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We study the multiparticle Anderson model in the continuum and show that under some mild assumptions on the random external 
potential and the inter-particle interaction, for any finite number of particles, the multiparticle lower spectral edges are almost surely 
constant in absence of ergodicity. We stress that this result is not quite obvious and has to be handled carefully. In addition, we prove 
the spectral exponential and the strong dynamical localization of the continuous multiparticle Anderson model at low energy. �e 
proof based on the multiparticle multiscale analysis bounds needs the values of the external random potential to be independent 
and identically distributed, whose common probability distribution is at least Log-Hölder continuous.

1. Introduction

�is paper follows our previous works [1, 2] on localization 
for multiparticle random lattice Schrödinger operators at low 
energy. Some other papers [3–10] analyzed multiparticle mod-
els in the regime including the strong disorder or the low 
energy and for different type of models such as the alloy-type 
Anderson model or the multiparticle Anderson model in 
quantum graphs [11].

In their work [10], Klein and Nguyen developed the con-
tinuum multiparticle bootstrap multiscale analysis of the 
Anderson model with alloy type external potential. �e 
method of Klein and Nguyen is very close in the spirit to that 
of our work [2]. �e results of [2] were the first rigorous math-
ematical proof of localization for many body interacting 
Hamiltonians near the bottom of the spectrum on the lattice. 
In the present paper we prove similar results in the 
continuum.

�e work by Sabri [11], uses a different strategy in the 
course of the multiparticle multiscale analysis at low energy. 
�e analysis is made by considering the Green functions, i.e., 
the matrix elements of the local resolvent operator instead of 
the norm of the kernel as it will be developed in this paper and 
this obliged the author to modify the standard Combes 
�omas estimate and adapted it to matrix elements of the local 
resolvent. Also, our proof on the almost surely spectrum is 

completely different. �e scale induction step in the multipar-
ticle multiscale analysis as well as the strategy of the localiza-
tion proofs is also different. Chulaevsky [6] used the results of 
Klein and Nguyen [10] and analyzed multiparticle random 
operators with alloy-type external potential with infinite range 
interaction at low energy.

Let us emphasize that the almost sure nonrandomness of 
the bottom of the spectrum of the multiparticle random 
Hamiltonian is the heart the problem of localization at low 
energy for multiparticle systems. In this work, we propose a 
very clear and constructive proof of this fact. We also prove 
the exponential localization in the max-norm and the strong 
dynamical localization near the bottom of the spectrum.

Our multiparticle multiscale analysis is more close in the 
spirit to its single particle counterpart developed by Stollmann 
[12] in the continuum case and by von Dreifus and Klein [13] 
in the lattice case.

Let us now discuss on the structure of the paper. In the 
next Section, we set up the model, give the assumptions and 
formulate the main results. In Section 3, we give two important 
results for  our multiparticle multiscale analysis scheme, 
namely, the Wegner and the Combes �omas estimates, one, 
important to bound the probability of resonances, while the 
other is used to bound the initial scale lengths estimates for 
energies near the bottom of the spectrum. In Section 4, we 
prove the initial length scale of the multiscale analysis. Section 
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5 is devoted the multiparticle multiscale induction step. In 
Section 6 we prove the variable energy multiparticle multiscale 
analysis result. Finally, in Section 7, We prove the main results.

2. The Model Assumptions and the Main 
Results

2.1. �e Model. We fix at the very beginning the number of the 
particles �푁 ≥ 2. We are concerned with multiparticle random 
Schrödinger operators of the forms:

acting in �2((R�푑)�푁). Sometimes, we will use the identifica-

tion (R�)�푁 ≅ R
��. Above, Δ is the Laplacian on R��, U 

represents the inter-particle interaction potential which acts 
as a multiplication operator in �2(R�푁�푑). Additional infor-
mation in U is given in the assumptions. V is the multipar-
ticle random external potential, also acting as multiplication 
operator on �2(R�푁�푑). For x = (�푥1, . . . , �푥�푁) ∈ (R�푑)�푁, 
V(x) = �푉(�푥1) + ⋅ ⋅ ⋅ + �푉(�푥�푁) and {�푉(�푥, �휔), �푥 ∈ Z

�} is an i.i.d. 
random stochastic process relative to the probability space 
(�훺,B,P) with �훺 = R

Z
�
, B = ⊗�푥∈Z��퐵(R) and P = ⊗�푥∈Z��휇 

where � is the common probability measure of the i.i.d. ran-
dom variables {�푉(�푥, �휔) : �푥 ∈ Z

�}. Explicitly, we have that for 

any Ψ ∈ �퐿2((R�푑)�푁)

Observe that the noninteracting Hamiltonian H(�푁)
0 (�휔) can 

be written as a tensor product

where, �퐻(1)(�휔) = −�훥 + �푉(�푥, �휔) acting on �2(R�푑). We will also 
consider random Hamiltonian H(�푛)(�휔); �푛 = 1, . . . , �푁 defined 
similarly. Denote by | ⋅ | the max-norm in R��.

2.2. Assumptions. 

(I) Short-Range Interaction. Fix any �푛 = 1, . . . , �푁. �e 
potential of inter-particle interaction U is bounded, nonnegative 
and of the form

where Φ : R+ → R is a compactly supported function such 
that

�e external random potential �푉 : Z� ×�훺 → R is an i.i.d. 
random field relative to (�훺,B,P) and is defined by 
�푉(�푥, �휔) = �휔� for � = (��푖)�푖∈Z�. �e common probability 

(2.1)H
(�푁)(�휔) := −Δ + U + V,

(2.2)

(VΨ)(x) := V(x)Ψ(x) = (�푉(�푥1, �휔) + ⋅ ⋅ ⋅ + �푉(�푥�푁, �휔))Ψ(x),
x = (�푥1, . . . , �푥�푁) ∈ (Z�푑)�푁.

(2.3)H
(�푁)
0 (�휔) := −Δ + V =

�푁
∑
�푘=1

1
⊗(�푘−1)
�퐿2(R�푑)

⊗�퐻(1)(�휔) ⊗ 1(�푁−�푘)
�퐿2(R�푑)

,

(2.4)U(x) = ∑
1≤�푖≤�푗≤�푛; �푖 ̸=�푗

Φ(�儨�儨�儨�儨�儨�푥�푖 − �푥�푗
�儨�儨�儨�儨�儨), x = (�푥1, . . . , �푥�푛),

(2.5)∃�푟0 ∈ N : suppΦ ⊂ [0, �푟0].

distribution function, ��, of the i.i.d. random variables 
�푉(�푥, ⋅), � ∈ Z

� associated to the measure � is defined by:

(P) Log-Hölder Continuity Condition. �e random potential 
field {�푉(�푥, �휔); �푥 ∈ Z

�} is i.i.d., of nonnegative values and the 
corresponding probability distribution function �� is log-
Hölder continuous: more precisely,

Note that this last condition depends on the parameter � 
which will be introduced in Section 3.

2.3. �e Results. For any �푛 = 1, . . . , �푁 we denote by �휎(H(�푛)(�휔)) 
the spectrum of  H(�푛)(�휔) and �퐸(�푛)

0 (�휔) the infimum of �휎(H(�푛)(�휔)).
Theorem 1. Let 1 ≤ �푛 ≤ �푁. Under assumptions (I) and (P) 
we have with probability one:

Consequently,

Theorem 2. Under the assumptions (I) and (P), there exists 
�∗ bigger than �(�푁)

0  such that with P-probability one:

(i)   the spectrum of H(�푁)(�휔) in [�퐸(�푁)
0 , �퐸∗] is nonempty and 

pure point,
(ii)  any eigenfuction corresponding to eigenvalues in 

[�퐸(�푁)
0 , �퐸∗] is exponentially decaying at infinity in the 

max-norm.

Theorem 3. Assume that the hypotheses (I) and (P) hold true, 
then there exists �∗ bigger than �(�푁)

0  and a positive �푠∗(�푁, �푑) 
such that for any bounded K ⊂ Z

�� and any �푠 ∈ (0, �푠∗) we have

is finite, where (|X|Ψ)(x) := |x|Ψ(x), P�퐼(H(�푁)(�휔)) is the spec-
tral projection of H(�푁)(�휔) onto the interval �퐼 := [�퐸(�푁)

0 , �퐸∗] and 
K ⊂ R is a compact domain.

Some parts of the rest of the text overlap with the paper 
[14] but for the reader convenience we give all the details of 
the arguments.

3. Input for the Multiparticle Multiscale 
Analysis and Geometry

3.1. Geometric Facts. According to the general structure of 
the multiscale analysis, we work with rectangular domains. 
For u = (�푢1, . . . , �푢�푛) ∈ Z

�푛�푑, we denote by C(�푛)
�퐿 (u) the �-particle 

cube, i.e.,

(2.6)�퐹� : �푡 → P{�푉(0, �휔) ≤ �푡}.

(2.7)
�푠(�퐹�푉, �휀) := sup

�푎∈R
(�퐹�푉(�푎 + �휀) − �퐹�푉(�푎)) ≤ �퐶

|ln �휀|2�퐴

for some �퐶 ∈ (0,+∞) and �퐴 ≥ 3
2 × 4�푁�푝 + 9�푁�푑.

(2.8)�휎(H(�푛)(�휔)) = [0,∞).

(2.9)inf �휎(H(�휔)) = 0 �푎.�푠.

(2.10)E[sup
�푡≥0

�儩�儩�儩�儩�儩�儩|X|(�푠/2)e−�푖�푡H
(�푁)(�휔)

P�퐼(H(�푁)(�휔))1
K

�儩�儩�儩�儩�儩�儩�퐿2(R�푁�푑)
]

(3.1)C
(�푛)
�퐿 = {x ∈ R

�푛�푑 : |x − u| ≤ �퐿},
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and given {�퐿 � : �푖 = 1, . . . , �푛}, we define the rectangle

where �(1)
�퐿 �
(��푖) are the cubes of side length 2�퐿 �, center at points 

�� ∈ Z
�. We also define

and introduce the characteristic functions:

�e volume of the cube C(�푛)
�퐿 (u) is |C(�푛)

�퐿 (u)| = (2�퐿)�푛�푑. We denote 
the restriction of the Hamiltonian H(�푛) to C(�푛)(u) by

We denote the spectrum of H(�푛)
C

(�푛)(u) by �(H(�푛)
C

(�푛)(u)) and its resol-
vent by

Let � be a positive constant and consider � ∈ R. A cube 
C

(�푛)
�퐿 (u) ⊂ R

�푛�푑, 1 ≤ �푛 ≤ �푁 will be called (�퐸,�푚)-nonsingular 
((�퐸,�푚)-NS) if � ∉ �(H(�푛)

C
(�푛)
�퐿 (u)) and

where

Otherwise, it is called (�퐸,�푚)-singular ((�퐸,�푚)-S).
Let us introduce the following:

Definition 4. Let �푛 ≥ 1, � ∈ R and �훼 = 3/2. 

(A)  A cube C(�푛)
�퐿 (v) ⊂ R

�푛�푑 is called �-resonant (�-R) if

Otherwise, it is called �-nonresonant (�-R).
(B)  A cube C(�푛)

�퐿 (v) ⊂ R
�푛�푑 is called �-completely nonres-

onant (�-CNR), if it does not contain any �-R cube 
of size ≥ �1/�훼. In particular C(�푛)

�퐿 (v) is itself �-NR.

We will also make use of the following notion,

Definition 5. A cube C(�푛)
�퐿 (x) is J -separable from C(�푛)

�퐿 (y) if 
there exists a nonempty subset J ⊂ {1, . . . , �푛} such that

A pair (C(�푛)
�퐿 (x),C(�푛)

�퐿 (y)) is separable if |x − y| ≥ 7�푁�퐿 and if 
one of the cube is J -separable from the other.

