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A multimode process monitoring method based on multiblock projection nonnegative matrix factorization (MPNMF) is proposed
for traditional process monitoring methods which often adopt global model of data and ignore local information of data. Firstly, the
training data set of each mode is partitioned by the complete link algorithm and the multivariate data space is divided into several
subblocks. Then, the projection nonnegative matrix factorization (PNMF) algorithm is used to model each subspace of each mode
separately. A joint probabilistic statistic index is defined to identify the running modes of the process data. Finally, the Bayesian
information criterion (BIC) is used to synthesize the statistics of each subblock and construct a new statistic for process
monitoring. The proposed process monitoring method is applied to the TE process to verify its effectiveness.

1. Introduction

With the rapid development of computer technology, the
chemical process has become more automatic and intelligent.
In recent years, accidents have occurred frequently in the
chemical process, safety in the production process has
become crucial, and process monitoring has received more
and more attention [1]. Multivariate statistical process mon-
itoring (MSPM) methods, such as principal component anal-
ysis (PCA) and partial least squares (PLS), are widely used in
industrial processes due to their ability to extract effective
characteristic information from process data and conduct
process monitoring [2–4].

Traditional MSPM methods need to assume that the
measurement data come from a single stable mode, while
modern chemical enterprises have a variety of operating
modes due to changes in product characteristics, set values,
or raw material components. Therefore, it is assumed that
the MSPM method under a single working condition cannot
meet the requirements of multimode monitoring. This not
only weakens the statistical characteristics of the process in

different modes but also leads to inaccurate process perfor-
mance analysis.Xu et al. proposed aPCAmixturemodel based
on scale-incremental EM algorithm to realizemultimode pro-
cess monitoring [5]. Feital et al. proposed a multimodal
modeling and monitoring method based on maximum likeli-
hood principal component analysis and carried out modal
identification [6]. Jiang et al. defined a joint probability sta-
tistical indictor to identify the running mode of the process
[7]. Zhang et al. proposed a fully automatic offline pattern
recognition method based on sliding window and k-means
clustering [8]. Xiong et al. proposed a sliding window and
differential algorithm to realize multicondition identification
of industrial processes [9].

In addition to multimode processes, the modern chemi-
cal industry also contains a lot of non-Gaussian data. There-
fore, the MSPM method assuming Gaussian conditions
cannot meet monitoring requirements. Nonnegative matrix
decomposition (NMF) is a new dimension reduction
method. The advantage of this method is that the require-
ments for measurement data do not exceed nonnegative
requirements so it is wider [10]. Yuan et al. proposed a
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projection nonnegative matrix factorization (PNMF) algo-
rithm. The PNMF algorithm adds constraints to the NMF
algorithm, reduces an unknown variable, and increases the
sparsity of the matrix [11]. Ahmed et al. proposed an approx-
imately optimal nonnegative matrix factor two-dimensional
deconvolution (NMF2D) algorithm for separating underde-
termined convolution integrals [12]. After that, they proposed
a mono audio separation method based on multicomponent
nonnegative matrix factor two-dimensional deconvolution
(NMF2D) [13]. Woo et al. proposed an optimized complex
nonnegative tensor factor two-dimensional deconvolution
(CNTF2D) to separate sound sources mixed in an uncertain
reverberation environment [14]. In recent decades, NMF-
based methods have been used more and more widely. Gao
et al. proposed a variational Bayesian subgroup adaptive
sparse component extraction algorithm for thermal NDT &
E imaging diagnosis [15]. They conducted experimental tests
on artificial and natural defects of the robot and verified the
effectiveness of the proposed method. Ahmed et al. proposed
a thermal imaging CFRP defect detection method based on
wavelet integral alternating sparse dictionary matrix factori-
zation [16]. The above papers mainly study the thermal
imaging diagnostic system for detecting product defects in
the production process. Currently, there are few articles on
NMF methods for industrial process fault monitoring.

