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In this exploration, a double stratified mixed convective flow of couple stress nanofluid past an inclined stretching cylinder using a
Cattaneo-Christov heat and mass flux model is considered. The governing partial differential equation of the boundary layer flow
region is reduced to its corresponding ordinary differential equation using a similarity transformation technique. Then, the
numerical method called the Galerkin finite element method (GFEM) is applied to solve the proposed fluid model. We
performed a grid-invariance test or grid-convergence test to confirm the convergence of the series solution. The effects of the
different noteworthy variables on velocity, temperature, concentration, local skin friction, local Nusselt number, and local
Sherwood number are analyzed in both graphical and tabular forms. We have compared our result with the existing results in
the literature, and it is shown that GFEM is accurate and efficient. Moreover, our result shows that the velocity field is retarded
when the angle of inclination enhances and the heat transfer rate is reduced with larger values of the curvature of the cylinder.

1. Introduction

Most recently, the investigation of fluid flow around a
stretching cylinder has gained much consideration by differ-
ent scholars. This is due to the fact that many industrial
applications like geothermal power generation, spinning of
fiber, drilling operations, and plastic sheet extrusion may grip
the boundary layer flow around the stretching cylinder. In
the above point of view, Majeed et al. [1] introduced heat
transfer due to the stretching cylinder and solved it using
the Chebyshev spectral Newton iterative scheme. The bound-
ary layer flow of a nanofluid past a permeable stretching cyl-
inder is analyzed by Hayat et al. [2]. They inspected that
curvature and suction/injection effects on a local skin fric-
tion coefficient are similar. Hayat et al. [3] explained the
mathematical model for a mixed convection flow past an
inclined cylinder and solved it numerically by the homotopy
analysis method.

Stratified effects are prominent in the study of fluid
dynamics and industrial engineering, for instance, heat rejec-
tion process to the environments (rivers, oceans, and lakes)
and thermal energy storage systems such as solar ponds.
Stratification of the fluid is a deposition or formation of
layers that arise because of temperature difference, concen-
tration difference, or existence of different fluids [4]. The
thermal/solutant stratifications of hydrogen and oxygen in
lakes may affect the growth rates of all cultured species. This
initiated different researchers to divert their attention to
investigate the effects of stratifications in the area of fluid
dynamics. A dual stratification effect on a mixed convection
flow of the non-Newtonian fluid (Eyring-Powell) past an
inclined cylinder with heat generation/absorption is reported
by Rehman et al. [5]. They employed a shooting technique
with the fifth-order Runge-Kutta scheme to solve the coupled
differential equations. Authors [6–10] analyzed the effects of
a double stratified flow over a stretching cylinder with the
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impacts of different governing parameters. They used the
Fourier law of heat conduction to analyze the heat transfer
rate in the boundary layer flow region. Very recently,
researchers like Ijaz and Ayub [11] have investigated the Jeff-
ery fluid flow with effects of thermal stratification, homoge-
neous-heterogeneous, and new heat flux model past a
stretching cylinder.

Moreover, various scholars have investigated the non-
Newtonian fluid flow around a cylinder with the impacts
of the non-Fourier law model. Raju et al. [12] analyzed the
MHD flow past a stretching cylinder with the Cattaneo-
Christov heat flux model. In their study, the coupled differ-
ential equations were solved numerically by employing
RK4 along shooting technique. Ibrahim and Hindebu [13]
applied the Keller-box method to solve the MHD boundary
layer flow of the non-Newtonian fluid around a stretching
cylinder with the Cattaneo-Christov heat and mass model.
Gangadhar et al. [14] also elaborated a slip flow past a cylin-
der using the effects of the Cattaneo-Christov model. Later
on, Kumar et al. [15] reported a Williamson and Casson
fluid flow past a stretching cylinder with the Cattaneo-
Christov model.