(3.2)C
(�푛)(u) =

�푛∏
�푖=1

�퐶(1)
�퐿 �
(�푢�푖),

(3.3)
C

(�푛,�푖�푛�푡)
�퐿 (u) := C

(�푛)
�퐿/3(u), C

(�푛,�표�푢�푡)
�퐿 (u) := C

(�푛)
�퐿 (u)\C(�푛)

�퐿−2(u), u ∈ Z
�푛�푑,

(3.4)1
(�푛,�푖�푛�푡)
x

:= 1
C

(�푛,�푖�푛�푡)
�퐿 (x), 1

(�푛,�표�푢�푡)
x

:= 1
C

(�푛,�표�푢�푡)
�퐿 (x).

(3.5)
H

(�푛)
C

(�푛)(u) = H
(�푛)�����C(�푛)(u)

with dirichlet boundary conditions.

(3.6)G
(�푛)
C

(�푛)(u)(�퐸) := (H(�푛)
C

(�푛)(u) − �퐸)−1, �퐸 ∈ R\�휎(H(�푛)
C

(�푛)(u)).

(3.7)
�儩�儩�儩�儩�儩�儩1(�푛,�표�푢�푡)x

G
(�푛)
C

(�푛)
�퐿 (x)(�퐸)1(�푛,�푖�푛�푡)x

�儩�儩�儩�儩�儩�儩 ≤ e−�훾(�푚,�퐿,�푛)�퐿,

(3.8)�훾(�푚, �퐿, �푛) = �푚(1 + �퐿−1/8)�푁−�푛+1.

(3.9)dist[�퐸, �휎(H(�푛)
C

(�푛)
�퐿 (v))] ≤ e−�퐿

1/2 ,

(3.10)(⋃
�푗∈J

�퐶(1)
�퐿 (�푥�푗)) ∩(⋃

�푗∉J
�퐶(1)

�퐿 (�푥�푗) ∪
�푛
⋃
�푗=1

�퐶(1)
�퐿 (�푦�푗)) = Ø.

Lemma 6. Let �퐿 ≥ 1.
(A)  For any x ∈ Z

��, there exists a collection of �-parti-
cle cubes C(�푛)

2�푛�퐿(x(ℓ)) with ℓ = 1, . . . , �휅(�푛), �휅(�푛) = �푛�, 
x
(ℓ) ∈ Z

�푛�푑 such that if y ∈ Z
�� satisfies |y − x| ≥ 7�푁�퐿 

and

then the cubes C(�푛)
�퐿 (x) and C(�푛)

�퐿 (y) are separable.
(B)  Let C(�푛)

�퐿 (y) ⊂ R
�푛�푑 be an �-particle cube. Any cube 

C
(�푛)
�퐿 (x) with

is J -separable from C(�푛)
�퐿 (y) for some J ⊂ {1, . . . , �푛}.

Proof. See Appendix A. ☐

3.2. �e Multiparticle Wegner Estimates. We state below 
the Wegner estimates directly in a form suitable for our 
multiparticle multiscale analysis using assumption (P).

Theorem 7. Assume that the random potential satisfies 
assumption (P), then

(A)  For any � ∈ R

(B)

where �푝 ≥ 6�푁�푑, depends only on the fixed number of particles 
� and the configuration dimension �.

Proof. See the articles [15, 16]. ☐

We also give the Combes–�omas estimates in

Theorem 8. Let � = −� +� be a Schrödinger operator on 
�2(R�퐷), � ∈ R and �퐸0 = inf �휎(�퐻). Set �휂 = dist(�퐸, �휎(�퐻)). If � 
is less than �0, then for any �훾 ∈ (0, 1), we have that

for all x, y ∈ R
�.

Proof. See the proof of �eorem 1 in [17]. ☐

We define the mass � depending on the parameters �, �,  
and the initial length scale � in the following way:

(3.11)y ∉
�휅(�푛)
⋃
ℓ=1

C
(�푛)
2�푛�퐿(x(ℓ))

(3.12)
�儨�儨�儨�儨y − x

�儨�儨�儨�儨 ≥ max
1≤�푖,�푗≤�푛

�儨�儨�儨�儨�儨�푦�푖 − �푦�푗
�儨�儨�儨�儨�儨 + 5�푁�퐿

(3.13)P{C(�푛)
�퐿 (x) �푖�푠 �푛�표�푡 �퐸 − �퐶�푁�푅} ≤ �퐿−�푝4�푁−�푛 .

(3.14)
P{∃�퐸 ∈ R �푛�푒�푖�푡ℎ�푒�푟 C(�푛)

�퐿 (x) �푛�표�푟 C(�푛)
�퐿 (y) �푖�푠 �퐸 − �퐶�푁�푅} ≤ �퐿−�푝4�푁−�푛 ,

(3.15)
�儩�儩�儩�儩�儩1x(�퐻 − �퐸)−11

y

�儩�儩�儩�儩�儩 ≤ 1
(1 − �훾2)�휂e

�훾√�휂�푑e−�훾√�휂|x−y|,

(3.16)�푚 := 2−�푁�훾�퐿−1/4

3√2 .
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�푖 = 1, . . . , �푛. So, if �(�푛)
0 ≤ �−1/2, then for example �(1)

1 ≤ �−1/2 and 
this implies the required probability bound of the assertion. ☐

We are now ready to prove our initial length scale estimate 
of the multiparticle multiscale analysis given below.

Recall that the positive parameter � is defined by 
�푚 = 2−�푁�훾�퐿−1/4/3√2.

Theorem 13. Assume that the hypotheses (I) and (P) hold 
true. �en there exists a positive �∗ such that

for �퐿 ≥ 0 large enough.

Proof. Set �퐸∗ := (1/2) �퐿−1/2. If the first eigenvalue �퐸(�푛)
0 (�휔) 

satisfies �퐸(�푛)
0 (�휔) ≥ �퐿−1/2, then for all energy � ≤ �∗, we have:

�us using the Combes–�omas estimate �eorem 3.2

�us for �퐿 ≥ 0 large enough depending on the dimension �, 
we get

Now, since �훾(�푚, �퐿, �푛) = �푚(1 + �퐿−1/8)�푁−�푛 ≤ 2�푁�푚, for �퐿 ≥ 0 
large enough, we have that

�e above analysis then implies that

Yielding the required result. ☐
Below, we develop the induction step of the multiscale 

analysis and although the text overlaps with the paper [14], 
for the reader convenience we also give the detailed of the 
proofs of some important results.

5. Multiscale Induction

In the rest of the paper, we assume that �푛 ≥ 2 and �0 is the 
interval from the previous Section.

(4.4)P{∃�퐸 ∈ (−∞ : �퐸∗]C(�푛)
�퐿 (u) �푖�푠 (�퐸,�푚) − �푆} ≤ �퐿−2�푝4�푁−�푛 ,

(4.5)
dist(�퐸, �휎(H(�푛)

C
(�푛)
�퐿 (u)(�휔))) = �퐸(�푛)

0 (�휔) − �퐸

≥ �퐿−1/2 − 1
2�퐿

−1/2

≥ 1
2�퐿

−1/2.

(4.6)
�儩�儩�儩�儩�儩�儩1xG(�푛)

C
(�푛)
�퐿 (u)(�퐸)1y

�儩�儩�儩�儩�儩�儩 ≤ 2�퐿1/2e�훾√�휂�푑|x−y|
≤ 2�퐿1/2e−(�훾�퐿−1/4)/√2((�퐿/3)−√�푑).

(4.7)

�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)
�퐿 (u)G

(�푛)
C

(�푛)
�퐿 (u)(�퐸)1C(�푛,�푖�푛�푡)

�퐿 (u)
�儩�儩�儩�儩�儩�儩

≤ ∑
x ∈ C

(�푛,�표�푢�푡)
�퐿 (u) ∩ Z

�푛�푑

y ∈ C
(�푛,�푖�푛�푡)
�퐿 (u) ∩ Z

�푛�푑

2�퐿1/2
e
−(�훾�퐿−1/4)/√2((�퐿/3)−√�푑)

≤ (2�퐿)2�푛�푑2�퐿1/2
e
2�푁�푚�퐿.

(4.8)
�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)(u)G

(�푛)
C

(�푛)
�퐿 (u)(�퐸)1C(�푛,�푖�푛�푡)

�퐿 (u)
�儩�儩�儩�儩�儩�儩 ≤ e−�훾(�푚,�퐿,�푛)�퐿.

(4.9)
P{∃�퐸 ≤ �퐸∗ : C(�푛)

�퐿 (u) is (�퐸,�푚) − S}
P{�퐸(�푛)

0 (�휔) ≤ �퐿−1/2} ≤ �퐿−2�푝4�푁−�푛 .

We recall below the geometric resolvent and the eigenfunction 
decay inequalities.

Theorem 9 (geometric resolvent inequality (GRI)). For a 
given bounded �0 ⊂ R. �ere is a positive constant �g��� such 
that for C(�푛)

ℓ (x) ⊂ C
(�푛)
�퐿 (u), A ⊂ C

(�푛,�푖�푛�푡)
ℓ (x), B ⊂ C

(�푛)
�퐿 (u)\C(�푛)

ℓ (x) 
and � ∈ �0, the following inequality holds true:

Proof. See [12], Lemma 2.5.4. ☐

Theorem 10 (eigenfunctions decay inequality (EDI)). For 
every � ∈ R, C(�푛)

ℓ (x) ⊂ R
�푛�푑 and every polynomially bounded 

function Ψ ∈ �2(R�푛�푑):

Proof. See Section 2.5 and Proposition 3.3.1. in [12]. ☐

4. The Initial Bounds of the Multiparticle 
Multiscale Analysis

In this Section, we denote by �퐸�푛
0(�휔) the bottom of the spectrum 

of the Hamiltonian H(�푛)
C

(�푛)
�퐿 (u)(�휔) i.e., �퐸(�푛)

0 := inf �휎(H(�푛)
C

(�푛)
�퐿 (u)(�휔)). 

We give the following bound from the single-particle locali-
zation theory.

Theorem 11. Under the hypotheses (I) and (P), for any 
positive �, there exists a positive �∗ such that

for all � ≥ �∗.

Proof. See the book by Peter Stollmann [12]. ☐

Now, in the following statement, we show that the same 
result holds true for the multiparticle random Hamiltonian.

Theorem 12. Under the hypotheses (I) and (P), for any 
positive � there exists a positive �∗

1 such that

for all � ≥ �∗
1.

Proof. We denote by H(�푛)
0 (�휔) the multiparticle random 

Hamiltonian without interaction. Observe that, since the 
interaction potential U is nonnegative we have

where �퐸(�푛)
0 (�휔) = �휆(1)

1 (�휔) + ⋅ ⋅ ⋅ + �휆(1)
�푛  and the �(1)

�푖  are the eigen-
values of the single-particle random Hamiltonians �퐻(1)

�퐶(1)
�퐿 (�푢�푖)(�휔)

(3.17)

�儩�儩�儩�儩�儩�儩1BG(�푛)
C

(�푛)
�퐿 (u)(�퐸)1A

�儩�儩�儩�儩�儩�儩 ≤ �퐶g�푒�표�푚 ⋅ �儩�儩�儩�儩�儩�儩1BG(�푛)
C

(�푛)
�퐿 (u)(�퐸)1C(�푛,i�푛�푡)

ℓ (x)
�儩�儩�儩�儩�儩�儩⋅�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)

ℓ (x)
�儩�儩�儩�儩�儩 ⋅

�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)
ℓ (x)G

(�푛)
C

(�푛)
ℓ (x)(�퐸)1A

�儩�儩�儩�儩�儩�儩.

(3.18)

�儩�儩�儩�儩�儩1C(�푛)
1 (x) ⋅Ψ�儩�儩�儩�儩�儩 ≤ �퐶 ⋅ �儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)

ℓ (x)G
(�푛)
C

(�푛)
ℓ (x)(�퐸)1C(�푛,�푖�푛�푡)

ℓ (x)
�儩�儩�儩�儩�儩�儩 ⋅

�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)
ℓ (x) ⋅Ψ�儩�儩�儩�儩�儩.

