt, sÞÞ.

The condition for obtaining the linearized evolution
equation is the locality for the evolution direction t, which
leads to the boundedness of the spectral set of Uðt, sÞ. The
theoretical procedure of obtaining the linearized problem is
summarized as follows. For nonzero κ ∈ℂ, first, Uðt, sÞ is
regarded as an exponential function; second, calculating the
logarithm of Uðt, sÞ; and finally the linearized operator

I − κ U t, sð Þ + κIð Þ−1� �−1∂ta t, sð Þ
= ∂t I − κ U t, sð Þ + κIð Þ−1� �−1

a t, sð Þ
h i

− ∂t I − κ U t, sð Þ + κIð Þ−1� �−1h i
a t, sð Þ,

ð65Þ

generates the regularized evolution operator

ea t,sð Þ − κI: ð66Þ

It is more clearly understood by the case of κ = 0,

“U t, sð Þ = ea t,sð Þ
κ=0j ” leads to“Logea t,sð Þ

κ=0 = a t, sð Þj jκ=0:”
ð67Þ

Consequently, the operator-logarithm is regarded as a
mapping from “continuous group” to “bounded algebra.”
These alternative equations can be used to analyze quasi-
linear evolution equations and full-nonlinear evolution equa-
tions [28].

3.3.1. Autonomous Case. The regularity results have not been
much studied in the Cauchy problem of hyperbolic partial
differential equations (for a textbook, see [29]). The regular-
ized evolution operator, which is also applicable to some
hyperbolic type equations, is utilized to solve autonomous
Cauchy problems.

∂tu tð Þ = A tð Þu tð Þ
u sð Þ = us

(
, ð68Þ

in X, where AðtÞ ∈GðXÞ: Y ⟶ X is assumed to be an infin-
itesimal generator of Uðt, sÞ satisfying the semigroup prop-

erty, −T ≤ t, s ≤ T is satisfied, Y is a dense subspace of X
permitting the representation shown in equation (19), and
us is an element of X.

As seen in equation (57), under the assumption of com-
mutation, a related Cauchy problem is obtained as

∂tv t, sð Þ = ∂ta t, sð Þð Þv t, sð Þ
v s, sð Þ = ea s,sð Þus,

(
ð69Þ

in X, where ∂taðt, sÞ = ∂tLogðUðt, sÞ + κIÞ is well-defined. It
is possible to solve the rewritten Cauchy problem, and the
solution is represented by

v t, sð Þ = ea t,sð Þus = 〠
∞

n=0

a t, sð Þn
n!

us, ð70Þ

for us ∈ X (cf. equation (58)).

Theorem 11. Operator eaðt,sÞ is holomorphic.

Proof. According to the boundedness of aðt, sÞ on X (Lemma
2), ∂nt e

aðt,sÞ [30] is possible to be represented as

∂nt e
a t,sð Þ = 1

2πi

ð
Γ

λneλ λI − a t, sð Þð Þ−1dλ, ð71Þ

for a certain κ ∈ℂ, where λneλ does not hold any singularity
for any finite λ. Following the standard theory of evolution
equation,

∂nt e
a t,sð Þ

��� ��� ≤ Cθ,n
π t sin θð Þn , ð72Þ

is true for a certain constant Cθ,n ðn = 0, 1, 2,⋯Þ, where θ ∈
ð0π/2Þ and ∣argt ∣ <π/2 are satisfied (for the detail, e.g., see
[22]). It follows that

lim
t→+0

sup tn ∂nt e
a t,sð Þ

��� ��� ≤ lim
t→+0

sup tn
Cθ,n

π t sin θð Þn <∞: ð73Þ

Consequently, for ∣z − t ∣ <tsinθ, the power series expan-
sion

〠
∞

n=0

z − tð Þn
n!

∂nt e
a t,sð Þ, ð74Þ

is uniformly convergent in a wider sense. Therefore, eaðt,sÞ is
holomorphic [Q.E.D.: Theorem 11]. ?

Theorem 12. For us ∈ X, there exists a unique solution uð·Þ
∈ Cð½−T , T� ; XÞ for (68) with a convergent power series
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representation:

u tð Þ =U t, sð Þus = ea t,sð Þ − κI
 �

us = 〠
∞

n=0

a t, sð Þn
n!

− κI

 !
us,

ð75Þ

where κ is a certain complex number.

Proof. The unique existence follows from the assumption for
AðtÞ. The regularized evolution operator eaðt,sÞ is holo-
morphic function (Theorem 11) with the convergent power
series representation (equation (58)). By applying Uðt, sÞ +
κI = eaðt,sÞ, the solution of the original Cauchy problem is
obtained as

u tð Þ = ea t,sð Þ − κI
 �

us = 〠
∞

n=0

a t, sð Þ
n!

n

− κI

 !
us, ð76Þ

for the initial value us ∈ X. Note that AðtÞ is not assumed to
be a generator of analytic evolution family but only a gener-
ator of evolution family [Q.E.D.: Theorem 12]. ?

For Iλ denoting the resolvent operator of AðtÞ, the evolu-
tion operator defined by the Yosida approximation is written
by

u tð Þ = lim
λ→0

exp
ðt
s
IλA τð Þdτ

� 	
us, ð77Þ

so that more informative representation is provided by The-
orem 12 compared to the standard theory based on the Hille-
Yosida theorem.

3.3.2. Nonautonomous Case. Series representation in autono-
mous part leads to the enhancement of the solvability. Let Y
be a dense subspace of X permitting the representation
shown in equation (19), and us is an element of X. The regu-
larized evolution operator is utilized to solved nonautono-
mous Cauchy problems.

∂tu tð Þ = A tð Þu tð Þ + f tð Þ
u sð Þ = us

(
, ð78Þ

in X, where AðtÞ ∈GðXÞ: Y ⟶ X is assumed to be an infin-
itesimal generator of Uðt, sÞ satisfying the semigroup prop-
erty and f ∈ L1ð−T , T ; XÞ is locally H€older continuous on
[−T,T]

f tð Þ − f sð Þk k ≤ CH t − sj jγ, ð79Þ

for a certain positive constant CH , γ ≤ 1 and −T ≤ t, s ≤ T .
The solution of nonautonomous problem does not necessar-
ily exist in such a setting (in general, f ∈ Cð½−T , T� ; XÞ is
necessary).

Theorem 13. Let f ∈ L1ð−T , T ; XÞ be locally H€older continu-
ous on ½−T , T�. For us ∈ X, there exists a unique solution uð·
Þ ∈ Cð½−T , T� ; XÞ for (78) such that

u tð Þ = 〠
∞

n=0

a t, sð Þn
n!

− κI

" #
us +

ðt
s
〠
∞

n=0

a t, τð Þn
n!

− κI

" #
f τð Þdτ,

ð80Þ

using a certain complex number κ.

Proof. Let us begin with cases with f ∈ Cð½−T , T� ; XÞ. The
unique existence follows from the standard theory of evolu-
tion equation. The representation follows from that of Uðt,
sÞ and the Duhamel’s principle

u tð Þ =U t, sð Þus +
ðt
s
t, τð Þf τð Þdτ

= ea t,sð Þ − κI
 �

us +
ðt
s
ea t,τð Þ − κI
h i

f τð Þdτ,
ð81Þ

where the convergent power series representation of eaðt,sÞ is
valid (cf. equation (58)).

u tð Þ = ea t,sð Þ − κI
 �

us +
ðt
s
ea t,τð Þ − κI
h i

f τð Þdτ,

= ea t,sð Þus +
ðt
s
ea t,τð Þ
h i

f τð Þdτ − κIus +
ðt
s
−κI½ �f τð Þdτ:

ð82Þ

Next, let us consider cases with the locally H€older contin-
uous f ðtÞ. According to the linearity of equation (78), it is
sufficient to consider the inhomogeneous term. For ϵ satisfy-
ing 0 < ϵ≪ T ,ðt+∈

s
ea t,τð Þ − κI
h i

f τð Þdτ⟶
ðt
s
ea t,τð Þ − κI
h i

f τð Þdτ, ð83Þ

is true by taking ϵ ⟶ 0. On the other hand,

A tð Þ
ðt+∈
s

ea t,τð Þ − κI
h i

f τð Þdτ

=
ðt+∈
s

A tð ÞU t, τð Þf τð Þdτ =
ðt+∈
s

A tð ÞU t, τð Þ f τð Þð

− f tð ÞÞdτ +
ðt+∈
s

A tð ÞU t, τð Þf tð Þdτ

=
ðt+∈
s

A tð ÞU t, τð Þ f τð Þ − f tð Þð Þdτ −
ðt+∈
s

∂τU t, τð Þf tð Þdτ

=
ðt+∈
s

A tð ÞU t, τð Þ f τð Þ − f tð Þð Þdτ

−U t, t+∈ð Þf tð Þ +U t, sð Þf tð Þ
=
ðt+∈
s

I + κUð Þ s, tð Þ∂ta t, sð Þ ea t,τð Þ − κI
h i

� f τð Þ − f tð Þð Þdτ −U t, t+∈ð Þf tð Þ +U t, sð Þf tð Þ,
ð84Þ
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where ∂τUðt, τÞ = −AðτÞUðt, τÞ is utilized. The last identity
is obtained by applying AðtÞ = ðI + κUðs, tÞÞ∂taðt, sÞ. The
H€older continuity and equation (73) lead to the strong con-
vergence of the right hand of equation (84):

A tð Þ
ðt+∈
s

ea t,τð Þ − κI
h i

f τð Þdτ

⟶

ðt
s
I + κU s, tð Þð Þ ∂ta t, sð Þð Þ ea t,τð Þ − κI

h i
� f τð Þ − f tð Þð Þdτ + U t, sð Þ − Ið Þf tð Þ,

ð85Þ

(due to ϵ⟶ 0) for f ∈ L1ð0, T ; XÞ. AðtÞ is assumed to be an
infinitesimal generator so that AðtÞ is a closed operator from
Y to X. It follows that

ðt
s
ea t,τð Þ − κI
h i

f τð Þdτ ∈ Y ,

A tð Þ
ðt
s
ea t,τð Þ − κI
h i

f τð Þdτ

=
ðt
s
I + κU s, tð Þð Þ∂ta t, sð Þ ea t,τð Þ − κI

h i
� f τð Þ − f tð Þð Þdτ + U t, sð Þ − Ið Þf tð Þ ∈ X:

ð86Þ

The right hand side of this equation is strongly continuous
on ½−T , T�. Consequently,

∂t
ðt+∈
s

ea t,τð Þ − κI
h i

f τð Þdτ

= ea t,t+∈ð Þ − κI
h i

f t+∈ð Þ +
ðt+∈
s

∂ta t, τð Þð Þea t,τð Þ f τð Þdτ

⟶ f tð Þ +
ðt
s
I − κU τ, tð Þð Þ−1A tð Þ U t, τð Þ + κIð Þf τð Þdτ

= f tð Þ +
ðt
s
A tð ÞU t, τð Þf τð Þdτ

= f tð Þ + A tð Þ
ðt
s
ea t,τð Þ − κI
h i

f τð Þdτ:

ð87Þ

It is seen that
Ð t
s½eaðt,τÞ − κI�f ðτÞdτ satisfies equation (78)

and that it is sufficient to assume f ∈ L1ð0, T ; XÞ as H€older
continuous [Q.E.D.: Theorem 13]. ?