Yang et al. proposed a method of fault diagnosis based on
NMF and SVM [17]. They built an online monitoring model
through NMF and then used SVM to build a fault classifier
for further fault identification. Considering the imperfection
of process data, Li et al. proposed a method based on robust
nonnegative matrix projection (RNMP) to detect and diag-
nose faults in industrial processes [18]. Li et al. proposed an
improved NMF (MNMF) method to extract potential vari-
ables in the process and combine it with process monitoring
technology for fault detection [19].

However, the above process monitoring methods based
on NMF only consider the global model of process data
and ignore local information of the data, resulting in inaccu-
rate monitoring results. To solve these problems, process
data are usually divided into several subblocks, and then a
monitoring model for each subblock is established separately.
Jiang and Yan developed a multiblock principal component
analysis method based onmutual information for fault detec-
tion and isolation [20]. Tong et al. introduced an improved
multiblock principal component analysis (MBPCA) algo-
rithm to extract the specificity of each block and the block
fraction of correlation between different blocks [21]. Wang
and Deng considered the local variable behavior of process
data and proposed a multiblock PCA process monitoring
method based on variable weight information [22]. Wang
et al. proposed an adaptive partitioned nonnegative matrix
factorization algorithm based on nonfixed subblock NMF
model for fault monitoring in chemical processes [23].
Although they considered the local information of the data,
they did not consider the mode identification of multimode
processes. These multiblock monitoring methods have
proved to be generally effective. However, multimode and
non-Gaussian characteristics of the data should also be con-
sidered in process monitoring.

In this study, a multiblock projection nonnegative matrix
factorization (MPNMF) algorithm for complex chemical
processes in a multimode state is proposed. Firstly, the train-
ing data of each mode is divided into several subblocks by a
complete link algorithm. Secondly, a PNMF model for each
subblock is established for each mode, and a joint probability
index is constructed to judge the current running mode.
Finally, the statistics of each block in the recognition mode
is combined by Bayesian information criterion to monitor
whether abnormal events occur. The proposed method takes
into account the multimode and non-Gaussian characteris-
tics of process data, combines the advantages of partitioning
idea and PNMF method, makes full use of local and global
information of the data, enhances the sparsity of the data,
and has good process monitoring performance.

The main contributions are as follows: (1) a multimode
identification method based on joint probability is proposed,
which can realize the identification of process operation
mode. (2) A fault monitoring model based on multiblock
PNMF algorithm is proposed. This paper uses the PNMF
method to extract the main characteristics of the data and
establish a monitoring model, which expands the application
of PNMF in the field of process monitoring.

2. Preliminaries

This section briefly reviews the NMF and the PNMF algo-
rithms, the process monitoring methods based on the
PNMF method.

2.1. Nonnegative Matrix Factorization (NMF). As a new
matrix factorization algorithm, in addition to nonnegative,
the NMF method has no other requirements on the original
data [10]. Since the decomposed matrix elements are only
added and calculated, and the decomposed base matrix is
sparse, NMF can learn the local features of the data and has
better explanatory performance.

Supposing X = ½x1, x2,⋯, xm� ∈ Rm×n is a nonnegative
matrix, the core of NMF is to find W ∈ Rm×k and H ∈ Rk×n

(belonging to a suitable set of nonnegative matrices) to satisfy
the following formula:

X ≈WH, ð1Þ

where m is the number of variables, n is the number of sam-
ples, k is the dimension of the low-dimensional space after
dimensionality reduction, W is the base matrix, and H is
the coefficient matrix. In addition, Eq. (1) should satisfy ðm
+ nÞk <mn.The solution of NMF can be summed up as a
nonlinear optimization process. That is, an objective function
is defined to describe the approximation of X and WH, and
an appropriate set of iterative rules is found to solve the opti-
mization problem. Lee and Seung proposed two kinds of
objective functions to solve the optimization problem and
gave iterative rules [10]. The first objective function “Euclid-
ean distance” was selected in this paper.
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The objective function can be expressed as follows:

arg min
W,H

E = 1
2 X −WHk k2F , ð2Þ

s:t:∀ij, Wij ≥ 0,Hij ≥ 0: ð3Þ

The iterative rules of the above objective function are as
follows:

Wij ⟵Wij

XHT� �
ij

WHHT� �
ij

,

Hij ⟵Hij

WTX
� �

ij

WTWH
� �

ij

:

ð4Þ

Under the above iterative rule, W retains the behavior
information of the original matrix X, H is the low-
dimensional approximation matrix of X.

2.2. Projection Nonnegative Matrix Factorization (PNMF). In
2005, Yuan and Oja in [11] proposed the PNMF algorithm.
The basic idea of the algorithm is to replace the coefficient
matrix H with WTX, which increases the sparsity of the
matrix. PNMF improves the framework of NPF and reduces
an unknown variable, which makes the solution complexity
lower.

Let WTX =H, Eq. (1) can be expressed as follows:

X =WWTX, ð5Þ

where the value of WWTshould be infinitely close to the
identity matrix.

Similarly, Euclidean distance in Eq. (2) is used to measure
the proximity of both sides of Eq. (5). The objective function
of the PNMF algorithm is as follows:

arg min
W

F = 1
2 X −WWTX
�� ��2

F
,

s:t:∀ij, Wij ≥ 0:
ð6Þ

The iterative formula for the objective function is as fol-
lows [11]:

Wij ⟵Wij

2 XXTW
� �

ij

WWTXXTW
� �

ij
+ XXTWWTW
� �

ij

: ð7Þ

At present, the initialization schemes often used are ran-
dom value, singular value decomposition (SVD), and princi-
pal component analysis (PCA) [13, 14, 18]. Wang et al.
pointed out that using the PCA’s load matrix as the initial
value of W will make NMF converge faster and minimize
errors [18]. Therefore, this paper uses the method proposed
by Wang et al. to obtain the initial value of NMF.

The fault monitoring model of the PNMF is as follows:

X = X̂ + ~X =WĤ + ~X, ð8Þ

where X̂ is the estimation matrix of X, which contains the
main feature information of matrix X. ~X is a residual matrix.
Ĥ =WTX is a low-order approximation matrix.

In general, the monitoring statistical indicators of PNMF
are N2 and SPE as follows [19]:

N2 = h∧Tĥ,
= WTx
� �T

WTx
� �

,

= xTWWTx ≤N2
lim,

ð9Þ

SPE = x − x∧k k2,
= x −WWTx
�� ��2,

= xT I −WWT� �T
I −WWT� �

x ≤ SPElim,

ð10Þ

with ĥ, x, x̂, and ~x as the column vectors of the matrices Ĥ, X,
X̂, and ~X, respectively. The N2 statistic is the monitoring
indicator of the X̂ space, and the SPE statistic is the monitor-
ing indicator of the ~X space. Some fault information are
reflected in the X̂ space, and some fault information are
reflected in the ~X space. In order to monitor the fault more
accurately, two monitoring statistics are usually monitored
at the same time in many literatures [18–23].

N2
lim and SPElim are confidence limits of statistics N2 and

SPE. If statistic N2 or SPE of the measurement sample
exceeds the confidence limit, an abnormality is considered
to have occurred and the system issues an alarm. Because
the PNMF method does not assume that the data follow a
certain fixed distribution, the kernel density estimation
(KDE) can be used to calculate the confidence limits N2

lim
and SPElim of statistics N2 and SPE. The specific KDE algo-
rithm can be referred to in [19].

3. Methodology

In this section, the proposed multimode process monitoring
method based on MPNMF model will be introduced in
detail. In this method, a complete link algorithm is used first
to block the training data, then multiple PNMF models are
established, and mode identification is performed using joint
probability. Finally, two monitoring indicators are con-
structed using BIC to achieve fault detection.