(4.1)P{�퐸(1)
0 (�휔) ≤ �퐿−1/2} ≤ �퐿−2�푝4�푁−1

(4.2)P{�퐸(�푛)
0 (�휔) ≤ �퐿−1/2} ≤ �퐿−2�푝4�푁−�푛

(4.3)�퐸0(H(�푛)
C

(�푛)
�퐿 (u)(�휔)) ≥ �퐸(�푛)

0 (�휔),
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of the PI cube C(�푛)
�퐿�
(u) and {�휆�, �휑�} and {�휇�, �휙�} be the eigen-

values and the corresponding eigenfunctions of H(��)
C
(��)
� (u�)

 and 

H
(���)
C
(���)
� (u��)

 respectively. Next, we can choose the eigenfunctions 

Ψ�� of H(�푛)
C

(�푛)
�퐿 (u)(�휔) as tensor products:

�e eigenfunctions appearing in subsequent arguments and 
calculation will be assumed normalized. Now, we turn to 
geometric properties of FI cubes.

Lemma 17. Let �푛 ≥ 1, �퐿 ≥ 2�푟0 and consider two FI cubes 
C

(�푛)
�퐿 (x) and C(�푛)

�퐿 (y) with |x − y| ≥ 7�푛�퐿. �en

Proof. See Appendix C. ☐

Given an �-particle cube C(�푛)
�퐿 (u) and � ∈ R, we denote by

(i)  �푀sep
PI (C(�푛)

�퐿�푘+1
(u), �퐸) the maximal number of 

pairwise separable (�퐸,�푚)-singular PI cubes 

C
(�푛)
�퐿�푘
(u(�푗)) ⊂ C

(�푛)
�퐿�푘+1

(u);
(ii)  by �푀PI(C(�푛)

�퐿�푘+1
(u), �퐸), the maximal number of (not 

necessary separable) (�퐸,�푚)-singular PI-cubes 

C
(�푛)
�퐿�
(u(�푗)) contain in C(�푛)

�퐿�푘+1
(u) with u(�), u(��)Z�� and 

|u(�) − u
(��)| ≥ 7�푁�퐿� for all � ̸= ��;

(iii)  �푀FI(C(�푛)
�퐿�푘+1

(u), �퐸) the maximal number of (�퐸,�푚)
-singular FI cubes C

(�푛)
�퐿�푘
(u(�푗)) ⊂ C

(�푛)
�퐿�푘+1

(u) with 
|u(�) − u

(��)| ≥ 7�푁�퐿� for all � ̸= �� (Note that by 
Lemma 17; two FI cubes C(�푛)

�퐿�
(u(�푗)) and C(�푛)

�퐿�
(u(�푗�)) 

with 
�儨�儨�儨�儨�儨�儨u
(�) − u

(��)�儨�儨�儨�儨�儨�儨 ≥ 7�푁�퐿� are automatically 
separable);

(iv)  �푀PI(C(�푛)
�퐿�푘+1

(u), �퐼) := sup�퐸∈�퐼�푀PI(C(�푛)
�퐿�푘+1

(u), �퐸);

(v)  �푀FI(C(�푛)
�퐿�푘+1

(u), �퐼) := sup�퐸∈�퐼�푀FI(C(�푛)
�퐿�푘+1

(u), �퐸);

(vi)  �푀(C(�푛)
�퐿�푘+1

(u), �퐸) the maximal number of (�퐸,�푚)
-singular cubes C

(�푛)
�퐿�푘
(u(�푗)) ⊂ C

(�푛)
�퐿�푘+1

(u) with 

dist(u(�푗), �휕C(�푛)
�퐿�푘+1

(u)) ≥ 2�퐿�푘 and |u(�) − u
(��)| ≥ 7�푁�퐿� 

for all � ̸= ��;
(vii)  �푀sep(C(�푛)

�퐿�푘+1
(u), �퐸) the maximal number of pairwise 

separable (�퐸,�푚)-singular cube C(�푛)
�퐿�푘
(u(�푗)) ⊂ C

(�푛)
�퐿�푘+1

(u);

Clearly,

5.1. Pairs of Partially Interactive Cubes. Let 
C

(�푛)
�퐿�푘+1

(u) = C
(�푛�耠)
�퐿�푘+1

(u�耠) × C
(�푛�耠�耠)
�퐿�푘+1

(u�耠�耠) be a PI-cube. We also write 
x = (x�, x��) for any point x ∈ C

(�푛)
�퐿�푘+1

(u), in the same way as 

(5.9)Ψ�� = �휑� ⊗ �휙�.

(5.10)�훱C
(�푛)
�퐿 (x) ∩�훱C

(�푛)
�퐿 (y) = Ø.

(5.11)
�푀PI(C(�푛)

�퐿�푘+1
(u), �퐸) +�푀FI(C(�푛)

�퐿�푘+1
(u), �퐸) ≥ �푀(C(�푛)

�퐿�푘+1
(u), �퐸).

Recall the following facts from [2]: Consider a cube C(�푛)
�퐿 (u) 

with u = (�푢1, . . . , �푢�푛) ∈ (Z�푑)�푛. We define

and

Definition 14. Let �퐿0 ≥ 3 be a constant and �훼 = 3/2. We 
define the sequence {�퐿� : �푘 ≥ 1} recursively as follows

Let � be a positive constant. We also introduce the follow-
ing property, namely the multiscale analysis bounds at any 
scale length �� and for any pair of separable cubes C(�푛)

�퐿�
(u) and 

C
(�푛)
�퐿�
(v).
(DS. k, n, N).

where �푝 ≥ 6�푁�푑.
In both the single-particle and the multiparticle systems, 

given the results on the multiscale analysis property (DS.k, n, 
N) above, one can deduce the localization results see for exam-
ple the papers [13, 18] for those concerning the single-particle 
case and [2, 7] for multiparticle systems. We have the 
following

Definition 15 (fully/partially interactive). An �-particle cube 
C

(�푛) ⊂ Z
�푛�푑 is called fully interactive (FI) if

and partially interactive (PI) otherwise.
�e following simple statement clarifies the notion of PI 

cubes.

Lemma 16. If a cube C(�푛)
�퐿 (u) is PI, then there exists a subset 

J ⊂ {1, . . . , �푛} with 1 ≤ cardJ ≤ �푛 − 1 such that

Proof.  See Appendix B. ☐

If C(�푛)
�퐿 (u) is a PI cube by the above Lemma, we can write 

it as

with,

where u� = uJ = (�푢�, �푗 ∈ J), u�� = (�푢�; �푗 ∈ J
�)�� = cardJ  

and ��� = cardJ�. �roughout, when we write a PI cube C(�푛)
�퐿 (u) 

in the form (5.7) we implicitly assume that the projections 

satisfy (5.8). Let C(�
�)

��
(u�) × C

(���)
��

(u��) be the decomposition 

(5.1)�훱u = {�푢1, . . . , �푢�푛}

(5.2)�훱C
(�푛)
�퐿 (u) = �퐶(1)

�퐿 (�푢1) ∪ ⋅ ⋅ ⋅ ∪ �퐶(1)
�퐿 (�푢�푛).

(5.3)�퐿�푘 = ⌊�퐿�훼
�푘−1⌋, for all �푘 ≥ 1.

(5.4)
P{∃�퐸 ∈ �퐼0 : C(�푛)

�퐿�푘
(u) andC(�푛)

�퐿�푘
(v) are (�퐸,�푚) − S} ≤ �퐿−2�푝4�푁−�푛

�푘 ,

(5.5)diam �훱u := max
�푖 ̸=�푗

�儨�儨�儨�儨�儨�푢�푖 − �푢�푗
�儨�儨�儨�儨�儨 ≤ �푛(2�퐿0 + �푟0),

(5.6)dist(�훱JC
(�푛)
�퐿 (u), �훱J

�C
(�푛)
�퐿 (u)) ≥ �푟0,

(5.7)C
(�푛)
�퐿 (u) = C

(�푛�)
�퐿 (u�耠) × C

(�푛��)
�퐿 (u�耠�耠),

(5.8)dist(�훱C
(�푛�)
�퐿 (u�耠),�훱C

(�푛��)
�퐿 (u�耠�耠)) ≥ �푟0,
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Lemma 20. Let � ∈ R. If a PI cube C(�푛)
�퐿 (u) = C

(�푛�)
�퐿 (u�耠)×

C
(���)
� (u��) is not �-HNR, then

(i)  either there exist �1/�훼 ≤ ℓ ≤ �, x ∈ C
(��)
� (u�) 

such that the �-particle rectangle 
C

(�푛) = C
(�푛�)
ℓ (x) × C

(�푛��)
�퐿 (u�耠�耠) ⊂ C

(�푛)
�퐿 (u) is �-R,

(ii)  or there exist �1/�훼 ≤ ℓ ≤ �, x ∈ C
(���)
� (u��) 

such that the �-particle rectangle 
C

(�푛) = C
(�푛�)
�퐿 (u�耠) × C

(�푛��)
ℓ (x) ⊂ C

(�푛)
�퐿 (u) is �-R.

Proof. By Definition 18, if C(�푛)
�퐿 (u) is not �-HNR then either 

(a) there exists �휇� ∈ �휎(H(���)
C
(���)
� (u��)) such that C(�

�)
� (u�) is not  

� − ��-CNR or (b) there exists �휆� ∈ �휎(H(��)
C
(��)
� (u�)) such that 

C
(���)
� (u��) is not � − ��-CNR. Let us first focus on case (a). 

Since C(�
�)

� (u�) is not � − ��-CNR there exist �1/�훼 ≤ ℓ ≤ �,  

 x ∈ C
(��)
� (u�) such that C(�

�)
ℓ (x) ⊂ C

(��)
� (�푢�) and C(�

�)
ℓ (x) is 

� − ��-R. So dist(�퐸 − �휇�푗, �휎(H(�푛�)
C
(��)
� (u�))) ≤ e−ℓ

�
. �erefore, 

there exists  �휂 ∈ �휎(H(�푛�)
C
(��)
ℓ (x)

) such that |�퐸 − �휇�푗 − �휂| ≤ e−ℓ
�
. Now 

consider C(�푛) = C
(�푛�)
ℓ (x) × C

(�푛��)
�퐿 (u�耠�耠), since the cube C(�푛)

�퐿 (u) is 

PI, we have �휎(H(�푛)
C

(�푛)(u)) = �휎(H(�푛�耠)
C
(�푛�耠)
ℓ (x)

) + �휎(H(�푛�耠�耠)
C
(�푛�耠�耠)
�퐿 (u�耠�耠)), 

hence

�us C(�푛) is �-R. �e same arguments shows that case (ii) arises 
when (b) occurs. ☐

Lemma 21. Let � ∈ � and C(�푛)
�퐿�
(u) be a PI cube. Assume that 

C
(�푛)
�퐿�
(u) is (�퐸,�푚)-NT and �-HNR. �en C(�푛)

�퐿�
(u) is (�퐸,�푚)-NS.

Proof. Let C(�
�)

��
(u�) × C

(���)
��

(u��) be the decomposition of the 
PI cube C(�푛)

�퐿�
(u). Let {�휆�, �휑�} and {�휇�, �휙�} be the eigenvalues 

and corresponding eigenfunctions of H(��)
C
(��)
�� (u�)

 and H(���)
C
(���)
�� (u��)

 

respectively. �en, we can choose the eigenvectors Ψ�� and 
corresponding eigenvalues ��� of H(�푛)

C
(�푛)
�퐿�푘
(u) as follows

By the assumed �-HNR property of the cube C(�푛)
�퐿�
(u), for all 

eigenvalues �� one has C(�
��)

��
(u��) is � − ��-CNR. Next, by 

assumption of (�퐸,�푚)-NT, C(�
��)

��
(u��) does not contain any pair 

of separable (�퐸 − �휆�, �푚)-S cubes of radius ��푘−1 therefore by 

Lemma 26, �푀(C(�푛)
�퐿�푘+1

(u), �퐸 − �휆�푖) ≤ �푛�푛 + 2 and the cube is also 
(�퐸 − �휆�, �푚)-NS, yielding

(5.14)dist(�퐸, �휎(H(�푛)
C

(�푛))) ≤ �儨�儨�儨�儨�儨�퐸 − �휇�푗 − �휂�儨�儨�儨�儨�儨 ≤ e−ℓ
�훽 .