More simply, the unique solvability of nonautonomous
case can be regarded in the context of decomposing the mild
solution (for this terminology, see [18]).

Corollary 14. Let f ∈ L1ð−T , T ; XÞ be locally H€older continu-
ous on ½−T , T�. For us ∈ X, there exists a unique solution uð⋅

Þ ∈ Cð½−T , T� ; XÞ for (78) such that

u tð Þ = 〠
∞

n=0

a t, sð Þn
n!

 !
us +

ðt
s
〠
∞

n=0

a t, sð Þn
n!

f τð Þdτ
" #

+ κI us −
ðt
s
f τð Þdτ

� 

,

ð88Þ

using a certain complex number κ.

Proof. The representation is regarded as

u tð Þ =U t, sð Þus +
ðt
s
U t, τð Þf τð Þdτ

= ea t,sð Þ − κI
 �

us +
ðt
s
ea t,τð Þ − κI
 �

f τð Þdτ

= ea t,sð Þus +
ðt
s
ea t,τð Þ f τð Þdτ

� 

− κI us −

ðt
s
f τð Þdτ

� 

:

ð89Þ

The former part in the parenthesis is the mild solution of
∂tuðtÞ = aðt, sÞuðtÞ + f ðtÞ, and the latter part in another
parenthesis is the mild solution of ∂tuðtÞ = f ðtÞ. The unique
existence of mild solution for the former part is valid for H€o
lder continuous f ∈ L1ð0, T ; XÞ and that for the latter part is
valid for any f ∈ L1ð−T , T ; XÞ [Q.E.D.: Corollary 14]. ?

Corollary 14 shows the meaning of introducing the alter-
native infinitesimal generator. This result should be com-
pared to the standard theory of evolution equations in
which the inhomogeneous term f is assumed to be continu-
ous on ½−T , T�. Consequently, in a purely abstract frame-
work, the maximal regularity effect [31, 32] is found in the
solutions of renormalized evolution equations. In this sense,
the alternative infinitesimal generator brings about the ana-
lytic semigroup theory for nonparabolic evolution equations.

4. Relativistic Formulation of Abstract
Evolution Equations

4.1. Formalism. The relativistic formulation of abstract evolu-
tion equations (55) is introduced to establish an abstract ver-
sion of the Cole-Hopf transform in Banach spaces and to
explain the nonlinear relation between the evolution opera-
tor and its infinitesimal generator [11]. The relativistic for-
mulation is introduced for changing the evolution
direction, which is necessary to justify the generalized Cole-
Hopf transform.

In this paper, the logarithmic representation of infinites-
imal generator is utilized to formulate the relativistic form of
abstract evolution equations. Here, the terminology “relativ-
istic” is used in the sense that there is no especially dominant
direction. In particular, the role of t direction (time direction)
is not the absolute direction being compared to the other
directions: x, y, and z directions (spatial directions) in the
standard notation. While the relativistic treatment is associ-
ated with the equally valid time-reversal and spatial-reversal
symmetries, here the relativistic form to the generalized
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framework (57) is introduced without assuming the invert-
ible property of evolution operators.

Let the standard space-time variables ðt, x, y, zÞ be
denoted by ðx0, x1, x2, x3Þ receptively. It is further possible
to generalize space-time variables to ðx0, x1, x2, x3,⋯, xnÞ
being valid to general ðn + 1Þ-dimensional space-time. In
spite of the standard treatment of abstract evolution equa-
tions, the direction of evolution does not necessarily mean
time-variable t = x0 in the relativistic formulation of the
abstract evolution equations. Consequently, the equal treat-
ment of any direction and the introduction of multidimen-
sion are naturally realized by the relativistic formulation.

Definition 15 (relativistic form). For an evolution family of
operators fUðxi, ξiÞg−L≤xi ,ξi≤L in a Banach space Xi, let Kðxi
Þ: Yi ⟶ Xi be the preinfinitesimal generator of Uðxi, ξiÞ,
where Yi is defence subspace of Xi. The relativistic form of
abstract evolution equations is defined as

−∂xiU xi, ξi
 �

u ξi
 �

= K xi
� �

U xi, ξi
 �

u ξi
 �

,

u ξi
 �

= uξi ,
ð90Þ

in Xi, where Xi is a functional space consisting of functions
with variables xj with 0 ≤ j ≤ n skipping only j = i. Conse-
quently, the unknown function is represented by uðxiÞ =Uð
xi, ξiÞuξi for a given initial value uξi ∈ Xi.

Let ∂xiUðxi, ξiÞuξi = KðxiÞUðxi, ξiÞuξi evolving for i direc-
tion be represented by ∂xkVðxk, ξkÞvξk =KðxkÞVðxk, ξkÞvξk
in a certain direction k. For k ≠ i, let us begin with the abstract
Cauchy problem

∂xkV xk, ξk
 �

v ξk
 �

=K xk
 �

V xk, ξk
 �

v ξk
 �

,

v ξk
 �

= vξk ,
ð91Þ

in Xk. It is remarkable that even if the evolution operator U
ðxi, ξiÞ and its infinitesimal generator exist, Vðxk, ξkÞ and its
infinitesimal generator do not necessarily exist. Those exis-
tence should be individually examined for each direction. If
Uðxi, ξiÞ, Vðxk, ξkÞ, and those infinitesimal generators exist,
uðxiÞ in equation (90) and vðxkÞ in equation (91) satisfy the
same evolution equation, where the detailed conditions such
as initial and boundary conditions can be different depending
on the settings of Xi and Xk. For the purpose of introducing
the relativistic form with a significance, it is necessary to
clarify

(i) The well-defined (pre-)infinitesimal generator of Vð
xk, ξkÞ

(ii) The existence of Vðxk, ξkÞ (or the corresponding reg-
ularized evolution operator)

to an unknown direction k. The second one automatically
follows if the first one is established. Otherwise equation
(91) cannot be regarded as the abstract evolution equations.
This issue is examined in generalizing the Cole-Hopf
transform.

The propagation of singularity should be different if the
evolution direction is different. For equations (90) and (91),
the evolution direction is not limited to x0. This gives a rea-
son why the formulation shown in equation (90) is called
the relativistic form of abstract evolution equations. It means
that if invertible evolution operator is obtained for one direc-
tion, the evolution operator for the other direction is not nec-
essarily be the invertible. Here is a reason why it is useful to
introduce a relativistic form based on the generalized loga-
rithmic representation (cf. Corollary 8).

One utility of considering the evolution towards spatial
direction is to explain and generalize the Cole-Hopf trans-
form. For this purpose, it is necessary to realize the logarith-
mic representation of the infinitesimal generators defined in
the relativistic form of the abstract evolution equations. That
is, for a significant introduction of the relativistic form, it
should be introduced together with the logarithmic represen-
tation. The condition to obtain the logarithmic representa-
tion is stated as follows.

Theorem 16. (relativistic form of logarithmic representation).
Let i denote any direction satisfying 0 ≤ i ≤ n. Let xi and ξi sat-
isfy −L ≤ xi, ξi ≤ L and Yi be a dense subspace of a Banach
space Xi. A two-parameter evolution family of operators
fUðxi, ξiÞg−L≤xi ,ξi≤L satisfying equation (7) is assumed to exist

in a Banach space Xi (i.e., the inverse of Uðxi, ξiÞ is not
assumed). Under the existence of the preinfinitesimal genera-
tor KðxiÞ: Yi ⟶ Xi of Uðxi, ξiÞ for the xi direction, let Uðxi
, ξiÞ and KðxiÞ commute. The logarithmic representation of
infinitesimal generator is obtained; there exists a certain com-
plex number κ ≠ 0 such that

K xi
� �

uξi = I − κe−a xi ,ξið Þ �−1
∂xiLog U xi, ξi

 �
+ κI

 �
uξi

= I − κe−a xi ,ξið Þ �−1
∂xia xi, ξi

 �
uξi ,

ð92Þ

where uξ is an element in Yi, κ is taken from the resolvent set

of Uðxi, ξiÞ, and aðxi, ξiÞ = LogðUðxi, ξiÞ + κIÞ. Note that Uð
xi, ξiÞ is not assumed to be invertible.

Proof. Different from the proof of Theorem 3, here the simi-
lar statement is proved without assuming the invertible prop-

erty of Uðxi, ξiÞ. The key point is that ðI − κe−aðx
i ,ξiÞÞ−1 exists

for a certain κ ∈ℂ, even ifUðxi, ξiÞ−1 does not exist. In partic-
ular, the obtained representation is more generally compared
to the one obtained in Ref. [8]. For any Uðxi, ξiÞ, operators
LogðUðxi, ξiÞ + κIÞ and LogðUðxi + h, ξiÞ + κIÞ are well
defined for a certain κ. The xi-differential in a weak sense is
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formally written by

wlim
h→0

1
h

Log U xi + h, ξi
 �

+ κI
 �

− Log U xi, ξi
 �

+ κI
 �n o

=wlim
h→0

1
2πi

ð
Γ

Logλ λI −U xi + h, ξi
 �

− κI
 �−18<:

�
U xi + h, ξi
 �

−U xi, ξi
 �

h

� λI −U xi, ξi
 �

− κI
 �−19=;dλ,

ð93Þ

where Γ, which is taken independent of xi, ξi, and h for a suf-
ficiently large certain κ, denotes a circle in the resolvent set of
both Uðt, sÞ + κI and Uðt + h, sÞ + κI.