From the above brief investigation, it has been noticed
that the problem of the double stratified mixed convection
couple stress nanofluid flow past an inclined cylinder with
the Cattaneo-Christov heat and mass flux model has not
been yet considered. Asad et al. [16] studied the flow of a cou-
ple stress fluid in the presence of variable thermal conductiv-
ity. In the present study, additional effects such as mixed
convection, nanofluid, double stratified, and the Cattaneo-
Christov heat and mass flux model are taken into consider-
ation. We employed the influential numerical method for
solving engineering and fluid dynamics problems called the
Galerkin finite element method carried out in equations
(20)–(29) to solve coupled nonlinear differential equations
governing the boundary layer flow.

2. Mathematical Modeling

We aspire to analyze the double stratified mixed convec-
tive flow of a couple stress nanofluid past an inclined
stretching cylinder using the Cattaneo-Christov heat flux

model. The flow is produced because of an inclined cylin-
der. It is assumed that the flow is two-dimensional, steady,
and laminar, has a nonslip boundary, and is incompressible.
The angle between the stretching cylinder and the vertical axis
(x-axis) is α. The flow velocity components x and r are
assumed perpendicular to each other as shown in Figure 1.
Based on these assumptions and the boundary layer approxi-
mation theory, the governing equations are written as follows:
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Figure 1: Flow diagram.
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The related boundary conditions are given as follows:

u x, rð Þ =U xð Þ = U0
L

x, v x, rð Þ = 0 at r

= R and u x, rð Þ⟶ 0 as r⟶∞,

T x, rð Þ = Tw xð Þ = T0 +
bx
L
, C x, rð Þ

= Cw xð Þ = C0 +
dx
L

at r = R,

T x, rð Þ⟶ T∞ xð Þ = T0 +
cx
L
, C x, rð Þ⟶ C∞ xð Þ

= C0 +
ex
L

as r⟶∞,

ð5Þ

where g, βC , βT , and α are gravity, coefficient of concentration
expansion, coefficient of thermal expansion, and inclination
of the cylinder with x-axis, respectively. Moreover, TWðxÞ
denotes the prescribed surface temperature, CWðxÞ denotes
the prescribed surface concentration, T∞ðxÞ denotes the
variable ambient temperature, C∞ðxÞdenotes the variable
ambient concentration, T0 denotes the reference tempera-
ture, C0 denotes the reference concentration, U0 denotes
the free stream velocity, and L denotes the reference length.

The stream function ψ which identically satisfies the con-
tinuity equation (1) can be defined as

u = 1
r

∂ψ
∂r

� �
, v = −

1
r

∂ψ
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� �
: ð6Þ

The nonlinear partial differential equations (1)–(4) with
the associated boundary condition in equation (6) can be
reduced to the equivalent nonlinear ordinary differential
equations using the following similarity transformations:
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Equations (6) and (7) are combined to produce the
following associated ordinary differential equations gov-
erning the boundary layer flow:
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with the following appropriate boundary conditions:

f 0ð Þ = 0, f ′ 0ð Þ = 1, θ 0ð Þ = 1 − δ1, φ 0ð Þ
= 1 − δ2, f ′ ∞ð Þ⟶ 0, θ ∞ð Þ⟶ 0, φ ∞ð Þ⟶ 0:

ð11Þ
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and (9) are
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In respective order, the dimensionless parameters in
equation (12) represent the curvature parameter, couple stress
parameter, Reynolds number, Prandtl number, Schmidt num-
ber, thermal stratification parameter, solutal stratification
parameter, Brownian diffusion parameter, thermophoresis
parameter, Grashof number due to temperature, Grashof
number due to concentration, mixed convection parameter,
ratio of concentration to thermal buoyancy forces, relaxation
time of heat, and mass flux.

The engineering physical quantities of interest in this
study are the local skin friction coefficient, local Nusselt
number, and local Sherwood number defined as follows:
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with
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3. Numerical Solution

The Galerkin finite element method (GFEM) is the outstand-
ing technique in solving engineering problems in particular
fluid dynamics problems. GFEM is a variational method type
in which shape functions are considered as exactly the same
as the test function. In the weighted residual formulation of
GFEM, we normally multiply the residual of the formulated
DE by the weight function assumed to vanish in the Dirichlet
boundary interval/region and set the integral over the whole
domain equal to zero. We apply integral by parts to impose
the Neumann and mixed/Robin-type boundary conditions
(if they exist). The final step of the FEM is solving the assem-
bled system of equations using the iterative type technique
[17–20]. We reduce the higher order derivates involved in
equations (8)–(10) with their boundary conditions (11) by
substituting the function g as follows:

Assuming

f ′ = g: ð15Þ

The DE in (8)–(10) with the associated boundary condi-
tions in (11) may be written in the form
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�
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�
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ð16Þ
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with the following associated boundary conditions:

f 0ð Þ = 0, g 0ð Þ = 1, θ 0ð Þ = 1 − δ1, φ 0ð Þ
= 1 − δ2, g ∞ð Þ⟶ 0, θ ∞ð Þ⟶ 0, φ ∞ð Þ⟶ 0:

ð19Þ

We write the weighted integral forms of the boundary
value problems in equations (15)–(18) over a predictable
three-nodded linear element (ηe, ηe+1) as follows:
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with the following associated boundary conditions:

f 0ð Þ = 0, g 0ð Þ = 1, θ 0ð Þ = 1 − δ1, φ 0ð Þ
= 1 − δ2, g ∞ð Þ⟶ 0, θ ∞ð Þ⟶ 0, φ ∞ð Þ⟶ 0,

ð24Þ

where w1,w2,w3, andw4 are weight functions and may be
treated as the variation f , g, θ, andφ, respectively, and
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domain (ηe, ηe+1) denotes the interval of the boundary layer
region.

In GFEM, the costmary practice of this step is searching
for approximation solutions of the following form:

f = 〠
3

j=1
f jψj, g = 〠

3

j=1
gjψj, θ = 〠

3

j=1
θ jψj, φ = 〠

3

j=1
φjψj, ð25Þ

with w1 =w2 =w3 =w4 = ψi ði = 1, 2, 3Þ, the quadratic shape
functions ψi are defined as

ψe
1 =

ηe+1 − ηð Þ ηe+1 + ηe − 2ηð Þ
ηe+1 − ηeð Þ2 , ψe

2

= 4 η − ηeð Þ ηe+1 − ηð Þ
ηe+1 − ηeð Þ2 , ψe

3

= −
η − ηeð Þ ηe+1 + ηe − 2ηð Þ

ηe+1 − ηeð Þ2 ,

ð26Þ

where ηe ≤ η ≤ ηe+1.
Now we replace the approximate solution in equation

(25) into equations (20)–(23), to obtain the finite element
model for the equation which is given by

Ke½ � Ye½ � = Fe½ �, ð27Þ

where ½Ke� denotes the elemental stiffness matrix, ½Ye� is the
vector of elemental nodal variables (unknowns), and ½Fe� is
the force vector expressed as follows:

Ke½ � =

K11� 	
K12� 	

K13� 	
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K11� 	
K12� 	

K13� 	
K14� 	

2
66666664

3
77777775
, Ye½ �

=

ff g
gf g
θf g
ϕf g

2
6666664

3
7777775
, Fe½ � =

h1

 �
h2

 �
h3

 �
h4

 �

2
66666664

3
77777775
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where each ½Kmn� is of the order 3 × 3 and ½hm� (m, n = 1, 2,
3, 4) is of the order 3 × 1.

These matrices are defined as follows:

K11
ij =
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∂η
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dη
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ψiψ jdη − Pr δ1γE
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ηe