(5.15)Ψ�� = �휑� ⊗ �휙�, �퐸�� = �휆� + �휇�.

(u�, u��). So the corresponding Hamiltonian H(�푛)
C

(�푛)
�퐿�푘+1

(u) is written 
in the form:

or in compact form:

We denote by G(��)(u�, v�; �퐸) and G(���)(u��, v��; �퐸) the corre-
sponding Green functions respectively. Introduce the follow-
ing notions:

Definition 18 (see [10]). Let 1 ≤ �푛 ≤ �푁 and � ∈ R. Consider 

a PI cube C(�푛) = C
(�푛�)
�퐿 (u�耠) × C

(�푛��)
�퐿 (u�耠�耠). �en C(�푛)

�퐿 (u) is called 

�-highly nonresonant (�-HNR) if

(i)  for all �휇� ∈ �휎(H(���)
C
(���)
� (u��)), the cube C(�

�)
� (u�) is 

(� − ��)-CNR.

(ii)  for all �휆� ∈ �휎(H(��)
C
(��)
� (u�)), the cube C(�

��)
� (u��) is 

(� − ��)-CNR.

Definition 19 ((E,m)-tunnelling). Let 1 ≤ �푛 ≤ �푁, � ∈ R and a 
positive �. Consider a PI cube C(�푛)

�퐿 (u) = C
(�푛�)
�퐿 (u�耠) × C

(�푛��)
�퐿 (u�耠�耠).  

�en C(�푛)
�퐿 (u) is called

(i)  (�퐸,�푚) le�-tunnelling ((�퐸,�푚)-LT) if 

∃�휇� ∈ �휎(H(���)
C
(���)
� (u��)) such that C

(��)
� (u�) con-

tains two separable (� − ��)-S cubes C(�푛
�)

ℓ (v1) and 

C
(�푛�)
ℓ (v2) with �퐿 = ⌊ℓ�⌋ + 1. Otherwise it is called 

(�퐸,�푚) nonle�-tunnelling ((�퐸,�푚)-NLT).
(ii)  (�퐸,�푚) right-tunnelling ((�퐸,�푚)-RT) if 

∃�휆� ∈ �휎(H(��)
C
(��)
� (u�)) such that C

(���)
� (u��) con-

tains two separable (� − ��)-S cubes C(�푛
��)

ℓ (v1) and 

C
(�푛��)
ℓ (v2) with �퐿 = ⌊ℓ�⌋ + 1. Otherwise it is called 

(�퐸,�푚) nonright-tunnelling ((�퐸,�푚)-NRT).
(iii)  (�퐸,�푚)-tunnelling ((�퐸,�푚)-T) if either it is (�퐸,�푚)-LT 

or (�퐸,�푚)-RT. Otherwise it is called (�퐸,�푚)-nontun-
nelling ((�퐸,�푚)-NT).  

We reformulate and prove Lemma 3.18 from [10] in our 
context.

(5.12)
H

(�푛)
C

(�푛)
�퐿�푘+1

(u)Ψ(x) = (−ΔΨ)(x) + [U(x�耠) + V(x�耠, �휔)
+U(x�耠�耠) + V(x�耠�耠, �휔)]Ψ(x)

(5.13)H
(�푛)
C

(�푛)
�퐿�푘+1

(u) = H
(�푛�耠)
C
(�푛�耠)
�퐿�푘+1 (u�耠)

⊗ I + I ⊗H
(�푛�耠�耠)
C
(�푛�耠�耠)
�퐿�푘+1 (u�耠�耠)

.
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Now, since � ∈ � and �휇� ≥ 0 we have � − ��푗 ≤ �∗. So for any �,  
� − �� ∈ �. Further, using property (DS.�푘, �푛�, �푁) we have

A similar argument also shows that

so that

�e assertion follows by observing that 
2�푝4(�푁−(�푛−1))/�훼 − 3(�푛 − 1)�푑 ≥ 4�푝4�푁−�푛 for �훼 = 3/2 provided �0 
is large enough and �푝 ≥ 4�훼�푁�푑 = 6�푁�푑. ☐

Theorem 23. Let 1 ≤ �푛 ≤ �푁. �ere exists �퐿∗
1 = �퐿∗

1(�푁, �푑) ≥ 0 
such that if �0 ≥ �∗

1 and if for �푘 ≥ 0(��.�푘, �푛�, �푁) holds true for 
any �푛� ∈ [1, �푛) then (��.�푘 + 1, �푛,�푁) holds true for any pair of 
separable PI cubes C(�푛)

�퐿�푘+1
(x) and C(�푛)

�퐿�푘+1
(y).

Proof. Let C(�푛)
�퐿�푘+1

(x) and C(�푛)
�퐿�푘+1

(y) be two separable PI cubes. 
Consider the events:

If �휔 ∈ �퐵�푘+1\�푅 then ∀� ∈ �C(�푛)
�퐿�푘+1

(x) or C(�푛)
�퐿�푘+1

(y) is �-HNR, then 
it must be (�퐸,�푚)-T: otherwise it would have been (�퐸,�푚)-NS 
by Lemma 21. Similarly, if C(�푛)

�퐿�푘+1
(x) is �-HNR, then it must be 

(�퐸,�푚)-T. �is implies that

�erefore,

Next by combining �eorem 7 and Lemma 20 we obtain that 
P{�푅} ≤ �퐿−4��푝

�푘+1 . Finally

 ☐

(5.25)
{∃�퐸 ∈ �퐼 : C(�푛)

�퐿�푘+1
(y) is (�퐸,�푚) − RT}

∪ {∃�퐸 ∈ �퐼 : C(�푛)
�퐿�푘+1

(y) is (�퐸,�푚) − LT}.

(5.26)

P{∃�퐸 ∈ �퐼 : C(�푛)
�퐿�푘+1

(y) is (�퐸,�푚) − RT}

≤
�儨�儨�儨�儨�儨�儨�儨C
(�푛�耠)
�퐿�푘+1

(y�耠)
�儨�儨�儨�儨�儨�儨�儨
2

2
�儨�儨�儨�儨�儨�儨�儨C
(�푛�耠�耠)
�퐿�푘+1

(y�耠�耠)
�儨�儨�儨�儨�儨�儨�儨�퐿

−2�푝4�푁−�푛�耠

�푘

≤ �퐶(�푛,�푁, �푑)�퐿−2�푝4(�푁−(�푛−1))/�훼+3(�푛−1)�푑
�푘+1 .

(5.27)
P{∃�퐸 ∈ �퐼 : C(�푛)

L�푘+1
(y) is (�퐸,�푚) − LT}

≤ �퐶(�푛,�푁, �푑)�퐿−2�푝4(�푁−(�푛−1))/�훼+3(�푛−1)�푑
�푘+1 ,

(5.28)
P{∃�퐸 ∈ �퐼 : C(�푛)

L�푘+1
(y) is (�퐸,�푚) − LT}

≤ �퐶(�푛,�푁, �푑)�퐿−2�푝4(�푁−(�푛−1))/�훼+3(�푛−1)�푑
�푘+1 ,

(5.29)

�퐵�푘+1 = {∃�퐸 ∈ �퐼 : C(�푛)
�퐿�푘+1

(x) and C
(�푛)
�퐿�푘+1

(y) are (�퐸,�푚) − S},
�푅 = {∃�퐸 ∈ �퐼 : neither C(�푛)

�퐿�푘+1
(x) nor C(�푛)

�퐿�푘+1
(y)is �퐸 − HNR},

�푇
x
= {∃�퐸 ∈ �퐼 : C(�푛)

�퐿�푘+1
(x) is (�퐸,�푚) − T},

�푇
y
= {∃�퐸 ∈ �퐼 : C(�푛)

�퐿�푘+1
(y) is (�퐸,�푚) − T}.

(5.30)�퐵�푘+1 ⊂ �푅 ∪ �푇
x
∪ �푇

y
.

(5.31)
P{�퐵�푘+1} ≤ P{�푅} + P{�푇

x
} + P{�푇

y
}

≤ P{�푅} + 1
2�퐿

−4�푝4�푁−�푛

�푘+1 + 1
2�퐿

−4�푝4�푁−�푛

�푘+1 .

(5.32)P{B�푘+1} ≤ L
−4�푁�푝
�푘+1 + L

−4�푝4�푁−�푛

�푘+1 ≤ L
−2�푝4�푁−�푛

�푘+1 .

�e same analysis for C(�
�)

��
(u�) also gives

For any v ∈ �휕−C(�푛)
�퐿�
(u), |u − v| = �퐿� thus either |v� − u

�| = �퐿� 
or |v�� − u

��| = �퐿� consider first the latter case. �en we have

But by definition

For 2 ≤ �푛 ≤ �푁

Indeed, setting �퐶1 = 2−�푁�훾/3√2,

and for �0 sufficiently large, hence ��

�us, C(�푛)
�퐿�
(u) is (�퐸,�푚)-NS. Finally, the case |u� − v

�| = �퐿� is 
similar. ☐

Lemma 22. Let 2 ≤ �푛 ≤ �푁 and assume property (��.�푘, �푛�, �푁) 
for any �푛� ∈ [1, �푛). �en for any PI cube C(�푛)

�퐿�푘+1
(y) one has

Proof. Consider a PI cube C(�푛)
�퐿�푘+1

(y) = C
(�푛�耠)
�퐿�푘+1

(y�耠) × C
(�푛�耠�耠)
�퐿�푘+1

(y�耠�耠). 
By Definition 19, we have that the event

is contained in the union

(5.16)

max
�휆�푖

max

v
�耠�耠∈�휕−C(�푛�耠�耠)�퐿�푘 (u�耠�耠)

�儨�儨�儨�儨�儨�儨G
(�푛�耠�耠)(u�耠�耠, v�耠�耠, �퐸 − �휆�푖)

�儨�儨�儨�儨�儨�儨 ≤ e−�훾(�푚,�퐿�푘 ,�푛�耠�耠)�퐿�푘 .

(5.17)

max�휇j

max

v
�耠∈�휕−C(�푛�耠)�퐿�푘

(u)

�儨�儨�儨�儨�儨�儨�儨�儨�儨�儨�儨
G
(�푛�耠)
C
(�푛�耠)
�퐿�푘 (u�耠)

(u�耠, v�耠, �퐸 − �휇�푗)
�儨�儨�儨�儨�儨�儨�儨�儨�儨�儨�儨
≤ e−�훾(�푚,�퐿�푘 ,�푛�耠)�퐿�푘 .

(5.18)

�儨�儨�儨�儨�儨G
(�푛)(u, v; �퐸)�儨�儨�儨�儨�儨 =

�儨�儨�儨�儨�儨�儨�儨�儨�儨�儨�儨
∑
�푖�푗

�휑�푖(u�耠)�휑�푖(v�耠)�휙�푗(u�耠�耠)�휙�푗(v�耠�耠)
�퐸 − �휆�푖 − �휇�푗

�儨�儨�儨�儨�儨�儨�儨�儨�儨�儨�儨
≤ ∑

�푖

�儨�儨�儨�儨�휑�푖(u�耠)�휑�푖(v�耠)�儨�儨�儨�儨 ⋅
�儨�儨�儨�儨�儨�儨G
(�푛�耠�耠)(u�耠�耠, v�耠�耠, �퐸 − �휆�푖)

�儨�儨�儨�儨�儨�儨
≤ (2�퐿�푘 + 1)(�푛−1)�푑 max

�휆�푖

max

v
�耠�耠�휕−C�푛�耠�耠

�퐿�푘 (u�耠�耠)
⋅ �儨�儨�儨�儨�儨�儨G

(�푛�耠�耠)(u�耠�耠, v�耠�耠, �퐸 − �휆�푖)
�儨�儨�儨�儨�儨�儨, since

�����휑����∞
≤ 1 ≤ (2�퐿�푘 + 1)(�푛−1)�푑 ⋅ e−�훾(�푚,�퐿�푘 ,�푛−1)�퐿�푘

= e
−[�훾(�푚,�퐿�푘 ,�푛−1)−�퐿−1

�푘 ln(2�퐿�푘+1)(�푛−1)�푑]�퐿�푘 .