The discussion, which is the same as that shown in The-
orem 3, leads to

∂tLog U xi, ξi
 �

+ κI
 �

u

= 1
2πi

ð
Γ

dλ Logλð Þ λI −U xi, ξi
 �

− κI
 �−1

wlim
h→0

24
�

U xi + h, ξi
 �

−U xi, ξi
 �

h

0@ 1A
� λI −U xi, ξi

 �
− κI

 �−135u,

ð94Þ

for u ∈ Yi. Because it is allowed to interchange KðxiÞ with
Uðxi, ξiÞ,

∂tLog U xi, ξi
 �

+ κI
 �

u

= 1
2πi

ð
Γ

Logλð Þ λI −U xi, ξi
 �

− κI
 �−2

U t, sð ÞdλK xi
� �

u,

ð95Þ

for u ∈ Yi, where wlim
h→0

ðUðxi + h, ξiÞ −Uðxi, ξiÞÞ/h means the

preinfinitesimal generator KðxiÞ itself. A part of the right
hand side is calculated as

1
2πi

ð
Γ

Logλð Þ λI −U xi, ξi
 �

− κI
 �−2

U xi, ξi
 �

dλ

= I − κ U t, sð Þ + κIð Þ−1,
ð96Þ

due to the integration by parts, where the details of procedure

is essentially the same as Ref. [8]. It leads to

K xi
� �

uξi = I − κe−a xi ,ξið Þ �−1
∂xiLog U xi, ξi

 �
+ κI

 �
uξi ,

ð97Þ

for uξi ∈ Yi. It is notable that ðUðxi, ξiÞ + κIÞ−1 is always well-
defined for any κ taken from the resolvent set of Uðxi, ξiÞ,
even if Uðxi, ξiÞ =Uðxi, ξiÞ−1 does not exist [Q.E.D.: Theo-
rem 16]. ?

Under the existence of logarithmic representation for K
ðxiÞ, the related concepts such as

(1) Alternative infinitesimal generator: ∂xiaðxi, ξiÞ = ∂xi
LogðUðxi, ξiÞ + κIÞ

(2) Regularized evolution operator: eaðx
i ,ξiÞ =Uðxi, ξiÞ +

κI

(3) Renormalized abstract evolution equation: ∂xi~u = ½
∂xiaðxi, ξiÞ�~u are similarly well-defined in the relativ-
istic framework

4.2. Generalization of the Cole-Hopf Transform. Now it is
ready for establishing the general version of the Cole-Hopf
transform. It corresponds to an application example of rela-
tivistic formulation provided. The Cole-Hopf transform
[33–37] is a concept bridging the linearity and the nonlinear-
ity. In the following, such a linear-nonlinear conversion rela-
tion is found within the relation between the infinitesimal
generators and the generated semigroups. For t ∈ℝ+ and x
∈ℝ, the Cole-Hopf transform reads

ψ t, xð Þ = −2μ−1/2∂x log u t, xð Þ, ð98Þ

where uðt, xÞ denotes the solution of linear equation and ψð
t, xÞ is the solution of transformed nonlinear equation. On
the other hand, e.g., for t ∈ℝ and x ∈ℝn, the logarithmic rep-
resentation of infinitesimal generator

K xi
� �

uξi
= I + κU xi, ξi

 � �
∂xiLog U xi, ξi

 �
+ κI

 �
uξi ,

ð99Þ

has been obtained in the abstract framework, where Uðxi, ξiÞ
denotes the evolution operator and KðxiÞ is its infinitesimal
generator. By taking a specific case with κ = 0, the similarity
between them is clear. That is, the process of obtaining infin-
itesimal generators from evolution operators is expected to
be related to the emergence of nonlinearity.

Based on the logarithmic representation of infinitesimal
generators obtained in the Banach spaces, the Cole-Hopf
transform is generalized in the following sense:

(i) The linear equation is not necessarily the heat
equation
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(ii) The spatial dimension of the equations is not limited
to 1

(iii) The variable in the transform is not limited to a spa-
tial variable x

where in order to realize these features, the relativistic formu-
lation of abstract evolution equation is newly introduced.
Since the logarithmic representation shows a relation
between an evolution operator and its infinitesimal genera-
tor, the correspondence to the Cole-Hopf transform means
a possible appearance of nonlinearity in the process of defin-
ing an infinitesimal generator from the evolution operator.
The next theorem follows.

Theorem 17. (generalization of the Cole-Hopf transform). Let
i be an integer satisfying 0 ≤ i ≤ n and Y be a dense subspace of
a Banach space X. Let an invertible evolution family
fUðxi, ξiÞg0≤xi ,ξi≤L be generated by AðxiÞ for 0 ≤ xi, ξi ≤ L in

a Banach space X. Uðxi, ξiÞ and AðxiÞ are assumed to com-
mute. For any uξi ∈ Y ⊂ X, the logarithmic representation

A xi
� �

U xi, ξi
 �

uξi = ea xi ,ξið Þ ∂xiLog U xi, ξi
 �

+ κI
 �h i

uξi ,

ð100Þ

is the generalization of the Cole-Hopf transform, where the
logarithmic representation is obtained in a general Banach
space framework, κ ≠ 0 is a complex number, and where aðxi
, ξiÞ = LogðUðxi, ξiÞ + κIÞ. In particular, if ðUðxi, ξiÞuξiÞ

−1

exists for a given interval 0 ≤ xi, ξi ≤ L, its normalization

A xi
� �

= I − κe−a xi ,ξið Þ �
∂xiLog U xi, ξi

 �
+ κI

 �h i
, ð101Þ

defined in X corresponds to ψðt, xÞ.
Proof. The proof consists of five steps.

Step 1. Formulation. It is necessary to recognize the evolution
direction of the heat equation as x, because the derivative on
the spatial direction x is considered in the Cole-Hopf trans-
form. The Cole-Hopf transform acts on one-dimensional
heat equation

∂2xu t, xð Þ − μ1/2∂tu t, xð Þ = 0, t ∈ 0,∞ð Þ, x ∈ −L, Lð Þ,
u t, −Lð Þ = u t, Lð Þ = 0, t ∈ 0,∞ð Þ,

u 0, xð Þ = u0 xð Þ, x ∈ −L, Lð Þ,
ð102Þ

where μ is a real positive number and the hypoelliptic prop-
erty of parabolic evolution equation is true. The first equation
of (102) is hypoelliptic; for an open set U ⊂ ð−∞,∞Þ × ð−L
, LÞ, u ∈ C∞ðUÞ follows from ð∂2x − μ1/2∂tÞu ∈ C∞ðUÞ. Equa-
tion (102) is well-posed in C∞ð0,∞Þ × C∞ð−L, LÞ so that
μ1/2∂t is the infinitesimal generator in C∞ð−L, LÞ. The spaces
C1ð−L, LÞ and C∞ð−L, LÞ are dense in Lpð−L, LÞ with 1 ≤ p

<∞. The solution is represented by

u t, xð Þ =U tð Þu0, ð103Þ

where UðtÞ is a semigroup generated by μ−1/2∂2x under the
Dirichlet-zero boundary condition.

By changing the evolution direction from t to x, the heat
equation

∂2xu t, xð Þ − μ1/2∂tu t, xð Þ = 0, t ∈ 0,∞ð Þ, x ∈ −L, Lð Þ, ð104Þ

u t, −Lð Þ = v0 tð Þ, ∂xu t, −Lð Þ = v1 tð Þ, t ∈ 0,∞ð Þ, ð105Þ

u 0, xð Þ = 0 x ∈ −L, Lð Þ, ð106Þ

is considered for x direction, where v0ðtÞ and v1ðtÞ are
given initial functions. To establish the existence of semi-
group for the x direction, it is sufficient to consider the
generation of semigroup in L2ð−∞,∞Þ by generalizing t
-interval from ð0,∞Þ to ð−∞,∞Þ. The Fourier transform
leads to

∂2x~u − iμ1/2ω~u = 0

~u ω, 0ð Þ = ~v0 ωð Þ, ∂x~u ω, 0ð Þ = ~v1 ωð Þ,
ð107Þ

where ω is a real number. Indeed, the following trans-
forms

u t, xð Þ = 1
2π

ð∞
−∞

u~
ð∞
−∞

~u ω, xð Þeiωtdω,u t, −Lð Þ

= 1
2π

ð∞
−∞

~u ω, −Lð Þeiωtdω,

∂xu t, −Lð Þ = 1
2π

ð∞
−∞

∂x~u ω, −Lð Þeiωtdω,

ð108Þ

are implemented. By solving the characteristic equation
λ2 − iμ1/2ω − 0, the Fourier transformed solution of (105)
is

~u ω, xð Þ = ~v0 ωð Þ − i −iμ1/2ω
� �−1/2

~v1 ωð Þ
2

e + iμ1/2ω
� �1/2

x

+ ~v0 ωð Þ + i −iμ1/2ω
� �−1/2

~v1 ωð Þ
2

e + iμ1/2ω
� �1/2

x,

ð109Þ
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where

~u ω, 0ð Þ = ~v0 ωð Þ − i −iμ1/2ω
� �1/2

~v1 ωð Þ
2

+ ~v0 ωð Þ + i −iμ1/2ω
� �1/2

~v1 ωð Þ
2

~v0 ωð Þ,

∂x~u ω, 0ð Þ = iμ1/2ω
� �1/2 ~v0 ωð Þ − i −iμ1/2ω

� �−1/2
~v1 ωð Þ

2

−
~v0 ωð Þ + i −iμ1/2ω

� �−1/2
~v1 ωð Þ

2

!
= ~v1 ωð Þ:

ð110Þ

Meanwhile, based on the relativistic treatment, one-
dimensional heat equation

∂2xu − μ1/2∂tu = 0, ð111Þ

is written as

∂x
u

v

 !
−

0 I

f μ1/2∂t 0

 !
u

v

 !
= 0: ð112Þ

Let a linear operator A be defined by

A ==
0 I

μ1/2∂t 0

 !
, ð113Þ

in L2ð−∞,∞Þ × L2ð−∞,∞Þ and the domain space of A be

D Að Þ =H1 −∞,∞ð Þ × L2 −∞,∞ð Þ, ð114Þ

where H1ð−∞,∞Þ = fuðtÞ∈L2ð−∞,∞Þ ; u′ðtÞ∈L2ð−∞,∞Þ
, uð0Þ = 0g is a Sobolev space. The Fourier transform means
that the diagonalization of A is equal to

~A =
μ1/2∂t
� �1/2

0

0 − μ1/2∂t
� �−1/2

0@ 1A: ð115Þ

In this context, the master equation of the problem
(105) is reduced to the abstract evolution equation

∂x
~u

~v

 !
− ~A

~u

~v

 !
= 0, ð116Þ

in L2ð−∞,∞Þ × L2ð−∞,∞Þ, where

~u = u − i −iμ1/2ω
� �−1/2v

2
,

~v = u + i −iμ1/2ω
� �−1/2v

2
:

ð117Þ

It suggests that the evolution operator of equation
(105) is generated by

± μ1/2∂t
� �1/2, ð118Þ

so that it is sufficient to show ±ðμ1/2∂tÞ1/2, as the infinites-
imal generator. Note that the operator ~A is not necessarily
a generator of analytic semigroup, because the propagation
of singularity should be different if the evolution direction
is different. Consequently, the existence of semigroup for

(116) in the x direction is reduced to show ±ðμ1/2∂tÞ1/2,
as the infinitesimal generator in L2ð−∞,∞Þ. In the follow-
ing, the property of μ1/2∂t is discussed in the second step,

and the fractional power of ðμ1/2∂tÞ1/2 is studied in the
third step.