3.1. Complete Link Algorithm. The complete link algorithm is
a very popular method for calculating hierarchical clustering.
Given a set X = ½x1, x2,⋯, xm� ∈ Rm×n of variables, its core
idea is to treat each set of variable data xiði = 1, 2,⋯,mÞ as
a separate cluster. Then, merge the two closest clusters based
on some distance metric to get the next cluster and repeat the
merging process until only one cluster remains. In addition,
the complete linking algorithm uses the distance between
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the most distant sample pairs in two clusters as the distance
between the two clusters [24].

The specific process of dividing subblocks based on the
complete link algorithm is as follows:

(1) Taking each variable data as a cluster, the matrix X is
divided into m clusters

(2) Calculating the distance dðxi, xjÞ between two differ-
ent clusters xiði = 1, 2,⋯,mÞ and xjðj = 1, 2,⋯,mÞ.
Euclidean distance dðxi, xjÞ=ð∑n

k=1ðxiðkÞ−xjðkÞÞ2Þ
1/2

is a common distance function, which is selected as the
distance function of the complete link algorithm

(3) Conducting distance matrix as following:

D =

0 d x1, x2ð Þ ⋯ d x1, xmð Þ
d x2, x1ð Þ 0 ⋯ d x2, xmð Þ

⋮ ⋮ ⋱ ⋮

d xm, x1ð Þ d xm, x2ð Þ ⋯ 0

2
666664

3
777775 ∈ Rm×m:

ð11Þ

Merging the two clusters with the smallest distance into the
new cluster fxi, xjg and calculating the distance between
fxi, xjg and the remaining clusters as follows:

�d xi, xj
� �

, xk
� �

=max d xi, xkð Þ, d xj, xk
� �� �

: ð12Þ

(4) Updating the distance matrix D and repeat Step (3)
until the desired number of clusters is obtained

3.2. MPNMF Models. Supposing a set of historical normal
data matrices X ∈ Rm×n, where m and n are the number of
variables and sample, and X can be divided into several sub-
blocks using complete link algorithm. Therefore, the matrix
X can be rewritten as:

X = X1, X2,⋯,XB½ �, b = 1, 2,⋯,Bð Þ, ð13Þ

with B being the number of subblocks, Xb ∈ Rmb×n, and mb
the number of variables in the bth subblock. Then, the PNMF
model of each subblock is established as follows:

Xb =WbW
T
b Xb, ð14Þ

with Wb ∈ Rmb×kb being the basis matrix of the bth subblock
matrix decomposition, kb the dimension of the low-
dimensional space after the dimensionality reduction of the
b subblock, and the value of WbW

T
b is infinitely close to the

identity matrix.
According to Eqs. (9) and (10), the monitoring statistical

indicators N2
b and SPEb of each PNMF model can be

obtained as follows:

N2
b = Wb

Txb
� �T

Wb
Txb

� �
= xb

TWbWb
Txb ≤N2

b,lim, ð15Þ

SPEb = xb
T I −WbWb

T� �
I −WbWb

T� �T
xb ≤ SPEb,lim, ð16Þ

with xb ∈ Rmb×1 as an measurement vector,N2
b,lim and SPEb,lim

are confidence limits of statistics N2
b and SPEb.

3.3. Joint Probability for Mode Identification. Jiang and
Yan used monitoring statistical indicators T2 to identify
the current sample mode and achieved good mode identi-
fication results [7]. Inspired by them, N2 statistics with a
large number of data features are used for mode identifica-
tion in this paper.

For a current observation sample xnew ∈ Rm×1, it is
divided into B subblocks according to the partitioning results
of the previous historical data, and get xnew = ½x1,new, x2,new,
⋯,xB,new�. Then, N2

b,new is calculated for each subblock b in
each corresponding mode. In order to identify the mode of
the current subblock sample xb,new , the mode probability p
is defined as follows [7]:

p xb,new ∈Mið Þ = e−N
2
i,b , ð17Þ

withMi as the ithmode, andN2
i,b as theN

2
b,new in the ithmode.