(5.19)�훾(�푚, �퐿�푘, �푛) = �푚(1 + �퐿−1/8
�푘 )�푁−�푛+1,

(5.20)�훾(�푚, �퐿�푘, �푛 − 1) − �훾(�푚, �퐿�푘, �푛) ≥ �퐿−1
�푘 ln(2�퐿�푘 + 1)(�푛−1)�푑.

(5.21)

�훾(�푚, �퐿�푘, �푛 − 1) − �훾(�푚, �퐿�푘, �푛) = �푚�퐿−1/8
�푘 (1 + �퐿−1/8

�푘 )�푁−�푛+1

≥ �퐶1�퐿−1/2
0 �퐿−1/8

�푘 (1 + �퐿−1/8
�푘 )�푁−�푛+1 ≥ �퐶1�퐿−5/8

�푘 ,

(5.22)�퐿−1
�푘 ln(2�퐿�푘 + 1)(�푛−1)�푑 ≤ �퐿−1

�푘 (�푛 − 1)�푑(3�퐿�푘)3/8 ≤ �퐶1�퐿−5/8
�푘 .

(5.23)P{∃�퐸 ∈ �퐼,C(�푛)
�퐿�푘+1

(y) �푖�푠 (�퐸,�푚) − �푇} ≤ 1
2�퐿

−4�푝4�푁−�푛

�푘+1 .

(5.24){∃�퐸 ∈ �퐼 : C(�푛)
�퐿�푘+1

(y) is (�퐸,�푚) − T}.
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We replace in the above analysis x with xℓ and we get

where xℓ+1 is choosen in such a way that the norm in the right 
hand side in the above equation is maximal. Observe that 
|xℓ − xℓ+1| = �퐿�푘/3. We therefore obtain

with �훿+ = 3�푛�푑�퐶g�푒�표�푚e
−�훾(�푚,�퐿� ,�푛)�퐿�.  

Case (b). C(�푛)
�퐿�
(xℓ) is (�퐸,�푚)-S. �us, there exists �푖0 = 1, . . . , �푟 

such that C(�푛)
�퐿�푘
(xℓ) ⊂ C

(�푛)
2�퐿�푘

(x�푖0). We apply again the (GRI) this 
time with C(�푛)

�퐿�푘+1
(x) and C(�푛)

2�퐿�푘
(x�푖0) and obtain

We have almost everywhere

Hence, by choosing x̃ is such a way that the right hand side is 
maximal, we get

Since C(�푛)
�퐿�푘
(x̃) ⊂/C(�푛)

2�퐿�푘
(x�푖0), x̃ ∈ C

(�푛)
2�퐿�푘

(x�푖0) and the cubes C(�푛)
2�퐿�

(x�푖) 
are disjoint, we obtain that

so that the cube C(�푛)
�퐿�
(x̃) must be (�퐸,�푚)-NS. We therefore per-

form a new step as in case (a) and obtain

with xℓ+1 ∈ �
x
 and |x̃ − xℓ+1| = �퐿�푘/3.

Summarizing, we get xℓ+1 with

(5.36)

�儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)
�퐿�푘+1 (xℓ)G(�푛)

C
(�푛)
�퐿�푘+1(xℓ)(�퐸)1C(�푛,�푖�푛�푡)

�퐿�푘+1 (xℓ)
�儩�儩�儩�儩�儩�儩�儩

≤ 3�푛�푑�儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)
�퐿�푘+1 (xℓ)G(�푛)

C
(�푛)
�퐿�푘+1(xℓ)(�퐸)1C(�푛,�푖�푛�푡)

�퐿�푘+1 (xℓ+1)
�儩�儩�儩�儩�儩�儩�儩,

(5.37)

�儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)
�퐿�푘+1

(x)G
(�푛)
C

(�푛)
�퐿�푘+1(xℓ)(�퐸)1C(�푛,�푖�푛�푡)

�퐿�푘+1 (xℓ)
�儩�儩�儩�儩�儩�儩�儩

≤ �퐶g�푒�표�푚3�푛�푑e−�훾(�푚,�퐿�푘 ,�푛)�퐿�푘
�儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)

�퐿�푘+1
(x)G

(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�푖�푛�푡)
�퐿�푘+1 (xℓ+1)

�儩�儩�儩�儩�儩�儩�儩
≤ �훿+

�儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)
�퐿�푘+1

(x)G
(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�푖�푛�푡)
�퐿�푘+1 (xℓ+1),

(5.38)

�儩�儩�儩�儩�儩�儩�儩1C
(�푛,�표�푢�푡)
�퐿�푘+1

(x)G
(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�푖�푛�푡)
2�퐿�푘 (x�푖0)

�儩�儩�儩�儩�儩�儩�儩
≤ �퐶g�푒�표�푚

�儩�儩�儩�儩�儩�儩�儩1C
(�푛,�표�푢�푡)
�퐿�푘+1

(x)G
(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�표�푢�푡)
�퐿�푘+1 (x�푖0)

�儩�儩�儩�儩�儩�儩�儩
×
�儩�儩�儩�儩�儩�儩�儩1C

(�푛,�표�푢�푡)
�퐿�푘 (x�푖0)G

(�푛)
C

(�푛)
�퐿�푘(x�푖0)

(�퐸)1
C

(�푛,�푖�푛�푡)
�퐿�푘 (x�푖0)

�儩�儩�儩�儩�儩�儩�儩
≤ �퐶g�푒�표�푚e

(2�퐿�푘)1/2 ⋅
�儩�儩�儩�儩�儩�儩�儩1C

(�푛,�표�푢�푡)
�퐿�푘+1

(x)G
(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�표�푢�푡)
2�퐿�푘 (x�푖0)

�儩�儩�儩�儩�儩�儩�儩.

(5.39)
1
C

(�푛,�표�푢�푡)
2�퐿�푘 (x�푖0) ∑

x̃∈C(�푛)
2�퐿�푘(x�푖0)∩�훤x�푖0 ,C(�푛)

�퐿�푘
(x̃)⊂/C(�푛)

2�퐿�푘(x�푖0)
1
C

(�푛,�푖�푛�푡)
�퐿�푘

(x).

(5.40)

�儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)
�퐿�푘+1

(x)G
(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�푖�푛�푡)
2�퐿�푘 (x�푖0)

�儩�儩�儩�儩�儩�儩�儩
≤ 6�푛�푑 ⋅ �儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)

�퐿�푘+1
(x)G

(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�푖�푛�푡)
�퐿�푘+1 (x∼)

�儩�儩�儩�儩�儩�儩�儩.

(5.41)C
(�푛)
�퐿�
(x̃) ⊂/

�푟
⋃
�푖=1

C
(�푛)
2�퐿�

(x�푖),

(5.42)

. . . ≤ 6�푛�푑3�푛�푑�퐶g�푒�표�푚e
−�훾(�푚,�퐿�푘 ,�푛)�퐿�푘 ⋅ �儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)

�퐿�푘+1
(x)G

(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�푖�푛�푡)
�퐿�푘+1 (xℓ+1)

�儩�儩�儩�儩�儩�儩�儩,

(5.43)

�儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)
�퐿�푘+1

(x)G
(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�푖�푛�푡)
�퐿�푘 (xℓ)

�儩�儩�儩�儩�儩�儩�儩 ≤ �훿0
�儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)

�퐿�푘+1
(x)G

(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�푖�푛�푡)
�퐿�푘+1 (xℓ+1)

�儩�儩�儩�儩�儩�儩�儩,

For subsequent calculations and proofs, we give the fol-
lowing two Lemmas.

Lemma 24. If �푀(C(�푛)
�퐿�푘+1

(u), �퐸) ≥ �휅(�푛) + 2 with �휅(�푛) = �푛�, then 

�푀sep(C(�푛)
�퐿�푘+1

(u), �퐸) ≥ 2. Similarly if �푀PI(C(�푛)
�퐿�푘+1

(u), �퐸) ≥ �휅(�푛) + 2 

then �푀sep
PI (C(�푛)

�퐿�푘+1
(u), �퐸) ≥ 2.

Proof.  See Appendix D.

Lemma 25. With the above notations, assume that 
(��.�푘 − 1, �푛�, �푁) holds true for all �푛� ∈ [1, �푛) then

Proof.  See Appendix E. ☐

5.2. Pairs of Fully Interactive Cubes. Our aim now is to prove 
(��.�푘 + 1, �푛,�푁) for a pair of fully interactive cubes C(�푛)

�퐿�푘+1
(x)n 

and C(�푛)
�퐿�푘+1

(y). We adapt to the continuum a very crucial and 
hard result obtained in the paper [2] and which generalized to 
multiparticle systems some previous work by von Dreifus and 
Klein [13] on the lattice and Stollmann [12] in the continuum 
for single particle models.

Lemma 26. Let �퐽 = �휅(�푛) + 5 with �휅(�푛) = �푛� and � ∈ R. 
Suppose that

(i) C
(�푛)
�퐿�푘+1

(x) is �-CNR.
(ii) �푀(C(�푛)

�퐿�푘+1
(x), �퐸) ≤ �퐽.

�en there exists �̃퐿∗
2 (�퐽,�푁, �푑) ≥ 0 such that if  �퐿0 ≥ �̃퐿∗

2 (�퐽,�푁, �푑) 
we have that C(�푛)

�퐿�푘+1
(x) is (�퐸,�푚)-NS.

Proof. Since �푀(C(�푛)
�퐿�푘+1

(X), �퐸) ≤ �퐽, there exist at most � cubes 
of side length 2�퐿� contained in C(�푛)

�퐿�푘+1
(x) that are (�퐸,�푚)

-S with centers at distance ≥ 7�푁�퐿�. �erefore, we can find 
x�푖 ∈ C

(�푛)
�퐿�푘+1

(x) ∩ �훤
x
 with �훤

x
= x + (�퐿�/3)Z��.

such that, if x0 ∈ C
(�푛)
�퐿�푘+1

(x)\⋃�푟
�푖=1C

(�푛)
2�퐿�푘

(x�푖), then the cube C(�푛)
�퐿�
(x0) 

is (�퐸,�푚)-NS.
We do an induction procedure in C(�푛,�푖�푛�푡)

�퐿�푘+1
(x) and start with 

x0 ∈ C
(�푛,�푖�푛�푡)
�퐿�푘+1

(x). We estimate 
�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)

�퐿�푘+1
(x)G

(�푛)
�퐿�푘+1

(�퐸)1
C

(�푛,�푖�푛�푡)
�퐿�푘 (x0)

�儩�儩�儩�儩�儩�儩. 
Suppose that x0, . . . , xℓ have been choosen for ℓ ≥ 0, we have 
two cases:  
Case (a). C(�푛)

�퐿�
(xℓ) is (�퐸,�푚)-NS. 

In this case, we apply the (GRI) �eorem 9 and obtain

(5.33)

P{�푀PI(C(�푛)
�퐿�푘+1

(u), �퐼) ≥ �휅(�푛) + 2} ≤ 32�푛�푑
2 �퐿2�푛�푑

�푘+1(�퐿−4�푁�푝
�푘 + �퐿−4�푝4�푁−�푛

�푘 ).