Step 2. First order differential operator. The following lemma
is proved in this step.

Lemma 18. The operator μ1/2∂t with the domainH1ð−∞,∞Þ
is the infinitesimal generator in L2ð−∞,∞Þ.

Proof of Lemma 18 Let λ be a complex number satisfying

Reλ > 0. First, the existence of ðλ − μ1/2∂tÞ−1 is examined. Let
f ðtÞ be included in L2ð−∞,∞Þ. Because

λ − μ1/2∂t
� �

u = f , ð119Þ

in one-dimensional interval ð−∞,∞Þ is a first-order
ordinary differential equation with a constant coefficient,
and the global-in-t solution necessarily exists for a
given uð0Þ = u0 ∈ℂ. That is, λ/μ1/2 is included in the
resolvent set of ∂t for an arbitrary complex number λ

so that ðλ − μ1/2∂tÞ−1 is concluded to be well-defined
in H1ð−∞,∞Þ.

Second, the resolvent operator ðλ − μ1/2∂tÞ−1 is estimated
from the above. Since λ/μ1/2 is included in the resolvent set of
∂t , it is readily seen that ðλ − μ1/2∂tÞ−1 is a bounded operator
on L2ð−∞,∞Þ. More precisely, let us consider equation
(119) being equivalent to

∂tu tð Þ = λ

μ1/2

� 	
u tð Þ − f tð Þ

μ1/2
: ð120Þ

If the inhomogeneous term satisfies f ðtÞ ∈ L2ð−∞,∞Þ,

u tð Þ = −
1

μ1/2

ð∞
t

exp −λ
μ1/2

s − tð Þ
� 	

f sð Þds, ð121Þ
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satisfies equation (120). According to the Schwarz inequality,ð∞
−∞

u tð Þj j2dt =
ð∞
−∞

1
μ1/2

ð∞
t

exp −λ
μ1/2

s − tð Þ
� 	

f sð Þds
���� ����2dt

≤
1
μ

ð∞
−∞

�ð∞
t

exp −Re λ
2μ1/2

s − tð Þ
� 	

exp

� −Re λ
2μ1/2

s − tð Þ
� 	

f sð Þj jds
�2

dt

≤
1
μ

ð∞
−∞

ð∞
t

exp −Re λ
μ1/2

s − tð Þ
� 	

ds
ð∞
t

exp

� −Re λ
μ1/2

s − tð Þ
� 	

f sð Þj j2ds dt,

ð122Þ

is obtained, and the equalityð∞
t

exp −Re λ
μ1/2

s − tð Þ
� 	

ds =
ð∞
0

exp −Re λ
μ1/2

s
� 	

ds = μ1/2

Re λ ,

ð123Þ

is positive if Reλ > 0 is satisfied. Its application leads toð∞
−∞

u tð Þj j2dt ≤ 1
μ

μ1/2

Re λ

ð∞
−∞

ð∞
t

exp −Re λ
μ1/2

s − tð Þ
� 	

f sð Þj j2ds dt

= 1
μ

μ1/2

Re λ

ð∞
−∞

ðs
−∞

exp −Re λ
μ1/2

s − tð Þ
� 	

dt f sð Þj j2ds:

ð124Þ

Further application of the equalityðs
−∞

exp −Re λ
μ1/2

s − tð Þ
� 	

dt =
ð0
−∞

exp Re λ
μ1/2

t
� 	

dt = μ1/2

Re λ ,

ð125Þ

results inð∞
−∞

u tð Þj j2dt ≤ 1
μ

μ1/2

Re λ

ð∞
−∞

μ1/2

Re λ f sð Þj j2ds

= 1

Re λ2
ð∞
−∞

f sð Þj j2ds,
ð126Þ

for Reλ > 0, and therefore,

λI − μ1/2∂t
� �−1

f tð Þ
��� ���

L2 −∞,∞ð Þ
≤

1
Re λ f tð Þk kL2 −∞,∞ð Þ,

ð127Þ

follows. That is, for Reλ > 0,

λI − μ1/2∂t
� �−1��� ��� ≤ 1/ Re λð Þ, ð128Þ

is valid. The surjective property of λI − μ1/2∂t is seen by the

unique existence of solutions u ∈ L2ð−∞,∞Þ for the Cauchy
problem of equation (120).

A semigroup is generated by taking a subset of the com-
plex plane as

Ω = λ ∈ℂ ; λ = �λ
� �

, ð129Þ

where Ω is included in the resolvent set of μ1/2∂t . For λ ∈Ω
, ðλI − μ1/2∂tÞ−1 exists, and

λI − μ1/2∂t
� �−n��� ��� ≤ 1/ Re λð Þn, ð130Þ

is obtained. Consequently, according to the Lumer-Phillips
theorem [38] for the generation of quasi contraction semi-
group, μ1/2∂t is confirmed to be an infinitesimal generator
in L2ð−∞,∞Þ, and the unique existence of global-in-x weak
solution follows [Q.E.D.: Lemma 18]. ?

The semigroup generated by μ1/2∂t is represented by

exp hμ1/2∂t
� �

u
� �

tð Þ = u t + μ1/2h
� �

, −∞ < h <∞, ð131Þ

so that the group is actually generated by μ1/2∂t . Indeed, the
similar estimate as equation (130) can be obtained for Reλ
< 0 with ðλ − μ1/2Þu = f in which the solution u is repre-
sented by

u tð Þ = −
1

μ1/2

ðt
−∞

exp −λ
μ1/2

s − tð Þ
� 	

f sð Þds, ð132Þ

that should be compared to equation (121).

Step 3. Fractional powers of operator. The following lemma is
proved in this step.

Lemma 19. For 0 < α < 1, the operator ðμ1/2∂tÞα is the infin-
itesimal generator in L2ð−∞,∞Þ.

Proof of Lemma 19 According to Lemma 18, μ1/2∂t is the
infinitesimal generator in L2ð−∞,∞Þ. For an infinitesimal
generator μ1/2∂t in L2ð−∞,∞Þ, let the one-parameter semi-
group generated by μ1/2∂t be denoted by V ðxÞ. An infinites-
imal generator μ1/2∂t is a closed linear operator in
L2ð−∞,∞Þ. Its fractional power

μ1/2∂t
� �α, 0 < α < 1, ð133Þ

has been confirmed to be well-defined by S. Bochner [39] and
R.S. Phillips [40] as the infinitesimal generator of semigroup
(cf. K. Yosida [41]):

W xð Þw0 =
ð∞
0
V xð Þw0dγ λð Þ, ð134Þ

for w0 ∈ L2ð−∞,∞Þ, where WðxÞ is the semigroup for x
direction. The measure dγðλÞ ≥ 0 is defined through the
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Laplace integral

exp −tkαð Þ =
ð∞
0

exp −λkð Þdγ λð Þ, ð135Þ

where t, k > 0 is satisfied [Q.E.D.: Lemma 19]. ?
By taking α = 1/2, ðμ1/2∂tÞ1/2 is confirmed to be an infin-

itesimal generator in L2ð−∞,∞Þ. Because Ω is included in
the resolvent set of −ðμ1/2∂tÞ1/2, it is readily seen that −
ðμ1/2∂tÞ1/2 is also an infinitesimal generator in L2ð−∞,∞Þ.

Step 4. Abstract form of the Cole-Hopf transform. As in the
original derivation of the Cole-Hopf transform, the solution
of heat equation wðt, xÞ =Wðx, ξÞwξðtÞ solved along the x
direction permits its logarithm function. The abstract case
of the original Cole-Hopf transform is included in the
description of the logarithmic representation (100). Indeed,
let an invertible evolution family fWðx, ξÞg0≤x,ξ≤L be gener-
ated by AðxÞ for 0 ≤ x, ξ ≤ L. According to Lemma 19, the
logarithmic representation of relativistic form (99) is
obtained in this case as

A xð Þwξ = I + κW ξ, xð Þð Þ ∂xLog W x, ξð Þ + κIð Þ½ �wξ, ð136Þ

and hence as

A xð Þw x, ξð Þwξ = κI +W x, ξð Þð Þ ∂xLog W x, ξð Þ + κIð Þ½ �wξ,
ð137Þ

using the commutation assumption. The nonlinear Anzatz
−2μ−1/2ð∂xuðt, xÞÞuðt, xÞ−1 of the Burgers’ equation

ψ t, xð Þ = −2μ−1/2∂x log u t, xð Þ = −2μ−1/2 ∂xu t, xð Þð Þu t, xð Þ−1,
ð138Þ

is essentially represented by

−2μ−1/2 A xð ÞW x, ξð Þð ÞW x, ξð Þ−1
= −2μ−1/2 κI +W x, ξð Þð Þ ∂xLog W x, ξð Þ + κIð Þ½ �W x, ξð Þ−1
= −2μ−1/2 κW ξ, xð Þ + Ið Þ ∂xLog W x, ξð Þ + κIð Þ½ �,

ð139Þ

in the abstract form. The similarity between equation (101)
and the standard definition of operator norm is clear. In par-
ticular, the evolution direction is generalized from x to xi in
equation (101).

Step 5. Generalization property. Equation (100) is the gener-
alization of the Cole-Hopf transform. According to the intro-
duction of nonzero κ in the abstract form, the applicability is
significantly increased so that the linear equation is not nec-
essarily the heat equation. According to the abstract nature of
the logarithmic representation, linear and nonlinear equa-
tions are not necessarily considered in the one-spatial dimen-
sion. According to the relativistic treatment, the transformed

variable is not limited to the spatial variables [Q.E.D.: Theo-
rem 17]. ?

The generalized Cole-Hopf transform (100) shows that
the nonlinearity of semigroup can appear simply by altering
the evolution direction under a suitable identification
between the infinitesimal generator and the evolution opera-
tor. In this sense, equation (90) is regarded as a local-in-xi

linearized equation, if Uðxi, ξiÞ is a nonlinear semigroup
(semigroup related to the nonlinear equations). Furthermore,
the generalized Cole-Hopf transform (100) suggests that the
relation between evolution operator and its infinitesimal gen-
erator corresponds essentially to the transform between line-
arity and nonlinearity. In the same context of generalizing
Miura transform between the Korteweg-de-Vries and the
modified Korteweg-de-Vries equations, the logarithmic rep-
resentation is utilized [15].