ψi�gψjdη

+ Pr δ1γE
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�f
∂ψ j

∂η
dη,

K33
ij = − 1 + 2γηð Þ

ðηe+1
ηe

∂ψi

∂η
∂ψ j

∂η
dη + 2γ

ðηe+1
ηe

ψi

∂ψj

∂η
dη

+ Pr Nb 1 + 2γηð Þ
ðηe+1
ηe

ψiφ′
∂ψj

∂η
dη

+ Pr Nt 1 + 2γηð Þ
ðηe+1
ηe

ψiθ′
∂ψj

∂η
dη − Pr

ðηe+1
ηe

ψi�gψ jdη

+ Pr
ðηe+1
ηe

ψi
�f
∂ψ j

∂η
dη − Pr γE

ðηe+1
ηe

ψi
�f �f

∂2ψ j

∂η2
dη

+ Pr γE
ðηe+1
ηe

ψi
�f �g

∂ψj

∂η
dη − Pr γE

ðηe+1
ηe

ψi�g�gψjdη

+ Pr γEδ1
ðηe+1
ηe

ψi
�f g′ψ jdη,

K42
ij = −Scδ2

ðηe+1
ηe

ψiψjdη − Scδ2γC
ðηe+1
ηe

ψi�gψ jdη

+ Scδ2γC
ðηe+1
ηe

ψi
�f
∂ψj

∂η
dη,

K43
ij = − 1 + 2γηð Þ NtNb

ðηe+1
ηe

∂ψi

∂η
∂ψj

∂η
dη

+ 2γ Nt
Nb

ðηe+1
ηe

ψi

∂ψ j

∂η
dη:

ð29Þ
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4. Results and Discussion

The main aim of this scrutiny is to investigate the double
stratified mixed convective flow of a couple stress nanofluid
past an inclined stretching cylinder using the Cattaneo-
Christov heat and mass flux model. The numerical solution
for the proposed model is obtained using the Galerkin finite
element method (GFEM). We performed a grid-invariance
test or grid-convergence test to confirm the convergence of
the series solution. The impacts of these relevant variables
on velocity, temperature, concentration, local skin friction,

heat transfer rate, and mass transfer rate are analyzed in both
graphical and tabular forms. The default values of the present
variables used to plot the graphs are chosen based on existing
literature and parameter history and given as follows [18]:

Pr = 0:733, λm = 0, 2, δ1 = 0:1, K = 0:2, γE = 0:2, γC
= 0:3, Sc = 0:55, δ2 = 0:2, Re = 0:3,N = 0:3, α
= 30°, γ = 0:1, Nb = 0:2, Nt = 0:1:

ð30Þ

4.1. Velocity Field Analysis. Figures 2–7 are plotted to show
the effects of the relevant parameters on velocity field in the
boundary layer flow region. Figure 2 indicates that the veloc-
ity field is a decreasing function of a couple stress variable.
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Figure 8: Temperature distribution for different values of the mixed
convection parameter.
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Figure 9: Temperature distribution for different values of the
couple stress parameter.
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Figure 10: Temperature distribution for different values of the
thermal stratification parameter.
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Figure 11: Temperature distribution for different values of the
relaxation time of the heat flux.

7Advances in Mathematical Physics



This is due to the fact that the increase in the couple stress
parameter is responsible for the increase in the couple stress
viscosity which acts as a slow downing agent that causes
denser fluid. Quite opposite to the couple stress variable,
the rise in the mixed convection parameter has the tendency
to make faster the fluid movement. As mixed convection rises
(cool the surface or heat the fluid), the buoyancy force will
become stronger which dominates the viscous force (lower
in viscosity) and this in turn translates the fluid flow from
laminar to turbulence as revealed in Figure 3. According to
Figure 4, relative to the x-axis when the angle of inclination
α is maximized, the velocity starts declining because of the
reduction in gravity. Figure 5 inspects that the velocity profile
varies with different values of N . From the definition of N , it
is crystal clear that the larger N is responsible for concentra-
tion dominance over thermal buoyancy force, which causes

the increase in velocity of the fluid in the boundary layer
regime. As pointed out in Figure 6, very close to the cylinder,
the fluid movement is resisted with larger values of curva-
ture, and far away from the cylinder, the velocity of the fluid
is enhanced. Physically, higher curvature implies lower
radius which in turn produces lower resistance of the fluid
movement as revealed far away from the cylinder in
Figure 6. Figure 7 depicts the effects of the Reynolds number
on the velocity profile. Velocity distribution declined as the
Reynolds number increases. This is due to the fact that, with
a large Reynolds number, inertial force dominates over vis-
cous force in the flow regime, and as a result, the velocity
field decreases.

4.2. Temperature Distribution Analysis. Figures 8–16 are con-
spired to show the influences of the mixed convection
parameter, couple stress parameter, thermal stratification
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Figure 12: Temperature distribution for different inclinations.