(5.34)dist(x�푖, �휕C(�푛)
�퐿�푘+1

(x)) ≥ 2�퐿�푘, �푖 = 1, . . . , �푟 ≤ �퐽

(5.35)

�儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)
�퐿�푘+1

(x)G
(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�푖�푛�푡)
�퐿�푘+1 (x0)

�儩�儩�儩�儩�儩�儩�儩
≤ �퐶g�푒�표�푚

�儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)
�퐿�푘+1

(x)G
(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�표�푢�푡)
�퐿�푘+1 (x0)

�儩�儩�儩�儩�儩�儩�儩
⋅ �儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)

�퐿�푘+1
(x)G

(�푛)
C

(�푛)
�퐿�푘+1(x0)(�퐸)1C(�푛,�푖�푛�푡)

�퐿�푘+1 (x0)
�儩�儩�儩�儩�儩�儩�儩

≤ �퐶g�푒�표�푚
�儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)

�퐿�푘+1
(x)G

(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�표�푢�푡)
�퐿�푘+1

(x)
�儩�儩�儩�儩�儩�儩�儩 ⋅ e

−�훾(�푚,�퐿�푘 ,�푛)�퐿�푘 .
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until the induction eventually stop. Since � ≤ �, we can bound 
�+ from below:

which yields

�erefore,

Finally, by �-nonresonance of C(�푛)
�퐿�푘+1

(x) and since we can cover 

C
(�푛,�푖�푛�푡)
�퐿�푘+1

(x) by (�퐿�푘+1/�퐿�푘)�푛�푑 small cubes C(�푛,�푖�푛�푡)
�퐿�

(y), equation (5.50) 
with � instead of x0, yields

(5.47)�푛+ ⋅
�퐿�푘
3 +

�푟
∑
�푖=1

2�퐿�푘 ≥
�퐿�푘+1
3 − �퐿�푘

3 ,

(5.48)
�푛+ ⋅

�퐿�푘
3 ≥ �퐿�푘+1

3 − �퐿�푘
3 − �푟(�퐿�푘)

≥ �퐿�푘+1
3 − �퐿�푘

3 − 2�퐽�퐿�푘

(5.49)
�푛+ ≥ �퐿�푘+1

�퐿�푘
− 1 − 6�퐽

≥ �퐿�푘+1
�퐿�푘

− 7�퐽.

(5.50)
�儩�儩�儩�儩�儩�儩�儩1C(�푛,�표�푢�푡)

�퐿�푘+1
(x)G

(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�푖�푛�푡)
�퐿�푘 (x0)

�儩�儩�儩�儩�儩�儩�儩 ≤ �훿�푛++ ⋅ �儩�儩�儩�儩�儩�儩�儩G
(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)
�儩�儩�儩�儩�儩�儩�儩.

(5.51)

�儩�儩�儩�儩�儩�儩�儩1C
(�푛,�표�푢�푡)
�퐿�푘+1

(x)G
(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�푖�푛�푡)
�퐿�푘+1

(x)
�儩�儩�儩�儩�儩�儩�儩 ≤ (�퐿�푘+1

�퐿�푘
) ⋅ �훿�푛++ ⋅ e�퐿

1/2
�푘+1

≤ (�퐿�푘+1
�퐿�푘

) ⋅ [3�푛�푑 ⋅ �퐶g�푒�표�푚 ⋅ e−�훾(�푚,�퐿�푘 ,�푛)]
(�퐿�푘+1/�퐿�푘)−7�퐽 × e

�퐿1/2
�푘+1

≤ �퐿�푛�푑
�푘+1�퐿−(�푛�푑/�훼)

�푘+1 �퐶(�푛, �푑)(�퐿�푘+1/�퐿�푘)−7�퐽e−�훾(�푚,�퐿�푘 ,�푛)((�퐿�푘+1/�퐿�푘)−7�퐽) × e
�퐿1/2
�푘+1

≤ �퐿�푛�푑/3
�푘+1 e

(�퐿1/3
�푘+1−7�퐽)ln �퐶(�푛,�푑)

e
−�훾(�푚,�퐿�푘 ,�푛)(�퐿1/3

�푘+1−7�퐽)e�퐿1/2
�푘+1

≤ e
−[(−�푛�푑/3)ln(�퐿�푘+1)−�퐿1/3

�푘+1 ln(�퐶)+7�퐽ln(�퐶(�푛,�푑))+�훾(�푚,�퐿�푘 ,�푛)�퐿1/3
�푘+1−7�퐽�훾(�푚,�퐿�푘 ,�푛)−�퐿1/2

�푘+1]
≤ e

−[(−�푛�푑/3)(ln�퐿�푘+1/�퐿�푘+1)−(�퐿1/3
�푘+1 ln(�퐶(�푛,�푑)))/�퐿�푘+1+(7�퐽ln(�퐶(�푛,�푑)))/�퐿�푘+1+�훾(�푚,�푛,�퐿�푘)(�퐿1/3

�푘+1)/�퐿�푘+1−7�퐽(�훾(�푚,�퐿�푘 ,�푛))/�퐿�푘+1−�퐿−1/2
�푘+1 ]

≤ e
−�푚�耠�퐿�푘+1 ,

with �훿0 = 18�푛�푑�퐶2
g�푒�표�푚e

(2�퐿�푘)1/2e−�훾(�푚,�퐿�푘 ,�푛)�퐿�푘. A�er ℓ iterations with 
�+ steps of case (a) and �0 steps of case (b), we obtain

Now since �훾(�푚, �퐿�, �푛) ≥ �푚 we have that

So �+ can be made arbitrarily small if �0 and hence �� is large 
enough. We also have for �0

For large �0 hence ��. Using the (GRI), we can iterate if 
C

(�푛,�표�푢�푡)
�퐿�푘+1

(x) ∩ C
(�푛)
�퐿�푘
(xℓ) = Ø. �us, we can have at least �+ steps 

of case (a) with

(5.44)

�儩�儩�儩�儩�儩�儩�儩1C
(�푛,�표�푢�푡)
�퐿�푘+1

(x)G
(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�푖�푛�푡)
�퐿�푘+1 (x0)

�儩�儩�儩�儩�儩�儩�儩 ≤ (�훿+)
�푛+(�훿0)

�푛0

×
�儩�儩�儩�儩�儩�儩�儩1C

(�푛,�표�푢�푡)
�퐿�푘+1

(x)G
(�푛)
C

(�푛)
�퐿�푘+1

(x)(�퐸)1C(�푛,�푖�푛�푡)
�퐿�푘 (xℓ)

�儩�儩�儩�儩�儩�儩�儩.

(5.45)�훿+ ≤ 3�푛�푑 ⋅ �퐶g�푒�표�푚e
−�푚�퐿� .

(5.46)

�훿0 = 18�푛�푑�퐶2
g�푒�표�푚e

(2�퐿�푘)1/2e−�훾(�푚,�퐿�푘 ,�푛)�퐿�푘

⋅ 18�푛�푑�퐶2
g�푒�표�푚e

√2�퐿1/2
�푘 e

−�훾(�푚,�퐿�푘 ,�푛)�퐿�푘

≤ 18�푛�푑�퐶2
g�푒�표�푚e

√2�퐿1/2
�푘 −�푚�퐿�푘 ≤ 1

2 .

where

with

we obtain

(5.52)

�푚�耠 = 1
�퐿�푘+1

[�푛+�훾(�푚, �퐿�푘, �푛)�퐿�푘 − �푛+ln(2�푁�푑�푁�푑�퐿�푛�푑−1
�푘 )] − 1

�퐿1/2
�푘+1

(5.53)�퐿�푘+1�퐿−1
�푘 − 7�퐽 ≤ �푛+ ≤ �퐿�푘+1�퐿−1

�푘 ,

(5.54)

�푚�耠 ≥ �훾(�푚, �푛, �퐿�푘) − �훾(�푚, �퐿�푘, �푛)
7�퐽�퐿�푘
�퐿�푘+1

− 1
�퐿�푘+1

�퐿�푘+1
�퐿�푘

ln((2�푁�푑�푁�푑)�퐿�푛�푑−1
�푘 ) − 1

�퐿1/2
�푘+1

≥ �훾(�푚, �퐿�푘, �푛) − �훾(�푚, �퐿�푘, �푛)7�퐽�퐿−1/2
�푘

− �퐿−1
�푘 (ln(2�푁�푑�푁�푑)) − (�푛�푑 − 1)ln(�퐿�푘) − �퐿−3/4

�푘

≥ �훾(�푚, �퐿�푘, �푛)[1 − (7�퐽 + ln(2�푁�푑�푁�푑) + �푁�푑)�퐿−1/2
�푘 ],

if �퐿0 ≥ �퐿∗
2(�퐽,�푁, �푑) for some �퐿∗

2(�퐽,�푁, �푑) ≥ 0 large enough. 

Since �훾(�푚, �퐿�푘, �푛) = �푚(1 + �퐿−1/8
�푘 )�푁−�푛+1

�erefore, we can compute

provided �0 ≥ �̃∗
2 for some large enough �̃퐿∗

2 (�퐽,�푁, �푑) ≥ 0. 
Finally, we obtain that �푚�耠 ≥ �훾(�푚, �퐿�푘+1, �푛). �is proves the 
result.

�e main result of this subsection is �eorem 28 below. 
We will need the following preliminary result.

(5.55)
�훾(�푚, �퐿�푘, �푛)
�훾(�푚, �퐿�푘+1, �푛)

= ( 1 + �퐿−1/8
�푘

1 + �퐿−3/16
�푘

)
�푁−�푛+1

≥ 1 + �퐿−1/8
�푘

1 + �퐿−3/16
�푘

.

(5.56)

�훾(�푚, �퐿�푘, �푛)
�훾(�푚, �퐿�푘+1, �푛)

(1 − (7�퐽 + ln(2�푁�푑�푁�푑) + �푁�푑)�퐿−1/2
�푘 )

1 + �퐿−1/8
�푘

1 + �퐿−3/16
�푘

(1 − (7�퐽 + ln(2�푁�푑�푁�푑) + �푁�푑)�퐿−1/2
�푘 ) ≥ 1,
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where we used that �훼 = 3/2, �푝 ≥ 4�훼�푁�푑 = 6�푁�푑. Finally

 ☐

5.3. Mixed Pairs of Cubes. Finally, it remains only to derive 
(��.�푘 + 1, �푛,�푁) in case (III), i.e., for pairs of �-particle cubes 
where one is PI while the other is FI.

Theorem 29. Let 1 ≤ �푛 ≤ �푁. �ere exists �퐿∗
3 = �퐿∗

3(�푁, �푑) ≥ 0 
such that if �퐿0 ≥ �퐿∗

3(�푁, �푑) and if for �푘 ≥ 0
(i) (��.�푘 − 1, �푛�, �푁) holds true all �푛� ∈ [1, �푛),
(ii) (��.�푘, �푛�, �푁) holds true for all �푛� ∈ [1, �푛),
(iii) (��.�푘, �푛,�푁) holds true for all pairs of FI cubes,

then (�퐷�푆.�푘 + 1, �푛,�푁) holds true for any pair of separable cubes 
C

(�푛)
�퐿�푘+1

(x) and C(�푛)
�퐿�푘+1

(y) where one is PI while the other is FI.

Proof. Consider a pair of separable �-particle cubes C(�푛)
�퐿�푘+1

(x),  
C

(�푛)
�퐿�푘+1

(y) and suppose that C(�푛)
�퐿�푘+1

(x) is PI while C(�푛)
�퐿�푘+1

(y) is FI. 
Set �퐽 = �휅(�푛) + 5 and introduce the events

Let �휔 ∈ �퐵�푘+1\(�훴 ∪ �푇
x
) then, for all � ∈ �0 either C(�푛)

�퐿�푘+1
(x) is �-

CNR or C(�푛)
�퐿�푘+1

(y) is �-CNR and C(�푛)
�퐿�푘+1

(x) is �퐸,�푚)-NT. �e cube 

C
(�푛)
�퐿�푘+1

(x) cannot be �-CNR. Indeed by Lemma 21 it would have 
been (�퐸,�푚)-NS. �us the cube C(�푛)

�퐿�푘+1
(y) is �-CNR, so by 

Lemma 26 �푀(C(�푛)
�퐿�푘+1

(y), �퐸) ≥ �퐽 + 1: otherwise C(�푛)
�퐿�푘+1

(y) would 

be (�퐸,�푚)-NS. �erefore, � ∈ S
y
. Consequently,

Recall that the probabilities P{�
x
} and P{�

y
} have already been 

estimated in Sections 5.1 and 5.2. We therefore obtain

 ☐

6. Conclusion: The Multiparticle Multiscale 
Analysis

Theorem 30. Let 1 ≤ �푛 ≤ �푁 and H
(�푛)(�휔) = −Δ+

∑�푛
�푗=1�푉(�푥�푗, �휔) + U, where U.� satisfy (I) and (P) respectively. 