Since xnew ∈Mi is equal to that of ðx1,new ∈MiÞ ∩ ðx2,new
∈MiÞ ∩⋯ ∩ ðxB,new ∈MiÞ, the probability of event x ∈Mi is
calculated by the joint probability of each block as follows:

p xnew ∈Mið Þ = p x1,new ∈Mið Þp x2,new ∈Mið Þ⋯ p xB,new ∈Mið Þ,
= e−N

2
i,1 ⋅ e−N

2
i,2 ⋅ ⋯ ⋅ e−N

2
i,B ,

= e− N2
i,1+N2

i,2+⋯+N2
i,Bð Þ:

ð18Þ

If the observation sample xnew ∈ Rm×1 is assigned to a
mismatch mode, the joint probability p is close to zero
according to Jiang and Yan’s study [7]. Therefore, it can be
determined that the mode with the highest joint probability
is the running mode of the current process.

3.4. Fault Monitoring Index Based on Bayesian Information
Criterion. After determining the mode of the current mea-
surement sample xnew, it is necessary to monitor it. Different
subblocks have different monitoring statistics. To provide
intuitive monitoring results, Bayesian information criterion
(BIC) is often used to combine results with probabilistic
methods [25]. The fault probability of xb,new corresponding
to N2 statistics is defined as follows:

PN2 F ∣ xb,newð Þ = PN2 xb,new ∣ Fð ÞPN2 Fð Þ
PN2 xb,newð Þ ,

PN2 xb,newð Þ = PN2 xb,new ∣Nð ÞPN2 Nð Þ + PN2 xb,new ∣ Fð ÞPN2 Fð Þ,
ð19Þ

with F as the fault condition and N as the normal condition.
The confidence level of pN2ðNÞ is αð0 ≤ α ≤ 1Þ and the

4 Advances in Mathematical Physics



confidence level of pN2ðFÞ is 1 − α. Two conditional probabil-
ities pN2ðxb,newjNÞ and pN2ðxb,newjFÞ are defined as:

pN2 xbjNð Þ = e−N
2
b,new/N2

b,lim ,

pN2 xbjFð Þ = e−N
2
b,lim/N2

b,new :
ð20Þ

Using BIC to combine N2 statistics in all subblocks to get
the final statistic, as shown below:

BICN2 = 〠
B

b=1

pN2 xnew,b
��F� �

pN2 Fjxnew,bð Þ
∑B

b=1pN2 xnew,b
��F� �

( )
: ð21Þ

Similarly, using BIC to combine SPE statistic to get the
final statistic, as shown below:

BICSPE = 〠
B

b=1

pSPE xnew,b
��F� �

pSPE Fjxnew,bð Þ
∑B

b=1pSPE xnew,b
��F� �

( )
: ð22Þ

The final statistical value within the confidence level α
can be regarded as normal operation data.

3.5. The Proposed Method Implementation. In this paper, a
multimode process monitoring method based on MPNMF
is proposed. The method mainly includes offline modeling
and online monitoring, as shown in Figures 1 and 2. The
implementation of these two parts is as follows:

Part 1: offline modeling

(1) Collecting historical normal data X ∈ Rm×n for differ-
ent modes

(2) Dividing the historical data of each mode into B sub-
blocks by the complete link algorithm

(3) Establishing the PNMF model for each subblock in
different modes according to Eq. (14)

(4) Calculating the monitoring statistics N2
b and SPEb of

each subblock according to Eqs. (15) and (16), and
the corresponding control limits N2

b,lim and SPEb,lim

Part II: online monitoring

(1) Sampling measurement data xnew ∈ Rm×1 and divid-
ing the current data into corresponding subblocks
xnew = ½xnew1, xnew2,⋯,xnewB�

(2) Identifying the mode of xnew by joint probability

(3) Calculating themonitoring statisticsN2
b,new andSPEb,new

of each subblock according to Eqs. (15) and (16)

(4) Calculating statistics BICN2 and BICSPE according to
equations (21) and (22)

(5) Comparing statistics BICN2 and BICSPE with the con-
fidence level α. If BICN2 ≥ α or BICSPE ≥ α, a fault is
considered to have occurred

Training data on different modes
X

Data partition by Complete link algorithm
X=[X1,

…,XB]

Block 1 data
X1

Block B data
XB

. . .