5. Algebraic Structure of
Infinitesimal Generators

5.1. B ðXÞ-Module. The algebraic structure is studied based
on the relativistic form of abstract equations. The operator
aðxi, ξiÞ = LogðUðxi, ξiÞ + κIÞ is bounded on X. It follows that
eaðx

i ,ξiÞ is well-defined by the convergent power series. Note

again that eaðx
i ,ξiÞ can be defined without assuming well-

defined ∂taðx
i ,ξiÞ. Even without taking into account the detail

property of the infinitesimal generator ∂taðx
i ,ξiÞ, the expo-

nentiability is realized by the boundedness of aðxi, ξiÞ. In this
section, beginning with aðxi, ξiÞ = LogðUðxi, ξiÞ + κIÞ, an
algebraic module over a Banach algebra is defined. The essen-
tial idea of presenting a useful algebraic structure is not to
examine directly the set of ∂taðxi, ξiÞ but to focus on the set
of aðxi, ξiÞ at first, and then, the algebraic structure of infini-
tesimal generators is discovered in the next. Although aðxi,
ξiÞ ∈ BðXÞ is trivially the infinitesimal generator, what is
explained here is the structure of the set of preinfinitesimal
generators ∂taðxi, ξiÞ.

Theorem 20. (normed vector space). Let U jðxi, ξiÞ be evolu-
tion operators satisfying equation (19) and LogU jðxi, ξiÞ be
well-defined for any xi, ξi ∈ ½−L, L� and j = 1, 2,⋯, n. Log Uj

ðxi, ξiÞ is assumed to commute with each other.

VLg Xð Þ≔ kLogU j xi, ξi
 �

; k ∈ C, xi, ξi ∈ −L, L½ �
n o

⊂ B Xð Þ ⊂G Xð Þ,
ð140Þ

is a normed vector space over the complex number field, where
BðXÞ denotes a set of all the bounded operators on X.

Proof. In case of κ = 0, the operator aðxi, ξiÞ is reduced to

LogU xi, ξi
 �

∈ B Xð Þ: ð141Þ
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The operator sum is calculated using the Dunford-Riesz
integral

LogU xi, ηi
� �

+ LogU ηi, ξi
 �

= 1
2πi

ð
Γ

Logλ λI −U xi, ηi
� �� �−1

dλ

+ 1
2πi

ð
Γ′
Logλ′ λ′I −U ηi, ξi

 � �−1
dλ′

= 1

2πið Þ2
ð
Γ

ð
Γ′

Logλ + Logλ′
 �

λI −U xi, ηi
� �� �−1

� λ′I −U ηi, ξi
 � �−1

dλ′dλ

= 1

2πið Þ2
ð
Γ

ð
Γ′

Logλλ′
 �

λI −U xi, ηi
� �� �−1

� λ′I −U ηi, ξi
 � �−1

dλ′dλ

= Log U xi, ηi
� �

U ηi, ξi
 �h i

= LogU xi, ξi
 �

,

ð142Þ

then, the sum closedness is clear. Here, Γ′ is assumed to be
included in Γ, and this condition is not so restrictive in the
present setting. In a different situation, when Uðt, rÞ and V
ðt, rÞ commute for the same t and r, another kind of sum is
calculated as

LogU1 xi, ηi
� �

+ LogU2 xi, ηi
� �

= 1
2πi

ð
Γ

Logλ λI −U1 xi, ηi
� �� �−1

dλ

+ 1
2πi

ð
Γ′
Logλ′ λ′I −U2 xi, ηi

� � �−1
dλ′

= 1

2πið Þ2
ð
Γ

ð
Γ′

Logλ + Logλ′
 �

λI −U1 xi, ηi
� �� �−1

� λ′I −U2 xi, ηi
� � �−1

dλ′dλ

= 1

2πið Þ2
ð
Γ

ð
Γ′

Logλλ′
 �

λI −U1 xi, ηi
� �� �−1

� λ′I −U2 xi, ηi
� � �−1

dλ′dλ

= Log U1 xi, ηi
� �

U2 xi, ηi
� �� �

,
ð143Þ

where for Wðxi, ηiÞ = eLogU1
ðxi ,ηiÞ+LogU2ðxi ,ηiÞ =U1ðxi, ηiÞU2ð

xi, ηiÞ, the semigroup property is satisfied as

W xi, ηi
� �

W ηi, ξi
 �

=U1 xi, ηi
� �

U2 xi, ηi
� �

U1 ηi, ξi
 �

U2 ηi, ξi
 �

=U1 xi, ηi
� �

U1 ηi, ξi
 �

U2 xi, ηi
� �

U2 ηi, ξi
 �

=W xi, ξi
 �

,

W ξi, ξi
 �

=W ξi, xi
 �

W xi, ξi
 �

= I,

ð144Þ

and then, the sum closedness is clear. Although the logarithm
function is inherently a multivalued function, the uniqueness
of sum operation is ensured by the single-valued property of
the principal branch “Log.” Consequently, since the closed-
ness for scalar product is obvious, where

~W xi, ηi
� �

= ek1LogU1 xi ,ηið Þ+k2LogU2 xi ,ηið Þ

= ek1LogU1 xi ,ηið Þek2LogU2 xi ,ηið Þ,
ð145Þ

holds the semigroup property in a similar way to Wðxi, ηiÞ,
Consequently, VLgðXÞ is a normed vector space over the
complex number field. In particular, the zero operator LogI
is included in VLgðXÞ. Theorem 1 has been proved [Q.E.D.:
Theorem 20]. ?

Theorem 21. (BðXÞ-module). LetU jðxi, ξiÞ be evolution oper-
ators satisfying equation (19) for any xi, ξi ∈ ½−L, L� and j = 1
, 2,⋯, n. For a certain K ∈ BðXÞ, let a subset of BðXÞ in which
each element is assumed to commute with LogðUjðxi, ξiÞ + KÞ
are assumed to commute with each other.

BLg Xð Þ≔
n
KLog U j xi, ξi

 �
+ K

 �
; K ∈ Bab Xð Þ, 

K ∈ B Xð Þ, x, ξ ∈ −L, L½ �
o
⊂ B Xð Þ ⊂G Xð Þ,

ð146Þ

is a module over the Banach algebra.

Proof. It is worth generalizing the above normed vector
space. In this sense, utilizing a common operator K ∈ BðXÞ,
components are changed to LogðUðxi, ξiÞ + KÞ:

The operator sum is calculated as

Log U xi, ηi
� �

+ K
� �

+ Log U ηi, ξi
 �

+ K
 �

= 1
2πi

ð
Γ

Logλ λI −U xi, ηi
� �

− K
� �−1

dλ

+ 1
2πi

ð
Γ′
Logλ′ λ′I −U ηi, ξi

 �
− K

 �−1
dλ′

= 1

2πið Þ2
ð
Γ

ð
Γ′

Logλ + Logλ′
 �

λI −U xi, ηi
� �

− K
� �−1

� λ′I −U ηi, ξi
 �

− K
 �−1

dλ′dλ

= 1

2πið Þ2
ð
Γ

ð
Γ′

Logλλ′
 �

λI −U xi, ηi
� �

− K
� �−1

� λ′I −U ηi, ξi
 �

− K
 �−1

dλ′dλ

= Log U xi, ηi
� �

+ K
� �

U ηi, ξi
 �

+ K
 �h i

= Log U xi, ξi
 �

+ KU xi, ηi
� �

+ KU ηi, ξi
 �

+ K2
h i

:

ð147Þ
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After introducing a certain K ∈ BðXÞ with sufficient large
∥K∥, it is always possible to take integral path Γ′ to be
included in Γ. Since the part “KUðt, rÞ + KUðr, sÞ + K2I” is
included in BðXÞ, the sum-closedness is clear. In a different
situation, when U1ðt, rÞ and U2ðt, rÞ commute for the same
t and r, another kind of sum is calculated as

Log U1 xi, ηi
� �

+ K1

� �
+ Log U2 xi, ηi

� �
+ K2

� �
= 1
2πi

ð
Γ

Logλ λI −U1 xi, ηi
� �

− K1

� �−1
dλ

+ 1
2πi

ð
Γ′
Logλ′ λ′I −U2 xi, ηi

� �
− K2

 �−1
dλ

= 1

2πið Þ2
ð
Γ

ð
Γ′

Logλ + Logλ′
 �

λI −U1 xi, ηi
� �

− K1

� �−1
� λ′I −U2 xi, ηi

� �
− K2

 �−1
dλ′dλ

= 1

2πið Þ2
ð
Γ

ð
Γ′

Logλλ′
 �

λI −U1 xi, ηi
� �

− K1

� �−1
� λ′I −U2 xi, ηi

� �
− K2

 �−1
dλ′dλ

= Log U1 xi, ηi
� �

+ K1

�
U2 xi, ηi
� �

+ K2

� �� �
= Log W xi, ηi

� �
+ K2U1 xi, ηi

� �
+ K1U2 xi, ηi

� �
+ K1K2

� �
:

ð148Þ

Since the part “K2U1ðxi, ηiÞ + K1U2ðxi, ηiÞ + K1K2” is
included in BðXÞ, the sum-closedness is clear.

The productKLogðU1ðxi, ξiÞ + K2Þ ∈ BðXÞ is justified by
the operator product equipped with BðXÞ. Since the closed-
ness for operator product within BðXÞ is obvious, where

Ŵ xi, ηi
� �

= eK1LogU1 xi ,ηið Þ+K2LogU2 xi ,ηið Þ

= eK1LogU1 xi ,ηið ÞeK2LogU2 xi ,ηið Þ,
ð149Þ

holds the semigroup property, and using an identity operator
I ∈ BðXÞ,

KLog U xi, ηi
� �

+ K
� �

−KLog U xi, ηi
� �� �

=KLog I + KU xi, ηi
� �−1h i

,
ð150Þ

and therefore

K1Log U1 xi, ηi
� �

+ K1

� �
+K2Log U2 xi, ηi

� �
+ K2

� �
= Log Û xi, ηi

� �
+ I

� �
+ LogŴ xi, ηi

� �
,

= Log Ŵ xi, ηi
� �

+ Û xi, ηi
� �

Ŵ xi, ηi
� �� �

,
ð151Þ

are valid for Ûðxi, ηiÞ≔
eK1Log½I+K1U1ðxi ,ηiÞ−1�+K2Log½I+K2U2ðxi ,ηiÞ−1� − I. Consequently,
BLgðXÞ is a module over a Banach algebra. In particular, a
relation VLgðXÞ ⊂ BLgðXÞ is satisfied. The statement has been
proved [Q.E.D.: Theorem 21]. ?

The next corollary follows.

Corollary 22. (BðXÞ-module for infinitesimal generators). Let
U jðxi, ξiÞ be evolution operators satisfying equation (19) for

any xi, ξi ∈ ½−L, L� and j = 1, 2,⋯, n. For a certain K ∈ BðXÞ,
let a subset of BðXÞ in which each element is assumed to com-
mute with LogðUjðxi, ξiÞ + KÞ be BabðXÞ. LogðUjðxi, ξiÞ + KÞ
are assumed to commute with each other.