�ere exists a positive � such that for any �푝 ≥ 6�푁�푑 property 
(��.�푘, �푛,�푁) holds true for all �푘 ≥ 0 provided �0 is large enough.

Proof. We prove that for each �푛 = 1, . . . , �푁, property 
(��.�푘, �푛,�푁) is valid. To do so, we use an induction on the 
number of particles �푛� = 1, . . . , �푛. For �푛 = 1 the property 
holds true for all �푘 ≥ 0 by the single-particle localization 

(5.63)P{�퐵�푘+1} ≤ �퐿−4�푁�푝
�푘+1 + 1

2�퐿
−2�푝4N−n
�푘+1 ≤ �퐿−2�푝4N−n

�푘+1 .

(5.64)

�퐵�푘+1 = {∃�퐸 ∈ �퐼0 : C(�푛)
L�푘+1

(x) and C
(�푛)
L�푘+1

(y) are (�퐸,�푚) − S}
�훴 = {∃�퐸 ∈ �퐼0 : neither C(�푛)

L�푘+1
(x) nor C(�푛)

L�푘+1
(y)is �퐸 − CNR}

�푇
x
= {C(�푛)

L�푘+1
(x) is (�퐸,�푚) − T}

�푆
y
= {∃E ∈ �퐼0 : �푀(C(�푛)

L�푘+1
(y), �퐸) ≥ �퐽 + 1}.

(5.65)�퐵�푘+1 ⊂ �훴 ∪ �푇
x
∪ �푆

y
.

(5.66)

P{�퐵�푘+1} ≤ P{�푇
x
} + P{�푆

y
}

≤ �퐿−4�푁�푝
�푘+1 + 1

2�퐿
−4�푝4�푁−�푛

�푘+1 + 1
4�퐿

−2�푝4�푁−�푛

�푘+1 ≤ �퐿−2�푝4�푁−�푛

�푘+1 .

Lemma 27. Given �푘 ≥ 0, asssume that property (��.�푘, �푛,�푁) 
holds true for all pairs of separable FI cubes. �en for any ℓ ≥ 1

Proof.  See the proof in Appendix F. ☐

Theorem 28. Let 1 ≤ �푛 ≤ �푁. �ere exists �퐿∗
2 = �퐿∗

2(�푁, �푑) ≥ 0 
such that if �0 ≥ �∗

2 and if for �푘 ≥ 0
(i) (��.�푘 − 1, �푛�, �푁) for all �푛� ∈ [1, �푛) holds true,
(ii) (��.�푘, �푛�, �푁) holds true for all pairs of FI cubes,

then (��.�푘 + 1, �푛,�푁) holds true for any pairs of separable FI 
cubes C(�푛)

�퐿�푘+1
(x) and C(�푛)

�푘+1(y).
Above we use the convention (��. − 1, �푛,�푁) means no 

assumption.

Proof. Consider a pair of separable FI cubes C(�푛)
�퐿�푘+1

(x) and 
C

(�푛)
�퐿�푘+1

(y) and set �퐽 = �휅(�푛) + 5. Define

Let � ∈ ��푘+1. If � ∉ � ∪ S
x
, then ∀� ∈ �0 either C(�푛)

�퐿�푘+1(x) or 
C

(�푛)
�퐿�푘+1

(y) is �-CNR and �푀(C(�푛)
�퐿�푘+1

(x), �퐸) ≤ �퐽. �e cube C(�푛)
�퐿�푘+1

(x) 
cannot be �-CNR: indeed, by Lemma 26 it would be (�퐸,�푚)-
NS. So the cube C(�푛)

�퐿�푘+1
(y) is �-CNR and (�퐸,�푚)-S. �is implies 

again by Lemma 26 that

�erefore, � ∈ �
y
, so that ��푘+1 ⊂ � ∪ �

x
∪ �

y
, hence

and P{�훴} ≤ �퐿−4��푝
�푘+1  By �eorem 7. Now let us estimate P{�

x
} 

and similarly P{�
y
}. Since

the inequality �푀(C(�푛)
�퐿�푘+1

(x), �퐸) ≥ �휅(�푛) + 6 implies that either 
�푀PI(C(�푛)

�퐿�푘+1
(x), �퐸) ≥ �휅(�푛) + 2  or, �푀FI(C(�푛)

�퐿�푘+1
(x), �퐸) ≥ 4. 

�erefore, by Lemmas 25 and 27 with (ℓ = 2),

(5.57)
P{�푀FI(C(�푛)

�퐿�푘+1
(u), �퐼) ≥ 2ℓ} ≤ �퐶(�푛,�푁, �푑, ℓ)�퐿2ℓ�푑�푛�훼

�푘 �퐿−2ℓ�푝4�푁−�푛

�푘

(5.58)

�퐵�푘+1 = {∃�퐸 ∈ �퐼0 : C(�푛)
L�푘+1

(x) and C
(�푛)
L�푘+1

(y) are (�퐸,�푚) − S}
�훴 = {∃�퐸 ∈ �퐼0 : neither C(�푛)

L�푘+1
(x) nor C(�푛)

L�푘+1
(y) is �퐸 − CNR}

�푆
x
= {∃�퐸 ∈ �퐼0 : �푀(C(�푛)

L�푘+1
(x); �퐸) ≥ �퐽 + 1}

�푆
y
= {∃�퐸 ∈ �퐼0 : �푀(C(�푛)

L�푘+1
(y); �퐸) ≥ �퐽 + 1}.

(5.59)�푀(C(�푛)
�퐿�푘+1

(y), �퐸) ≥ �퐽 + 1.

(5.60)P{�퐵�푘+1} ≤ P{�훴} + P{�푆
x
} + P{�푆

y
},

(5.61)
�푀PI(C(�푛)

�퐿�푘+1
(x), �퐸) +�푀FI(C(�푛)

�퐿�푘+1
(x), �퐸) ≥ �푀(C(�푛)

�퐿�푘+1
(x), �퐸),

(5.62)

P{�푆
x
} ≤ P{∃�퐸 ∈ �퐼 : �푀

PI
(C(�푛)

�퐿�푘+1
(x), �퐸) ≥ �휅(�푛) + 2}

+ P{∃�퐸 ∈ �퐼 : �푀
FI
(C(�푛)

�퐿�푘+1
(x), �퐸) ≥ 4}

≤ 32�푛�푑
2 �퐿2�푛�푑

�푘+1(�퐿−4�푁�푝
�푘 + �퐿−4�푁�푝4�푁−�푛

�푘 )

+ �퐶�耠(�푛,�푁, �푑)�퐿4�푑�푛−(4�푝/�훼)4�푁−�푛

�푘+1

≤ �퐶�耠�耠(�푛,�푁, �푑)(�퐿−(4�푁�푝/�훼)+2�푛d
�푘+1

+�퐿−(4�푝/�훼)4�푁−�푛+2�푛�푑
�푘+1 + �퐿−(4�푝/�훼)4�푁−�푛+4�푛�푑

�푘+1 )

≤ �퐶�耠�耠�耠(�푛,�푁, �푑)�퐿−(4�푝/�훼)4�푁−�푛+4�푛�푑
�푘+1

≤ 1
4�퐿

−2�푝4�푁−�푛

�푘+1 ,
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and put, x�푘0 ,�푚 = (�푥�푘0 ,�푚
1 , . . . , �푥�푘0 ,�푚

�푛 ) ∈ �퐵�푘0 ,�푚. We translate each 
function ��

�  to have support contained in the cube �(1)
�푘0�푚(�

�푘0
�푗 ).  

Next consider the sequence (���)� defined by the tensor 
product,

We have that supp��푚 ⊂ C
(�푛)
�푘0 ,�푚(x

�푘0 ,�푚) and we aim to show that, 

(��)� is a Weyl sequence for H(�푛)(�휔) and 0. For any y ∈ Z
��:

Indeed, for the values of y inside the cube C(�푛)
�푘0�푚(x

�푘0 ,�푚) the 
interaction potential U vanishes and for those values outside 
that cube, �� equals zero too. �erefore,

which tends to zero as � tends to infinity because, for all 
�푗 = 1, . . . , �푛 each �儩�儩�儩�儩�儩(�퐻(1)

�푗 (�휔))�휙�푚
�푖
�儩�儩�儩�儩�儩 → 0 as �푚 → +∞, since ��

�  is 
a Weyl sequence for �퐻(1)

�푗 (�휔) and 0. �is completes the proof.

7.2. Proof of �eorem 2. Using the multiparticle multiscale 
analysis bounds in the continuum property (��.�푘,�푁,�푁), we 
extend to multiparticle systems the strategy of Stollmann [12].

For x0 ∈ Z
�푁�푑 and an integer �푘 ≥ 0, using the notations of 

Lemma 6

and define

where the positive parameter � is to be chosen later. We can 
easily check that

Moreover, if x ∈ ��푘+1(x0), then the cubes C(�푁)
�퐿�

(x) and C(�푛)
�퐿�
(x0) 

are separable by Lemma 6. Now, also define

with �훤�푘 := x0 + (�퐿�푘/3)Z�푁�푑. Now property (��.�푘,�푁,�푁) com-
bined with the cardinality of ��푘+1(x0) ∩ ��푘 imply

Since, �푝 ≥ (�훼�푁�푑 + 1)/2 (in fact �푝 ≥ 6�푁�푑), we get 
∑∞

�푘=0P{�훺�푘(x0)} is finite. �us, setting

(7.7)�휙�푚 := �휙�푚
1 ⊗ ⋅ ⋅ ⋅ ⊗ �휙�푚

�푛 .

(7.8)
�儨�儨�儨�儨�儨(H

(�푛)(�휔)�휙�푚)(y)|=|(H(�푛)
0 (�휔)�휙�푚)�儨�儨�儨�儨�儨.

(7.9)

�儩�儩�儩�儩�儩H
(�푛)(�휔)�휙�푚�儩�儩�儩�儩�儩 ≤

�儩�儩�儩�儩�儩H
(�푛)
0 (�휔)�휙�푚�儩�儩�儩�儩�儩

≤
�푛
∑
�푗=1

�儩�儩�儩�儩�儩(�퐻(1)
�푗 (�휔))�휙�푚

�푗
�儩�儩�儩�儩�儩

(7.10)

�푅(x0) := max
1≤ℓ≤�휅(�푁)

�儨�儨�儨�儨�儨x0 − x(ℓ)
�儨�儨�儨�儨�儨; �푏�푘(x0) := 7�푁 + �푅(x0)�퐿−1

�푘 ,

�푀�푘(x0) :=
�휅(�푁)
⋃
ℓ=1

�퐶(�푁)
7�푁�퐿�

(x(ℓ))

(7.11)�퐴�푘+1(x0) := C
(�푁)
�푏�푏�푘+1�퐿�푘+1

(x0)\C(�푁)
�푏�푘�퐿�푘

(x0),

(7.12)�푀�푘(x0) ⊂ C
(�푁)
�푏��퐿�

(x0).

(7.13)

�훺�푘(x0) := {∃�퐸 ∈ �퐼0 and x ∈ �퐴�푘+1(x0)

∩ �훤�푘 : C(�푛)
�퐿�
(x) andC(�푛)

�퐿�
(x0) are (�퐸,�푚) − S},

(7.14)
P{�훺�푘(x0)} ≤ (2�푏�푏�푘+1�퐿�푘+1)�푁�푑�퐿−2�푝

�푘

≤ (2�푏�푏�푘+1)�푁�푑�퐿−2�푝+�훼�푁�푑
�푘 .

theory [12]. Now suppose that for all �푛� ∈ [1, �푛)(��.�푘, �푛�, �푁) 
holds true for all �푘 ≥ 0, we aim to prove that (��.�푘, �푛,�푁) 
holds true for all �푘 ≥ 0. For �푘 = 0, the property is valid using 
�eorem 13. Next, suppose that (��.�푘�, �푛,�푁) holds true for 
all �푘� ∈ (0, �푘), then by combining this last assumption with 
(��.�푘, �푛�, �푁) above, one can conclude that:

(i)  (��.�푘, �푛,�푁) holds true for all �푘 ≥ 0 and for all pairs 
of PI cubes using �eorem 23.