. . .

. . .

PNMF modeling PNMF modeling

Calculate
monitoring

statistic N2
1,new

and SPE1,new

and control limits
N2

1,lim

and SPE1,lim

Calculate
monitoring

statistic N2
B,lim

and SPEB,lim

and control limits
N2

B,nim

and SPEB,nim

Figure 1: Offline modeling flow chart.
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4. Simulation Study of TE Process

The Tennessee Eastman (TE) process simulation platform is
developed by Eastman Chemical Company based on actual
chemical processes. It can not only simulate the chemical
production process and generate a large amount of normal
data but also can obtain multiple fault data by setting mul-
tiple fault modes. Therefore, the TE process is often used to
evaluate the effectiveness of various fault detection methods.
As shown in Figure 3, the TE process is mainly composed of
five operating units: a reactor, a condenser, a gas-liquid sep-
arator, a stripper, and a circulating compressor. A variety of
control strategies have been proposed for the research of TE
process. Ricker [26] proposed a decentralized control struc-
ture and gave six different operation modes according to the
G/H ratio, as shown in Table 1, and the simulation data can
be downloaded from http://depts.washington.edu/control/
LARRY/TE/download.html. Lyman and Georgakis [27]
proposed a plant-wide control scheme, and simulation data
can be downloaded from http://web.mit.edu/braatzgroup/
links.html.

Select mode 1 and mode 2 proposed by Richer and mode
3 proposed by Lyman and Georgakis to simulate multimodal

processes. 33 variables (11 control variables, 22 measured
variables) are selected for fault detection and diagnosis. The
specific details of the variables can be found in [26].

Since the NMF-based method is very sensitive to the
initial values ofWij and Hij, the selection of the initial values
of Wij and Hij is important. At present, the initialization
schemes often used are random value, singular value decom-
position (SVD), and principal component analysis (PCA)
[18, 19, 23]. Wang et al. pointed out that using the PCA’s
load matrix as the initial value of Wij will make NMF con-
verge faster and minimize errors [23]. Therefore, this paper
uses the method proposed by Wang et al. to obtain the initial
value of NMF. 500 normal history samples were collected in
each mode to build a monitoring model for each mode. In
each mode, 21 faults are simulated, and the fault names are
referenced in [27]. Each set of measurement data contains
960 samples, of which the first 160 samples are normal and
the fault starts from the 161st sample and continues to the
end of the process. The article uses 85% of the contribution
of PCA to select the number of principal elements. The num-
ber of principal elements is used as the number of dimen-
sionality reductions of all monitoring algorithms. The
number of iterations of the NMF-based algorithm is 1000.

Test sample Xnew

Block 1 data
X1,new

Calculate
monitoring statistic
N2

1,new , SPE1,new

Block B data
XB,new

Calculate
monitoring statistic
N2

B,new , SPEB,new

Calculate Bayesian
statistics

BICN
2 , BICSPE

If
BICN2 ≥ 𝛼

or
BICSPE ≥ 𝛼

Normal

Abnormal

No

Yes

Mode identification by
joint probability

. . .

. . .

Figure 2: Online monitoring flowchart.
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All monitoring algorithms use kernel density estimation to
calculate the control limits of statistical indicators, with a
confidence level of 99%.

In order to verify the validity of mode identification, two
data sets were collected for testing, each of which contains
960 groups of samples, as shown below.