GLg Xð Þ≔
n
K∂xiLog U j xi, ξi

 �
+ K

 �
; K ∈ Bab Xð Þ, 

K ∈ Bab Xð Þ x, ξ ∈ −L, L½ �
o
⊂G Xð Þ,

ð152Þ

is a module over a Banach algebra.

Proof. According to the linearity of differential operator, the
introduction of differential operator ∂xi is true without any
additional treatment. It is sufficient to see that there exists a
certain ηi such that

K∂xiLog U j xi, ξi
 �

+ K
 �

= ∂xi
ðxi
ξi
K∂ηiLog U j ηi, ξi

 �
+ K

 �
dηi

" #

∂xi

"
KLog U j xi, ξi

 �
+ K

 �
−KLog I + Kð Þ

−
ðxi
ξi
∂ηiKdηi

 !
Log U j xi, ξi

 �
+ K

 �#
,

ð153Þ

according to the mean value theorem ðξi ≤ ηi ≤ xiÞ [Q.E.D.:
Corollary 22]. ?

The module over a Banach algebra is called BðXÞ-mod-
ule. For the structure of BLgðXÞ, a certain originally

unbounded part can be classified to LogðUðxi, ξiÞ + KÞ ∈ Bð
XÞ and the rest part to K ∈ BabðXÞ. Here, the terminology
“originally unbounded” is used, because some unbounded
operators are reduced to bounded operators under the valid-
ity of the logarithmic representation.

It is necessary to connect the concept of BðXÞ-module to
the set of infinitesimal generators. Let us move on to the
operator ∂xi ½KLogðU jðxi, ξiÞ + KÞ�, which is expected to be

the preinfinitesimal generator of exp ½KLogðU jððxi, ξiÞÞ +
KÞ�: This property is surely true by the inclusion relation
BLgðXÞ ⊂ BðXÞ. It is also suggested by the inclusion relation

BLgðXÞ ⊂ BðXÞ, operators ∂xiLogðUjððxi, ξiÞÞ + KÞ� are the

preinfinitesimal generators if LogðUjððxi, ξiÞÞ + KÞ� ∈ GLgðX
Þ is satisfied. Consequently, the unbounded sum-
perturbation for infinitesimal generators is seen by the sum
closedness of BðXÞ-module. Note that it does not require
the self-adjointness of the operator.
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The preinfinitesimal generator property is examined for
products of operators in the next two theorems.

Theorem 23. (product perturbation for preinfinitesimal gen-
erators). For a certain K ∈ BðXÞ, let a subset of BðXÞ in which
each element is assumed to commute with LogðUiðxi, ξiÞ + KÞ
be BabðXÞ. Let an operator denoted by

LLog U xi, ξi
 �

+ K
 �

, ð154Þ

be included in BabðXÞ, where the evolution operator Uðt, sÞ on
X is generated by AðtÞ, L is an element in BabðXÞ, and K is an
element in BðXÞ. Let K and L be further assumed to be inde-
pendent of xi. The product of preinfinitesimal generators,
which is represented by

LA tð Þ = I − Ke−a xi ,ξið Þ �−1∂
xi LLog U xi, ξi

 �
+ K

 �h i
,

ð155Þ

is also the preinfinitesimal generators in X, where aðxi, ξiÞ =
LogðUðxi, ξiÞ + KÞ:

Proof. Since L is independent of xi,

∂xi LLog U xi, ξi
 �

+ K
 �h i

= L∂xi Log U xi, ξi
 �

+ K
 �h i

,

ð156Þ

is true. The basic calculi using the t-independence of K
leads to the product of operator LAðtÞ. It is well-
defined by

I − Ke−a xi ,ξið Þ �−1
∂xi LLog U xi, ξi

 �
+ K

 �h i
= L I − Ke−a xi ,ξið Þ �−1

∂xi Log U xi, ξi
 �

+ K
 �h i

= L I − Ke−a xi ,ξið Þ �−1
U xi, ξi
 �

+ K
 �−1

� ∂xiU xi, ξi
 �

= LA tð Þ,

ð157Þ

under the commutation assumptions, where the relation
∂xiUðxi, ξiÞ = AðxiÞUðxi, ξiÞ is applied. Let xi, ξi ∈ ½−L, +L�
satisfy ξi < xi. The preinfinitesimal generator property of
LAðtÞ is confirmed by

ðxi
ξi

I − Ke−a xi ,ξið Þ �−1
∂ηi LLog U ηi, ξi

 �
+ K

 �h i
dηi

�����
�����

≤ I − Ke−a xi ,ξið Þ �−1ðxi
ξi
∂ηi LLog U ηi, ξi

 �
+ K

 �h i
dηi

�����
�����

≤ sup
ηi∈ xi ,ξi½ �

I − Ke−a xi ,ξið Þ �−1���� ����
�
ðxi
ξi
∂ηi LLog U ηi, ξi

 �
+ K

 �h i
dηi

�����
�����

≤ sup
ηi∈ xi ,ξi½ �

I − Ke−a xi ,ξið Þ �−1���� ����
0@ 1A Lk k

� Log U xi, ξi
 �

+ K
 �

− Log I + Kð Þ
��� ���,

ð158Þ

where a certain real number σ ∈ ½ξi, xi� is determined by the
mean value theorem. Consequently, due to the boundedness

of
Ð xi
ξi
ðI − Ke−aðx

i ,ξiÞÞ−1∂xi ½LLogðUðxi, ξiÞ + KÞ�dηi on X, ðI −
Ke−aðx

i ,ξiÞÞ∂xi ½LLogðUðxi, ξiÞ + KÞ� is confirmed to be the pre-
infinitesimal generator in X [Q.E.D.: Theorem 23]. ?

The operator L can be regarded as a perturbation to the
operators in BLgðXÞ. This lemma shows the product pertur-

bation for the infinitesimal generators of C0-semigroups
under the commutation, although the perturbation has been
studied mainly for the sum of operators. It is remarkable that
the self-adjointness of the operator is not required for this
lemma. For the details of conventional bounded sum pertur-
bation and the perturbation theory for the self-adjoint oper-
ators, see Ref. [42].

Theorem 24. (operator product). For a certain KðxiÞ ∈ BðXÞ,
let a subset of BðXÞ in which each element is assumed to com-
mute with LogðUðxi, ξiÞ + KðxiÞÞ be BabðXÞ. Let an operator
denoted by

LLog U xi, ξi
 �

+ K xi
� � �

, ð159Þ

be included in BLgðXÞ, where the evolution operator Uðxi, ξiÞ
on X is generated by AðxiÞ, L is an element in BabðXÞ, and
KðxiÞ is an element in BðXÞ. Let L and KðxiÞ be xi-indepen-
dent and xi-dependent, respectively. The operators represented
by

L xi
� �

∂xi LLog U xi, ξi
 �

+ K xi
� � �h i

, ð160Þ

is the preinfinitesimal generators in X, if the operator LðηiÞ
∈ BðXÞ is strongly continuous with respect to ηi in the interval
½ξi, xi�.
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Proof. Let xi, ξi ∈ ½−L, +L� satisfy ξi < xi. The preinfinitesimal
generator property is reduced to the possibility of applying
the mean value theorem.ðxi

ξi
L ηi
� �

∂ηi Log U ηi, ξi
 �

+ K ηi
� � �h i

dηi
�����

�����
≤L σi� � ðxi

ξi
∂ηi Log U ηi, ξi

 �
+ K ηi
� � �h i

dηi
�����

�����
≤ sup

σi∈ xi ,ξi½ �
L σi
� ��� �� ðxi

ξi
∂ηi Log U ηi, ξi

 �
+ K ηi
� � �h i

dηi
�����

�����
≤ sup

σi∈ xi ,ξi½ �
L σi
� ��� �� Log U ηi, ξi

 �
+ K xi
� � ����

− Log I + K xi
� �� ����,

ð161Þ

where a certain real number σi ∈ ½ξi, xi� is determined by the
mean value theorem. Consequently, LðxiÞ∂xi ½LLogðUðxi, ξi
Þ + KðxiÞÞ� is confirmed to be the preinfinitesimal generator
in X [Q.E.D.: Theorem 24]. ?

Equation (160) provides one standard form for the repre-
sentation of operator products in the sense of logarithmic
representation. Consequently, BðXÞ-module is associated
with the preinfinitesimal generator.

5.2. Formulation of Rotation Group. The application example
of BðXÞ-module is provided. The concept of BðXÞ-module is
generally enough to provide a foundation of the conventional
bounded formulation of Lie algebras (for a textbook, see
[43]). In other words, by means of BðXÞ-module, the inter-
section of the Banach algebra (including only bounded oper-
ators) and the extracted bounded part of the Lie algebra
(generally including unbounded operators) is shown. More
precisely, using BðXÞ-module, the bounded part is extracted
from unbounded angular momentum operators. The
extracted bounded parts are utilized to formulate the rotation
group with incorporating the unboundedness of angular
momentum algebra.

The mathematical foundation of rotation group is dem-
onstrated [14]. Although the evolution parameter in this
paper is denoted by t, s ∈ ½−T , +T�, it is more likely to be
denoted by θ, σ ∈ ½−Θ, +Θ�, because the evolution parameter
in the present case means the rotation angle. The rotation
group is generated by the angular momentum operator (for
textbooks, see Refs. [44, 45]). The angular momentum oper-
ator includes a differential operator, as represented by

L − ih r × ∇ð Þ, ð162Þ

where ℏ is a real constant called the Dirac constant. The
appearance of differential operator ∇ in the representation
of L is essential. The operator ∇ is an unbounded operator
for example in a Hilbert space L2ðR3Þ, while it must be
treated as a bounded operator in terms of establishing an

algebraic ring structure. Furthermore, the operator bounded-
ness is also indispensable for some important formulae such
as the Baker-Campbell-Hausdorff formula and the Zassen-
haus formula to be valid. In general, the exponential of
unbounded operators cannot be represented by the power
series expansion (cf. the Yosida approximation in a typical
proof of the Hille-Yosida theorem; e.g., see Ref. [22]).