0 2 4 6 8 10
–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N = 0, 1, 2, 3

𝜃
 (𝜂

)

𝜂

Figure 13: Temperature distribution for different values of N .
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Figure 14: Temperature distribution for different values of the
curvature parameter.
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Figure 15: Temperature distribution for different values of the
Reynolds number.
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parameter, relaxation time of heat flux, inclination, ratio of
concentration to thermal buoyancy force, curvature, Reyn-
olds number, and Brownian diffusion parameter on temper-
ature distribution, respectively. Figure 8 is constructed to
show the impacts of the mixed convection parameter on
the temperature field. It is inspected that higher mixed con-
vection in the fluid regime forced the cooling of the fluid,
and quite the opposite condition is revealed with the rise
of the couple stress parameter as indicated in Figure 9.
The higher mixed convection is blamed for the larger ther-
mal buoyancy force which results in a higher heat transfer
rate and consequently decreases the temperature. The tem-
perature profile is a decreasing function of the thermal
stratification variable as plotted in Figure 10. Actually, the
temperature variation between the surface and the ambient
temperature eventually declines for larger values of the strat-
ification parameter and decisively decreases the temperature
distribution. The curve plotted in Figure 11 illustrates the
temperature profile of the fluid with the thermal boundary

layer thickness effectively decreasing for a longer relaxation
time of the heat flux. In fact, the fluid with higher γE means
that a longer time is mandatory for the fluid particle to trans-
fer heat to its adjacent fluid particle, and this produces critical
decline of the temperature in the flow regime. In Figure 12, it
is observed that higher inclination of the cylinder enhances
temperature in the boundary layer flow. Physically, higher
inclination reduces the gravity which is the main cause for
the decline of the heat transfer rate. This will maximize the
temperature slightly. Figure 13 depicts the effects of N on
temperature distribution. It is revealed that large values of
N are responsible for the ultimate decline in temperature.
This is not a surprising result as a larger N is responsible
for the dominance of concentration over the thermal buoy-
ancy force. As reported in Figure 14, the effect of the
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Figure 16: Temperature distribution for different values of
Brownian diffusion.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

K = 0, 2, 4, 8

𝜙
 (𝜂

)

𝜂

Figure 17: Concentration distribution for different values of the
couple stress parameter.
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Figure 18: Concentration distribution for different values of the
mixed convection parameter.
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Figure 19: Concentration distribution for different values of the
thermal stratification parameter.
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curvature on the temperature is not consistent throughout
the analysis. Near the surface of the cylinder, the temperature
has shown the tendency to decrease when the curvature
increases. But the reverse phenomenon is observed away
from the cylinder for lager values of η. In reality, a larger
curvature is accountable for a larger thermal boundary
layer thickness which consequently declines heat transfer
rates due to the temperature rise at some distance from
the cylinder as inspected in Figure 14. Figures 15 and 16
disclose that the temperature curve rises for both higher
values of the Reynolds number and the Brownian diffusion
parameter. The random movement of nanoparticles scat-
tered in the base fluid is termed as Brownian motion. It
may happen when nanoparticles collide with molecules

of fluid (liquids or gases). Due to this movement of parti-
cles, the kinetic energy is enhanced, and ultimately, more
heat is produced in the boundary layer regime. This is
the cause for the fluid to be warmer (higher temperature).