Case 1. Fault 0 in TE process represents a normal process.
Normal data in different modes are used to test the perfor-
mance of mode identification. In the system, samples range

from 1 to 400 runs in mode 1, range from 401 to 560 runs
in mode 2, and range from 561 to 960 runs in mode 3.

Case 2. Fault 1 in TE process is a step change in the A/C feed
ratio, and the fault continues from the 161st point to the end
of the process. The system runs from the 1st sample point to
the 960th point in mode 2.

The joint probability of the three modes in Case 1. is
shown in Figure 4(a). In Figure 4(a), it can be seen that as
the operation mode changes, the joint probability will
change. From point 1 to point 100, the joint probability of
mode 1 is the highest, indicating that the system is operating
in mode 1, followed by modes 2 and 3. The joint probability
can be used to derive the operating mode of the system. The
joint probability of the three modes in s2. is shown in
Figure 4(b). Therefore, Figure 4(b) shows that the system is
operating in mode 2.

Once the mode of the measurement sample is identified,
it is necessary to monitor it. PCAmethod, NMFmethod, and
PNMF method are selected as reference objects to verify the
effectiveness of MPNMF method in fault monitoring. Fault
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Product
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Figure 3: The diagram of the TE process.

Table 1: Operation modes of the TE process.

Operating mode G/H Production rate (kg/h)

1 50/50 14,076

2 10/90 14,076

3 90/10 11,111

4 50/50 Maximum

5 10/90 Maximum

6 90/10 Maximum
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detection accuracy refers to the number of samples detected
by the algorithm and the percentage of total fault samples.
The fault detection results of the main methods (PCA,
NMF, PNMF, and MPNMF) which are mentioned in the
introduction are shown in Table 2. The NMF-based algo-
rithm used in Table 2 refers to the NMF software package
published online by Professor Chih-Jen Lin of Tsinghua
University in Taiwan (website: https://www.csie.ntu.edu.tw/
cjlin/nmf).

Compared with the results of PCA method, NMF
method, and PNMF method, MPNMF method has the high-
est fault detection rate, especially in failure modes 3, 5, 10, 15,
20, and 21. This paper takes faults 5 and 10 as examples to
illustrate the monitoring results of different methods.

Fault 5 is the step change of cooling water inlet tempera-
ture of condenser. Figure 5 shows the detection results of
NMF, PNMF, andMPNMFmethods. In Figure 5(a), it is easy
to see that the fault detection rate of global NMF is lower. The
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Figure 4: Joint probability: (a) case 1.; (b) case 2..

Table 2: Comparison of fault detection accuracy (%).