Let ℝ3 be the three-dimensional spatial coordinate
spanned by the standard orthogonal axes, x, y, and z. The
angular momentum operator L is considered in L2ðℝ3Þ.
The angular momentum operator

L = Lx,Ly ,Lz

� �
, ð163Þ

consists of x, y, and z components

Lx = ih y∂z − z∂y
� �

,
Ly = ih z∂x − x∂zð Þ,
Lz = ih y∂y − z∂x

� �
,

ð164Þ

respectively. The commutation relations

Lx ,Ly = ihLz ,  Ly,Lz

� �
, ihLx ,  Lz ,Lx½ � = ihLy,

ð165Þ

are true, where ½L i,L j�≔L iL j −L jL i denotes a commu-
tator product ði, j = x, y, zÞ. The commutation of angular
momentum operators arises from the commutation relations
of the canonical quantization

x, px½ � = y, py
h i

= z, pz½ � = ih,

y, px½ � = y, pz½ � = z, py
h i

= x, py
h i

= x, pz½ � = 0:
ð166Þ

Indeed, the momentum operator p = ðpx, py, pzÞ is repre-
sented by p = ihð∂x, ∂y, ∂zÞ in quantum mechanics. It is
remarkable that the commutation is always true for the New-
tonian mechanics; i.e., ½x, px� = ½y, py� = ½z, pz� = 0 is true in
addition to ½y, px� = ½y, pz� = ½z, px� = ½z, py� = ½x, py� = ½x, pz�
= 0:

Let a set of all bounded operators on L2ðℝ3Þ be denoted
by BðL2ðℝ3ÞÞ. A set of operators fLk ; k = x, y, zg or fiLk/
h ; k = x, y, zg with the commutation relation (165) is

regarded as the Lie algebra. In particular fbαLx + bβLy + bγ
Lz ; bα , bβ , bγ ∈ℂg forms a vector space over the complex
number field, while fαðiLx/hÞ + βðiLy/hÞ + γðiLz/hÞ ; α, β
, γ ∈ℝg is a vector space over the real number field. It is pos-
sible to associate the real numbers α, β, and γ with the Euler
angles (for example, see Ref. [46]). The second term of the
right hand side of

ri∂j

� �
rk∂lð Þ = ri ∂jrk

� �
∂l + rirk∂j∂l, ð167Þ

disappears as far as the commutator product ½L i,L j� is

21Advances in Mathematical Physics



concerned, where ri is equal to i, and i, j, k, l = x, y, or z satisfy
i ≠ j and k ≠ l. This fact is a key to justify the algebraic ring
structure of fLk ; k = x, y, zg. On the other hand, although
Lk is assumed to be bounded on L2ðℝ3Þ in the typical treat-
ment of the Lie algebra, it is not the case for the angular
momentum algebra because of the appearance of differential
operators in their definitions. From a geometric point of
view, the range space RðLkÞ ⊂ L2ðℝ3Þ strictly includes the
domain space DðLkÞ; i.e., there is no guarantee for any u ∈
L2ðℝ3Þ and a certain positive M ∈ℝ to satisfy kLkukL2ðℝ3Þ
≤MkukL2ðℝ3Þ. In order to establish fiLk/h ; k = x, y, zg as
the Lie algebra, it is necessary to show

±iLk/h = ± ri∂r j − r j∂ri
 �

, ð168Þ

as an infinitesimal generator in L2r ðℝ3Þ, where i, j, k = x, y, z
satisfies i ≠ j ≠ k. As for the angular momentum operator,
the t-independent assumption for operators K and L in The-
orem 23 and Theorem 24 is satisfied. Note that t-indepen-
dence assumes a kind of commutation relation.

Theorem 25. (unbounded formulation of rotation group). Let
ri be either x, y, or z. For i ≠ j, an operator ±ri∂r j with its

domain space H2
r ðℝ3Þ is an infinitesimal generator in L2r ðℝ3

Þ. Consequently, the angular momentum operators

±iLx/h = ± y∂z − z∂y
� �

,
±iLy/h = ± z∂x − x∂zð Þ,
±iLz/h = ± x∂y − y∂x

� �
,

ð169Þ

are infinitesimal generators in L2r ðℝ3Þ.

Proof. The proof consists of three steps.

Step 1. ∂rk as an infinitesimal generator.

Lemma 26. For rk equal to x, y, or z, an operator ∂rk with its

domain H1ðℝ3Þ is an infinitesimal generator in L2r ðℝ3Þ.

Proof of Lemma 26 The operator ∂x is known as the
infinitesimal generator of the first order hyperbolic type par-
tial differential equations. For a complex number λ satisfying
Reλ > 0, let us consider a differential equation

∂xu xð Þ = λu xð Þ − f xð Þ, ð170Þ

in L2ðℝÞ, and

u xð Þ = −
ð∞
x

exp λ x, ξð Þ½ �f ξð Þd ξð Þ, ð171Þ

satisfies the equation. According to the Schwarz inequality,

ð+∞
−∞

u xð Þj j2dx =
ð+∞
−∞

ð∞
x

exp λ x, ξð Þ½ �f ξð Þdξ
���� ����2dx

≤
ðxi
ξi

�ð∞
x

exp Re λð Þ x − ξð Þ
2

� 

exp

� Re λð Þ x − ξð Þ
2

� 

f ξð Þj jdξ

�2

dx

≤
ðxi
ξi

ð∞
x

exp Re λð Þ x − ξð Þ½ �dξ
ð∞
x

exp

� Re λð Þ x − ξð Þ½ � f ξð Þj j2dξdx,
ð172Þ

is obtained, because jeλ/2j2 = jeRe λ/2j2jei Im λ/2j2 ≤ eRe λ is valid
if Reλ > 0. Here, the equalityð∞

x
exp Re λð Þ x − ξð Þ½ �dξ =

ð∞
0

exp −Re λð Þξ½ �dξ = 1
Re λ ,

ð173Þ

is positive valued if Reλ > 0. Its application leads toð+∞
−∞

u xð Þj j2dx ≤ 1
Re λ

ð+∞
−∞

ð∞
x

exp Re λð Þ x−ξð Þ½ � f ξð Þj j2dξdx

≤
1

Re λ

ð+∞
−∞

ðξ
−∞

exp Re λð Þ x − ξð Þ½ �dx f ξð Þj j2dξ:

ð174Þ

Further application of the equalityðξ
−∞

exp Re λð Þ x − ξð Þ½ �dx =
ð0
−∞

exp Re λð Þx½ �dx = 1
Re λ ,

ð175Þ

results in ð+∞
−∞

u xð Þj j2dx ≤ 1

Re λ2
ð+∞
−∞

f ξð Þj j2dξ, ð176Þ

and therefore

λI − ∂xð Þ−1 f�� ��
L2 ℝð Þ ≤

1

Re λ2
fk kL2 ℝð Þ: ð177Þ

That is, for Reλ > 0,

λI − ∂xð Þ−1�� �� ≤ 1
Re λ , ð178Þ

is valid. The surjective property of ðλI − ∂kÞ is seen by the
unique existence of solution uðxÞ ∈ L2ðℝÞ for the initial value
problem of equation (170).
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A semigroup is generated by taking a subset of the com-
plex plane as

Ω = λ ∈ℂ, λ = �λ
� �

, ð179Þ

where Ω is included in the resolvent set of ∂x . For λ ∈Ω,
ðλI − ∂xÞ−1 exists, and

λI − ∂xð Þ−nk k ≤ 1
Re λð Þn , ð180Þ

is obtained. Consequently, according to the Lumer-Phillips
theorem [38, 40] for the generation of quasi contraction
semigroup, ∂x with the domain space H1ðℝ3Þ is confirmed
to be an infinitesimal generator in L2ðℝÞ. The similar argu-
ment is valid to ∂y and ∂z . By considering ðx, y, zÞ ∈ℝ3, ∂k
with k = x, y, z is the infinitesimal generators in L2ðℝ3Þ
[Q.E.D.: Lemma 26]. ?

Step 2. irkI as an infinitesimal generator.

Lemma 27. Let rk be either x, y, or z. Let I be the identity oper-
ator of L2ðℝÞ: An operator irkI is an infinitesimal generator in
L2ðℝÞ:

Proof of Lemma 27 For any w ∈ℂ, it is possible to define
the exponential function by the convergent power series: ew

=∑∞
j=0ðwÞðj/jÞ!, so that

eitrkI = 〠
∞

j=0

1
j!

itrkIð Þj, ð181Þ

is well-defined for t, rk ∈ℝ: This fact is ensured by the
boundedness of the identity operator I, although rkI and irk
I are not bounded operators in L2ðℝÞ if the standard L2

-norm is equipped. It is sufficient for irkI to be the preinfini-
tesimal generator.

For an arbitrary rk ∈ℝ, an operator irkI with its domain
L2ðℝÞ is the infinitesimal generator in L2ðℝÞ; indeed, the
spectral set is on the imaginary axis of the complex plane,
and the unitary operator is generated as

ð
eitrkIu
� ��� ��2drk = ð uj j2drk: ð182Þ

Consequently, the operator irkI is treated as an infinites-
imal generator in L2ðℝÞ and therefore in L2ðℝ3Þ [Q.E.D.:
Lemma 27]. ?

Step 3. ±ðri∂r j − r j∂riÞ as an infinitesimal generator. Let i ≠ j

be satisfied for i, j = x, y, z. Since r±ðt−sÞ∂r j is well-defined (cf.
Lemma 2) with the domain space H1

r ðℝ3Þ, its logarithmic

representation is obtained by

±iri∂r j = iri I − κe± s−tð Þ∂r j
 �

∂t Log e± t−sð Þ∂r j + κI
 �h i

, ð183Þ

where κ ≠ 0 is a certain complex number. According to The-
orem 24, the product between iriI and ±∂r j is represented by

±iri∂r j = iri I − κe± s−tð Þ∂r j
 �

∂t Log e± t−sð Þ∂r j + κI
 �h i

: ð184Þ

Using the commutation and t-independence of riI, it
leads to the logarithmic representation

±ri∂r j = I − κe± s−tð Þ∂r j
 �

∂t riLog e± t−sð Þ∂r j + κI
 �h i

, ð185Þ

without the loss of generality. The domain space of riI is
equal to L2ðℝ3Þ, as eiriI is represented by the convergent
power series in L2r ðℝ3Þ. The half plane fλ ∈ℂ ; Reλ > 0g
is included in the resolvent set of ±ri∂r j . Consequently,
for t, ri ∈ℝ, the existence of e±tri∂r j directly follows from

the confirmed existence of e±t∂r j . Being equipped with the
domain space H1

r ðℝ3Þ,±ri∂r j is the infinitesimal generator

in L2r ðℝ3Þ:
The preinfinitesimal generator property of sum is also

understood by the BðXÞ-module property. The sum between
ri∂ri and −rj∂ri is represented by

I + κe+ s−tð Þ∂r j
 �

∂t riLog e+ t−sð Þ∂r j + κI
 �h i

− I + κe− s−tð Þ∂ri
 �

∂t r jLog e− t−sð Þ∂ri + κI
 �h i

= I + κe+ s−tð Þ∂r j
 �

∂t
h
riLog e+ s−tð Þ∂r j + κI

 �
− r jLog e− t−sð Þ∂ri + κI

 �i
− κe+ s−tð Þ∂r j − κe− s−tð Þ∂ri
 �

∂t

� r jLog e− t−sð Þ∂ri + κI
 �h i

= I + κe+ s−tð Þ∂r j
 �

∂tri

� Log e+ t−sð Þ∂r j + κI
 �

− Log e− t−sð Þ∂ri + κI
 �h i

− I + κe+ s−tð Þ∂ri
 �

∂t ri − rj
� �

Log e− t−sð Þ∂ri + κI
 �h i

− κe+ s−tð Þ∂r j − κe− s−tð Þ∂ri
 �

∂t r jLog e− t−sð Þ∂ri + κI
 �h i

,

ð186Þ

where all the three terms in the right hand side are of the
form

L tð Þ∂t riLog U t, sð Þ + K tð Þð Þ½ �, ð187Þ

whose preinfinitesimal generator properties are proved simi-
larly to Lemma 26. In particular, the first term in the right
hand side can be reduced to the above form with L = 1 and
t-dependent KðtÞ, the parts corresponding to LðtÞ are
strongly continuous, and ri is independent of t. After having
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an integral of equation (186) in terms of t, each term is
regraded as a bounded operator on L2r ðℝ3Þ. Consequently,
for i ≠ j, the application of Lemma 26 leads to the fact that

± ri∂r j − rj∂ri
 �

, ð188Þ

with its domain space H1
r ðℝ3Þ is the infinitesimal generator

in L2r ðℝ3Þ [Q.E.D.: Theorem 25]. ?