4.3. Concentration Profile Analysis. Figures 17–28 are plotted
to investigate the impacts of the couple stress parameter,
mixed convection parameter, thermal stratification parame-
ter, solutant stratification parameter, relaxation time of
mass flux, inclination, ratio of concentration to thermal
buoyancy forces, curvature parameter, Reynolds number,
Schmidt number, Brownian diffusion parameter, and ther-
mophoresis parameter on the concentration profile, respec-
tively. As indicated in Figure 17, the concentration profile
and concentration boundary layer thickness increase with
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Figure 20: Concentration distribution for different values of the
solutant stratification parameter.
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Figure 21: Concentration distribution for different values of the
relaxation time of the mass flux.
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Figure 22: Concentration distribution for different inclinations.
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Figure 23: Concentration distribution for different values of N .
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the enhancement of the couple stress parameter, and quite
the opposite effect is revealed with the increasing values
of the mixed convection parameter as shown in Figure 18.
The concentration profile of the fluid is decreased signifi-
cantly with larger positive values of thermal and solutant
stratifications as inspected in Figures 19 and 20, respec-
tively. As the solutant stratification increases, the convective
potential between the surface of the cylinder and ambient
fluid declines, and consequently, the concentration of the
species of the fluid declines. Figure 21 shows the influence
of the concentration relaxation parameter on concentration
distribution. Both the concentration and its boundary layer
thickness are decreasing functions of the concentration
relaxation variable. The boosting of the inclination param-
eter has a positive impact on the concentration profile

curve as revealed in Figure 22. The higher inclination may
force the gravity to reduce. Figure 23 elaborates the control
of the ratio of the concentration to the thermal buoyancy
force in the boundary layer flow region. The enhancement
of this ratio is blamed for the dominance of the concentra-
tion buoyancy force over the thermal buoyancy force which
may be responsible for the higher mass transfer rate in the
flow regime. In this circumstance, the concentration of the
species is strained to decline. The impact of curvature on
concentration distribution is not consistent throughout the
flow regime. Like velocity and temperature, near the surface
of the cylinder, the concentration response is negative
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Figure 24: Concentration distribution for different values of the
curvature parameter. 0 2 4 6 8 10
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Figure 26: Concentration distribution for different values of the
Schmidt number.
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Brownian diffusion.
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(declined) as curvature advanced, while at some distance from
the cylinder, the concentration response is positive (enhanced)
as plotted in Figure 24. Moreover, the Reynolds number has a
positive impact on the concentration of the species throughout
this specific study as inspected in Figure 25. The concentra-
tion profile is reduced as the Schmidt number is increased
(Figure 26). This is due to the fact that the Schmidt number
and mass diffusivity are inversely related with each another.
The concentration boundary layer thickness is also reduced
with this scenario. The Brownian diffusion and the thermo-
phoresis variables affected the concentration of the species
differently as clarified in Figures 27 and 28. Increasing the
values of the thermophoresis increases the concentration of
the species in the stratified mixed convection couple stress
nanofluid flow past the inclined cylinder while the reverse sit-
uation can be seen with the boosting values of the Brownian
diffusion parameter.

Figures 29–33 anticipate the impacts of different govern-
ing parameters versus the mixed convection parameter on
the local skin friction coefficient, local Nusselt number, and
local Sherwood number. Figure 29 predicts the effects of ther-
mal and solutant stratification parameters on the heat trans-
fer rate of the fluid flow. The heat transfer rate in the flow
decreases as thermal stratification increases, and the reverse
impact is observed as the solutant parameter progress. In
Figure 30, the effects of the thermal and solutant stratifica-
tions on the mass transfer rate are elaborated. When the
two parameters advance, the response of the mass transfer
rate is depreciation. Effects of curvature and inclination
parameters on the heat transfer rate are illustrated in
Figure 31. Both parameters have a decreasing impact on the
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Figure 28: Concentration distribution for different values of the
thermophoresis parameter.
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Figure 29: Effects of thermal and solutant stratification parameters
on the heat transfer rate.
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on the mass transfer rate.
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local Nusselt number in the flow regime. As predicted in
Figure 32, curvature effects on the local Sherwood number
is not consistent throughout the analysis. Very close to the
cylinder and away from the cylinder, the variation in the heat
transfer is quite opposite as the curvature enhances. Figure 33
shows that with larger inclination and curvature, the local
skin friction coefficient enhances.

The grid-invariance test is performed to maintain the
four-decimal-point accuracy. It is also called the grid-
invariance test or grid-convergence test. We used this test
to improve results using successively smaller step sizes for
the calculations. We started by choosing a coarser mesh with

100 elements having a step size of h = 0:1. Then, increasing
the number of elements ten times, we obtained a medium
mesh with 1000 elements having a step size of h = 0:01.
Finally, we have a fine mesh of 1500 elements with a step
size of h = 0:0067 and get four-decimal-point accuracy in
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Figure 32: Effects of curvature and inclination parameters on the
mass transfer rate.
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Figure 33: Effects of curvature and inclination parameters on the
skin friction coefficient.