Fault no.
PCA NMF PNMF MPNMF

T2 SPE N2 SPE N2 SPE BICN2 BICSPE

1 99.3 100 99.6 97.4 99.6 91.6 99.9 91.2

2 98.3 99 98.4 96.8 98.4 96.0 98.6 95.6

3 6.3 4.9 10.4 8.8 15.4 9.1 21.4 12.1

4 31.1 100 77.5 99.2 57.7 99.0 100 11.6

5 27.8 26.9 33 36.1 35.9 34.3 36.8 98.9

6 99.4 100 100 99.9 100 99.6 100 100

7 100 100 97.8 100 100 100 100 100

8 97.4 94.9 98 97.3 98.6 97.8 98.9 97.1

9 5.3 4.6 7.8 16.5 10.3 15.4 13.3 11.3

10 45.6 49.6 55.4 57.4 57.0 57.8 63.6 59.5

11 48.1 80.5 69 68.3 67.1 60.9 78.1 17.7

12 98.5 94.6 99.4 98.3 99.5 98.6 99.5 100

13 94.3 95.3 94.8 93.8 94.9 94.1 95.0 94.7

14 99.5 100 100 99.9 100 91.4 100 87.7

15 8.5 8.3 19 10.8 20.5 10.9 23.8 18.0

16 30 47.6 43.9 55.8 49.0 54.5 55.8 52.4

17 80 96 89.3 95.3 87.8 95.4 91.7 88.2

18 89.9 90.5 90.5 91.4 90.5 91.1 92.2 90.2

19 14.5 28.8 10.3 37.3 8.4 39.0 27.4 31.0

20 42.5 60 55.5 67 57.5 67.3 62.8 81.2

21 40.6 56.1 46 47.5 46.6 51.6 57. 6 62.1

The significant test results are shown in bold.
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Figure 5: Fault detection results: (a) NMF method; (b) PNMF method; and (c) MPNMF method.
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Figure 6: Fault detection results: (a) NMF method; (b) PNMF method; and (c) MPNMF method.
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detection rates of N2 statistics and SPE statistics are 33% and
36.1%, respectively. Figure 5(b) shows the detection results of
PNMF with a detection rate of N2 statistics is 35.9% and SPE
statistics is 34.3%. In Figure 5(c), the detection results of
MPNMF with the two detection rate of N2 statistics and
SPE statistics are 36.8% and 98.9%, respectively. Therefore,
the detection performance of the proposed MPNMF method
is superior to NMF and PNMF, and the SPE detection effect
is more obvious, which proves that the method is effective.

Fault 10: the fault is caused by the temperature variation
of C feed. The faults are introduced from the 161th to the
960th sample points, and the fault type is random fault.
The detection results of the NMF, PNMF, and MPNMF
methods are shown in Figure 6. Figure 6(a) shows the detec-
tion results of NMF with the detection rates of N2 statistic
and SPE statistic are 55.4% and 57.4%, respectively.
Figure 6(b) is the PNMF detection result that the detection
rates of N2 statistic and SPE statistic are 57% and 57.8%,
respectively, and it is obvious that the detection effect is bet-
ter than that of NMF. Figure 6(c) is the detection result of
MPNMF, and the detection rates of N2 statistic and SPE sta-
tistic are 63.6% and 59.5%, respectively. The overall detection
effect of MPNMF is better than NMF and PNMF. In sum-
mary, in the monitoring of the TE process, the MPNMF
method proposed in this paper has greater advantages than
the traditional NMF method and PNMF method.

To compare the computational complexity of the vari-
ous methods, the dataset was run on a PC with a 2.2GHz
dual-core processor (i5 Intel processor), 4GB RAM, and
1TB HDD.

Table 3 shows the computational time of each fault mon-
itoring program. Computational time is in seconds. Since the
fault monitoring process includes offline modeling and
online monitoring, Table 3 gives the computational time of
offline modeling and online monitoring. Although the pro-
posed method has the longest offline modeling time, the
online monitoring time is shorter. Industrial process moni-
toring is expected to have higher accuracy and lower moni-
toring time. As can be seen from Tables 2 and 3, the
proposed method has better monitoring results.

5. Conclusion

Traditional process monitoring methods usually adopt a
global model of data and ignore local information about the
data. Compared with the NMF algorithm, the PNMF algo-
rithm converges faster and has more advantages in data
reduction and decomposition. Combining the advantages of
block modeling and PNMF algorithm, a multimode process
monitoring method based on MPNMF is proposed. In order
to make full use of the local information of the process data,
the entire process is divided into several subblocks by a com-
plete link algorithm, a PNMF model of each subblock is
established, and then a joint probability indicator is con-
structed to identify the current running mode of the process.
Finally, BIC is adapted to synthesize the statistics of each sub-
block to realize process monitoring. The proposed process
monitoring method is applied to the TE process to verify its

effectiveness, and compared with the traditional PCA algo-
rithm, NMF algorithm, and PNMF algorithm, the results
show that the method can monitor the fault timely and
effectively.

In future work, a more flexible model can be used instead
of the PNMF model. With the help of historical fault data
information, building a more optimized multiblock distrib-
uted monitoring model will become the focus of future
research.
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