Corollary 28. (collective renormalization). For t, s ∈ ½−T , +T�,
let Vkðt, sÞ with k = x, y, z in L2r ðℝ3Þ be generated by iLk/h.
For a certain complex constant ≠ 0, the angular momentum
operator ±iLk/h with k = x, y, z is represented by the loga-
rithm

±iLk/h = ± I + κVk s, tð Þð Þ∂t LogVk t, sð Þ + κI½ �, ð189Þ

and the corresponding evolution operator is expanded by the
convergent power series

Vk t, sð Þ = eLog Vk t,sð Þ+κIð Þ − κI

= 〠
∞

n−0

1
n!

Log Vk t, sð Þ + κIð Þð Þn − κI

= 1 − κð ÞI + 〠
∞

n−0

1
n!

Log Vk t, sð Þ + κIð Þð Þn,

ð190Þ

where LogðVkðt, sÞ + κIÞ is bounded on L2r ðℝ3Þ, although Lk

is unbounded in L2r ðℝ3Þ.

Proof. The group Vkðt, sÞ with k = x, y, z is generated by the
infinitesimal generator iLk/h in L2r ðℝ3Þ: This fact leads to
the logarithmic representation

iLk/h = I + κVk s − tð Þð Þ∂t Log Vk t, sð Þ + κIð Þ½ �, ð191Þ

where κ ≠ 0 is a certain complex constant. The relation Vkðt
, sÞ + κI = eLogðVkðt,sÞ+κIÞ admits the power series expansion
of Vkðt, sÞ [Q.E.D.: Corollary 28]. ?

Equation (189) shows a convergent power series repre-
sentation for the rotation group. Let us call the representation
shown in equation (189) the collective renormalization (cf.
renormalized evolution equation in Corollary 9), in which a
detailed degree of freedom ri∂r j is switched to a collective

degree of freedom Lk. According to the collective renorma-
lization, the evolution problem is studied by beginning with
the bounded evolution operator Vkðs, tÞ and the related
bounded infinitesimal generator LogðVkðt, sÞ + κIÞ. In a
more mathematical sense, the collective renormalization
plays a role of simplifying the representation. Equation
(190) ensures the validity of convergent power series expan-
sions used in operator algebras even if they include
unbounded operators.

6. Concluding Remarks

6.1. Template of Solvable Nonlinear Equations. The utility of
the logarithmic representation is found in a formal discus-
sion. The derivative of the logarithmic representation is for-
mally represented by

∂tLogv = v′v−1, ð192Þ

where v is a function of t, and the notation ′ denotes the dif-
ferentiation along the t-direction. Since the logarithmic
derivative ∂tLogv corresponds to the infinitesimal generator
if v is the evolution operator, this equality shows the relation
between the infinitesimal generator ∂tLogv and the evolution
operator v. Let v be a known function (possibly a solution of
linear equation) and u be an unknown function of t (uv−1 be
a solution of another equation and of possibly a nonlinear
equation). The Leibnitz rule reads

uv−1
� �′ = v′v−1 − u′u−1

h i
uv−1
� �

: ð193Þ

Both v′v−1 and u′u−1 are regarded as the logarithmic
derivative for t-direction. The change of the evolution direc-
tion simply requires to fix u = ∂xv, and then, uv−1 is regarded
as the logarithmic derivative for x direction. As seen in the
case of the Cole-Hopf transform, equation (193) being equiv-
alent to the Burger’s equation in case of the Cole-Hopf trans-
form provides one abstract template for nonlinear evolution
equations, which can be analyzed as the linear problem. If
the Cole-Hopf transform ðψ = v′v−1Þ is combined with the
Miura transform w = ψ′ + ψ2, the higher order version of
equation (192)

w = v″v−1, ð194Þ

is obtained [15]. In this way, the logarithmic representation
provides templates of solvable nonlinear equations, which
can be reduced to linear equations.

(i) Related Topics. As for the applicability of the theory,
the conditions to obtain the logarithmic representa-
tion (conditions shown in Section 2.2) are not so
restrictive; indeed, they can be satisfied by C0-semi-
groups generated by xi-independent infinitesimal
generators. The most restrictive condition to obtain
the logarithmic representation is the commutation
between KðxiÞ and Uðxi, ξiÞ. Such a commutation
is trivially satisfied by xi-independent KðxiÞ = K
and also satisfied when the variable xi is separable
(i.e., for an integrable function gðxiÞ, KðxiÞ = gðxiÞ
KÞ: In this sense, the operator specified in Theorem
16 corresponds to a moderate generalization of xi

-independent infinitesimal generators. The sum-
mary is demonstrated along with the related topic-
s.As for the applicability of the theory, the
conditions to obtain the logarithmic representation
(conditions shown in Section 2.2) are not so
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restrictive; indeed, they can be satisfied by C0-semi-
groups generated by xi-independent infinitesimal
generators. The most restrictive condition to obtain
the logarithmic representation is the commutation
between KðxiÞ and Uðxi, ξiÞ. Such a commutation
is trivially satisfied by xi-independent KðxiÞ = K
and also satisfied when the variable xi is separable
(i.e., for an integrable function gðxiÞ, KðxiÞ = gðxiÞ
KÞ: In this sense, the operator specified in Theorem
16 corresponds to a moderate generalization of xi

-independent infinitesimal generators. The sum-
mary is demonstrated along with the related topic-
s.As for the applicability of the theory, the
conditions to obtain the logarithmic representation
(conditions shown in Section 2.2) are not so
restrictive; indeed, they can be satisfied by C0-
semigroups generated by xi-independent infinitesi-
mal generators. The most restrictive condition to
obtain the logarithmic representation is the com-
mutation between KðxiÞ and Uðxi, ξiÞ. Such a
commutation is trivially satisfied by xi-indepen-
dent KðxiÞ = K and also satisfied when the vari-
able xi is separable (i.e., for an integrable
function gðxiÞ, KðxiÞ = gðxiÞKÞ: In this sense, the
operator specified in Theorem 16 corresponds to
a moderate generalization of xi-independent infin-
itesimal generators. The summary is demonstrated
along with the related topics.

(ii) Time Reversal Symmetry. Let the existence of nega-
tive time evolution be a kind of time reversal sym-
metry. Note that this kind of symmetry is true for
linear wave equations but false for linear heat equa-
tions. The logarithmic representation of infinitesi-
mal generators has been originally obtained for the
invertible evolution operators, and it is generalized
to noninvertible evolution operators. Under the
validity of boundedness of Uðxi, ξiÞ on X, the
removal of invertible criterion is essentially real-
ized by the introduction of nonzero κ ∈ℂ. On
the other hand, the indispensable conditions for
obtaining this kind of logarithmic representations
are the boundedness of the spectral set of Uðxi,
ξiÞ and the commutation assumption, where the
bounded interval −L ≤ xi, ξi ≤ L is also necessary.
Consequently, the time-reversal symmetry is
recovered for the regularized evolution operator
if xi is equal to x0. In the same way, a similar
concept to spatial reversal symmetry being defined
by the negative evolution can be recovered and
violated by taking xi ≠ x0:

(iii) Regularity. The recovery of local time-reversal sym-
metry is associated with the regularity of the solu-
tion. The concept of regularized trajectory, whose
regularity is similar to that of the analytic semi-
groups (for a textbook, see Ref. [22]) at the least, is
true for regularized evolution operators.

(iv) Nonlinearity. For obtaining the logarithmic repre-
sentation, the operator Uðxi, ξiÞ can be either linear
or nonlinear semigroup. The nonlinearity of semi-
group can appear simply by altering the evolution
direction under a suitable identification between
the infinitesimal generator and the evolution opera-
tor. In particular, the relation between evolution
operator and its infinitesimal generator is essentially
similar to the Cole-Hopf transform.

(v) The Self-Adjointness. The results obtained for a BðXÞ
-module does not require the self-adjointness of the
operator so that it opens up a way to have a full-
complex analysis (neither real nor pure imaginary
analysis) for a class of unbounded operators in asso-
ciation with the operator algebra. It is worth noting
that the obtained algebraic structure corresponds
to a generalization of “perturbation theory for semi-
groups of operators [42].”

(vi) Discrete Property. For example, in case of two-
dimensional space-time distribution, let the C0-
semigroup for x0 direction exists for a Cauchy prob-
lem:

∂x0U x0, ξ0
 �

u0 = K x0
� �

U x0, ξ0
 �

u0,

∂x0a x0, ξ0
 �

= ∂x0Log U x0, ξ0
 �

+ κI
 �

,
ð195Þ

in X0 ≔ L2ð−L, LÞ, where a certain complex number
κ is taken from the resolvent set of Uðxi, ξiÞ: Fur-
thermore, let the same equation possible to be writ-
ten as

∂x1V x1ξ1
 �

v0 = oK x1
� �

V x1ξ1
 �

v0,

∂x1α x1ξ1
 �

= o ∂x1Log V x1ξ1
 �

+ κI
 �

,
ð196Þ

in X1 ≔ L2ð−T , TÞ. In this situation, using αðx1, ξ1Þ
instead of αðx0, ξ0Þ, the corresponding dynamical
system holds a discrete trajectory in X0 (for an illus-
tration, see Figure 2 of Ref. [12]). Indeed, the trajec-
tory is L2 function with respect to x0 and C0 function
with respect to x1: That is, the relativistic treatment
naturally leads to the discrete evolution (for a theory
including the discrete evolution, see the variational
method of abstract evolution equation [47, 48]).
The discrete evolution to the t direction (x0 direc-
tion), which can be obtained by altering the evolu-
tion direction, is expected to be useful to analyze
the stochastic differential equations within the semi-
group theory of operators.
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