Table 1: Grid-independence test for velocity distributions j f ′′ðηÞj.

η
Coarse mesh with
100 elements
(h = 0:1)

Medium mesh with
1000 elements
(h = 0:01)

Fine mesh with
1500 elements
(h = 0:0067)

1.5 1.01226 1.01224 1.01224

2.0 0.95250 0.95246 0.95247

2.5 0.92714 0.92709 0.92709

3.0 0.91507 0.91507 0.91500

3.5 0.90882 0.90873 0.90873

4.0 0.90537 0.90525 0.90525

4.5 0.90336 0.90321 0.90321

5.0 0.90215 0.90196 0.90196

5.5 0.90139 0.90117 0.90117

6.0 0.90092 0.90065 0.90065

6.5 0.90062 0.90030 0.90030

7.0 0.90043 0.90006 0.90006

7.5 0.90033 0.89989 0.89989

8.0 0.90027 0.89977 0.89977

8.5 0.90026 0.89969 0.89969

9.0 0.90027 0.89962 0.89963

9.5 0.90031 0.89958 0.89958

Table 2: Grid-independence test for temperature distributions
jθ′ðηÞj.

η
Coarse mesh with
100 elements
(h = 0:1)

Medium mesh with
1000 elements
(h = 0:01)

Fine mesh with
1500 elements
(h = 0:0067)

1.5 0.85092 0.85096 0.85096

2.0 0.81487 0.81494 0.81495

2.5 0.80248 0.80266 0.80267

3.0 0.80255 0.79850 0.79851

3.5 0.79711 0.79730 0.79731

4.0 0.79697 0.79720 0.79721

4.5 0.79721 0.79721 0.79748

5.0 0.79755 0.79783 0.79784

5.5 0.79788 0.79818 0.79820

6.0 0.79817 0.79849 0.79851

6.5 0.79842 0.79875 0.79877

7.0 0.79861 0.79896 0.79898

7.5 0.79877 0.79912 0.79914

8.0 0.79890 0.79925 0.79927

8.5 0.79900 0.79936 0.79938

9.0 0.79908 0.79944 0.79946

9.5 0.79915 0.79950 0.79953

13Advances in Mathematical Physics



velocity, temperature, and concentration values. After
increasing the number of elements more than 1500, the accu-
racy is not affected, but only to enlarge the compilation time.
This is shown in Tables 1–3. Figures 34–36 are plotted to
show the coarse, medium, and fine meshes for every fifth ele-
ment of the mesh. Table 4 shows that our numerical tech-
nique is in good agreement with the existing literature.
Table 5 is drawn to elaborate the effects of different governing
parameters on the local skin friction coefficient, local Nusselt
number, and local Sherwood number.

5. Conclusion

The Galerkin finite element method (GFEM) is applied to
solve the problem of the double stratified mixed convective
flow of the couple stress nanofluid over an inclined cylinder
with the effects of a new heat and mass flux model. Then,
the following remarks are made:

(i) Angle of inclination and material parameters have
decreasing impact on velocity

(ii) Curvature impact on velocity, temperature, and
concentration is not consistent throughout the
analysis

(iii) Thermal stratification and inclination affected tem-
perature in opposite ways

Table 3: Grid-independence test for concentration distributions
jϕ′ðηÞj.

η
Coarse mesh with
100 elements
(h = 0:1)

Medium mesh with
1000 elements
(h = 0:01)

Fine mesh with
1500 elements
(h = 0:0067)

1.5 1.09566 1.09572 1.09572

2.0 0.99404 0.99414 0.99415

2.5 0.94507 0.94523 0.94523

3.0 0.91890 0.91911 0.91912

3.5 0.90389 0.90417 0.90418

4.0 0.89485 0.89485 0.89520

4.5 0.88918 0.88958 0.88960

5.0 0.88553 0.88598 0.88600

5.5 0.88311 0.88363 0.88365

6.0 0.88148 0.88205 0.88208

6.5 0.88037 0.88098 0.88101

7.0 0.87959 0.88025 0.88028

7.5 0.87904 0.87904 0.87977

8.0 0.87864 0.87938 0.87942

8.5 0.87835 0.87912 0.87916

9.0 0.87813 0.87894 0.87898

9.5 0.87796 0.87880 0.87885
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Figure 34: Grid-independence tests showing every fifth element of
the mesh for velocity profile.
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Figure 35: Grid-independence tests showing every fifth element of
the mesh for temperature profile.
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Figure 36: Grid-independence tests showing every fifth element of
the mesh for concentration profile.
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(iv) Solutant stratification, mixed convection, and relax-
ation time of the mass flux have decreasing effects on
the concentration profile

(v) The concentration distribution of the flow is
enhanced with the larger values of the Reynolds num-
ber and thermophoresis parameter whereas quite
opposite effect is observed with higher values of the
Schmidt number

Data Availability

The data included in this paper is available online without
any restriction.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Table 4: Comparison of the values of the Nusselt number with Pr = Sc = 10.

Nt
−θ′ 0ð Þ�� ��

Nb = 0:1 Nb = 0:2 Nb = 0:3 Nb = 0:4
[21] [20] Present [21] [20] Present [21] [20] Present [21] [20] Present

0.1 0.9524 0.95244 0.95238 0.5056 0.50561 0.50556 0.2522 0.25218 0.25218 0.1194 0.11940 0.11941

0.2 0.6932 0.69318 0.69318 0.3654 0.36536 0.36536 0.1816 0.18159 0.18159 0.0859 0.08588 0.08590

0.3 0.5201 0.52025 0.52018 0.2731 0.27313 0.27313 0.1355 0.13564 0.13554 0.0641 0.06424 0.06408

0.4 0.4026 0.40260 0.40260 0.2110 0.21100 0.21101 0.1046 0.10461 0.10460 0.0495 0.04962 0.04947

0.5 0.3211 0.32105 0.32108 0.1681 0.16811 0.16812 0.0833 0.08342 0.08330 0.0394 0.03932 0.03939

Table 5: Numerical values of local skin friction coefficient−f ′′ð0Þ, local Nusselt number–θ′ð0Þ, and local Sherwood number−ϕ′ð0Þ.

Pr λm Κ γE γC δ1 δ2 Nb Sc Nt γ α N −f ′′ 0ð Þ −θ′ 0ð Þ −ϕ′ 0ð Þ
0.733 0.2 0.2 0.2 0.3 0.1 0.2 0.2 0.55 0.1 0.1 π/6 0.3 0.89955 0.79958 0.87875

1.00 0.90836 0.93873 0.88390

1.20 0.91311 1.02955 0.88808

0.733 0.3 0.85371 0.81032 0.89560

0.4 0.80964 0.81984 0.91029

0.2 0.0 0.88262 0.80757 0.89358

0.1 0.89944 0.79962 0.87883

0.2 0.3 0.90203 0.83372 0.88292

0.4 0.90444 0.86792 0.88720

0.2 0.4 0.90016 0.79782 0.90377

0.5 0.90076 0.79607 0.92896

0.3 0.3 0.92392 0.72763 0.84167

0.5 0.94824 0.65602 0.80489

0.1 0.4 0.90708 0.80452 0.80444

0.6 0.91467 0.80936 0.73374

0.2 0.1 0.89482 0.82989 1.04113

0.3 0.90049 0.77238 0.82571

0.2 0.15 0.88395 0.84092 0.45568

0.35 0.89360 0.81604 0.68646

0.55 0.2 0.89317 0.78620 1.03617

0.3 0.88707 0.77278 1.19381

0.1 0.2 0.90344 0.72218 0.87421

0.3 0.89367 0.60254 0.83901

0.1 π/4 0.91693 0.79522 0.87182

π/3 0.94014 0.78908 0.86196

π/6 0.2 0.90773 0.79703 0.87435

0.1 0.91605 0.79434 0.86968
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