(ii)  (��.�푘, �푛,�푁) holds true for all �푘 ≥ 0 and for all pairs 
of FI cubes using �eorem 28.

(iii)  (��.�푘, �푛,�푁) holds true for all �푘 ≥ 0 and for all pairs 
of MI cubes using �eorem 29.

Hence, �eorem 30 is proven. ☐

7. Proofs of the Results

7.1. Proof of �eorem 1. Let 1 ≤ �푛 ≤ �푁. We aim to prove 
�휎(H(�푛)(�휔)) = [0,+∞) almost surely. Assumption (I) 
implies that U is nonnegative and assumption (P) also 
implies that V is nonnegative. Since, −Δ ≥ 0, we get that 
almost surely �휎(H(�푛)(�휔)) ⊂ [0,+∞). It remains te see that 
[0,+∞) ⊂ �휎(H(�푛)(�휔)) almost surely.

Let �푘,�푚 ∈ N. Define,

where �0 positive is the range of the interaction U. We also 
define the following sequence in Z��,

where �퐶�푘,�푚 = �푟0 + 2�푘�푚 + 1. Using the identification 
Z

�� ≅ (Z�)�, we can also write x�푘,�푚 = �퐶�푘,�푚(�푥�푘,�푚
1 , . . . , �푥�푘,�푚

�푛 ) with 
each ��푘,�푚

�푖 ∈ Z
�푑, �푖 = 1, . . . �푛. Obviously, each term x�푘,�푚 of the 

sequence (x�푘,�푚)�푘,�푚 belongs to ��푘,�푚. For �푗 = 1, . . . , �푛, set,

We have that almost surely �휎(�퐻(1)
�푗 (�휔)) = [0,+∞) see for 

example [12]. So, if we set for �푗 = 1, . . . , �푛

P{�훺�} = 1 for all �푗 = 1, . . . , �푛. Now put

We also have that P{�훺0} = 1. Let � ∈ �0, for this �, By the Weyl 
criterion, there exist � Weyl sequences {(�휙�

� )� : �푗 = 1, . . . , �푛} 

related to 0 and each operator �퐻(1)
�푗 (�휔). By the density property 

of compactly supported functions �∞
�푐 (R�푑), in �2(R�푑), we can 

directly assume that each ��
�  is of compact support, i.e., 

supp �휙�푚
�푗 ⊂ �퐶(1)

�푘��푚(0) for some integer �� large enough. Set

(7.1)�퐵�푘,�푚 := {x ∈ Z
�푛�푑 : min

�푖 ̸=�푗

�儨�儨�儨�儨�儨�푥�푖 − �푥�푗
�儨�儨�儨�儨�儨 ≥ �푟0 + 2�푘�푚},

(7.2)x
�푘,�푚 := �퐶�푘,�푚(1, . . . , �푛�푑),

(7.3)�퐻(1)
�푗 (�휔) := −�훥 + �푉(�푥�푗, �휔).

(7.4)�훺�푗 = {�휔 ∈ �훺 : �휎(�퐻(1)
�푗 (�휔)) = [0,+∞)}

(7.5)�훺0 :=
�푛
⋂
�푗=1

�훺�푗.

(7.6)�푘0 = max
�푗=1,...,�푛

�푘�푗,
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and side length 2�퐿� are (�퐸,�푚)-NS. �us, for any x ∈ �̃�푘+1(x0), 
we choose x1 ∈ ��푘+1(x0) such that x ∈ C

(�푛)
�퐿�
(x1). �erefore,

Up to a set of Lebesgue measure zero, we can cover C(�푁,�표�푢�푡)
�퐿�

(x1) 
by at most 3�� cubes

By choosing x2 which gives a maximal norm, we get

so that

�us, by an induction procedure, we find a sequence 
x1, x2, . . . , x�푛 in ��푘 ∩ ��푘+1(x0) with the bound

Since |x�푖 − x�푖+1| = �퐿�푘/3 and dist(x, �휕�퐴�푘+1) ≥ �휌 ⋅ |x − x0|, we can 
iterate at least �휌 ⋅ |x − x0| ⋅ 3/�퐿�푘 times until, we reach the 
boundary of ��푘+1(x0). Next, using the polynomial bound on 
Ψ, we obtain:

We can conclude that given �� with �휌� ∈ (0, 1), we can find 
�4 ≥ �3 such that if � ≥ �4, then

if �儨�儨�儨�儨x − x0
�儨�儨�儨�儨 ≥ �푏�푘4�퐿�푘4/(1 − �휌). �is completes the proof of the 

exponential localization in the max-norm.

7.3. Proof of �eorem 3. For the proof of the multiparticle 
dynamical localization given the multiparticle multiscale 
analysis in the continuum, we refer to the paper by Boutet de 
Monvel et al. [19].

Appendix

A. Proof of Lemma 6

(A) Consider positive �퐿, Ø ̸= B ⊂ {1, . . . , �푛} and y ∈ Z
��. {��푗}�푗∈B 

is called an �-cluster if the union

cannot be decomposed into two nonempty disjoint sub-
sets. Next, given two configurations x, y ∈ Z

��, we proceed as 
follows:

(7.23)
�儩�儩�儩�儩�儩C(�푁)

1 (x)Ψ�儩�儩�儩�儩�儩 ≤
�儩�儩�儩�儩�儩�儩1C(�푁,�푖�푛�푡)

�퐿�푘 (x1)Ψ
�儩�儩�儩�儩�儩�儩

≤ �퐶 ⋅ e−�푚�퐿�푘‖⋅‖1
C

(�푁,�표�푢�푡)
�퐿�푘 (x1)Ψ

�儩�儩�儩�儩�儩�儩.

(7.24)C
(�푁,�푖�푛�푡)
�퐿�

(x̃), x̃ ∈ �훤�푘, �儨�儨�儨�儨x̃ − x1
�儨�儨�儨�儨 =

�퐿�푘
3 .

(7.25)
�儩�儩�儩�儩�儩�儩1C(�푁,�표�푢�푡)

�퐿�푘 (x1)Ψ
�儩�儩�儩�儩�儩�儩 ≤ 3�� ⋅ �儩�儩�儩�儩�儩�儩1C(�푁,�푖�푛�푡)

�퐿�푘 (x2)Ψ
�儩�儩�儩�儩�儩�儩,

(7.26)
�儩�儩�儩�儩�儩1C(�푁)

1 (x)Ψ
�儩�儩�儩�儩�儩 ≤ 3�푁�푑 ⋅ e−�푚�퐿�푘 ⋅ �儩�儩�儩�儩�儩�儩1C(�푁,�푖�푛�푡)

�퐿�푘 (x2)Ψ
�儩�儩�儩�儩�儩�儩.

(7.27)
�儩�儩�儩�儩�儩1C(�푁)

1 (x)Ψ
�儩�儩�儩�儩�儩 ≤ (�퐶 ⋅ 3�푁�푑exp(−�푚�퐿�푘))�푛 ⋅ �儩�儩�儩�儩�儩�儩1C(�푁,�표�푢�푡)

�퐿�푘 (x�푛)Ψ
�儩�儩�儩�儩�儩�儩.

(7.28)
�儩�儩�儩�儩�儩1C(�푁)

1 (x)Ψ
�儩�儩�儩�儩�儩 ≤ (�퐶 ⋅ 3�푁�푑)(3�휌|x−x0|)/�퐿�푘 ⋅ exp(−3�푚�휌�儨�儨�儨�儨x − x0

�儨�儨�儨�儨)
× �퐶(1 + �儨�儨�儨�儨x0�儨�儨�儨�儨 + �푏�퐿�푘+1)�푡 ⋅ �퐿�푁�푑

�푘+1.

(7.29)
�儩�儩�儩�儩�儩1C(�푁)

1 (x)Ψ
�儩�儩�儩�儩�儩 ≤ e−�휌�휌

�耠�푚|x−x0|,

(A.1)⋃
�푗∈B

�퐶(1)
�퐿 (�푦�푗),

by the Borel Cantelli Lemma and the countability of Z�� we 
have that P{�훺∞} = 1. �erefore, it suffices to pick � ∈ �∞ and 
prove the exponential decay of any nonzero eigenfunction Ψ 
of H(�푁)(�휔).

Let Ψ be a polynomially bounded eigenfunction satisfying 
(EDI) (see �eorem 10). Let x0 ∈ Z

�푁�푑 with positive 
�儩�儩�儩�儩�儩�儩1�(�푁)

1 (�0)Ψ
�儩�儩�儩�儩�儩�儩 

(if there is no such x0, we are done.) �e cube C(�푁)
�퐿�

(x0) cannot 
be (�퐸,�푚)-NS for infinitely many �. Indeed, given an integer 
�푘 ≥ 0, if C(�푁)

�퐿�
(x0) is (�퐸,�푚)-NS then by (EDI) and the polyno-

mial bound on Ψ, we get

and the last term tends to 0 as �� tends to infinity in contra-
diction with the choice of x0. So there is an integer 
�푘1 = �푘1(�휔, �퐸, x0) finite such that ∀� ≥ �1 the cube C(�푁)

�퐿�
(x0) is 

(�퐸,�푚)-S. At the same time, since � ∈ �∞, there exists 
�푘2 = �푘2(�휔, x0) such that if � ≥ �2��푘(x0) does not occur. We 
conclude that for all �푘 ≥ max{�푘1, �푘2}, for all x ∈ ��푘+1(x0) ∩ ��푘, 
C

(�푁)
�퐿�

(x) is (�퐸,�푚)-NS. Let �휌 ∈ (0, 1) and choose positive � such 
that

so that

for x ∈ �̃�푘+1(x0).
(1)  Since, ����x − x0

���� ≥ �푏�푘�퐿�푘/(1 − �휌),

(2)  Since ����x − x0
���� ≤ �푏�푏�푘+1�퐿�푘+1/1 + �휌,

�us,

Now, setting �푘3 = max{�푘1, �푘2}, the assumption linking � and 
� implies that

Because �푏�푏�푘+1�퐿�푘+1/(1 + �휌) ≥ �푏�푘�퐿�푘/(1 − �휌). Let � ≥ �3, recall 
that this implies that all the cubes with centers in ��푘+1(x0) ∩ ��푘 

(7.15)
�훺∞ := {∀x0 ∈ Z

�푁�푑, �훺�푘(x0) occurs finitely many times},

(7.16)

�儩�儩�儩�儩�儩�儩1C(�푁)
1 (x0)Ψ

�儩�儩�儩�儩�儩�儩 ≤
�儩�儩�儩�儩�儩�儩�儩1C(�푁,�표�푢�푡)

�퐿�푘 (x0)G(�푁)
C

(�푁)
�퐿�푘 (x0)(�퐸)1C(�푁,�푖�푛�푡)

�퐿�푘 (x0)
�儩�儩�儩�儩�儩�儩�儩 ⋅

�儩�儩�儩�儩�儩�儩1C(�푁,�표�푢�푡)
�퐿�푘 (x0)Ψ

�儩�儩�儩�儩�儩�儩
≤ �퐶(1 + �儨�儨�儨�儨x0�儨�儨�儨�儨 + �퐿�푘)�푡 ⋅ e−�푚�퐿�푘

(7.17)�푏 ≥ 1 + �휌
1 − �휌 ,

(7.18)
∼
�퐴�푘+1 := C

(�푁)
(�푏�푏�푘+1�퐿�푘+1)/1+�휌(x0)\C

(�푁)
(�푏�푘�퐿�푘)/1−�휌(x0) ⊂ �퐴�푘+1(x0),

(7.19)

dist(x, �휕C(�푁)
�푏��퐿�

(x0)) ≥ �儨�儨�儨�儨x − x0
�儨�儨�儨�儨 − �푏�푘�퐿�푘

≥ �儨�儨�儨�儨x − x0
�儨�儨�儨�儨−(1 − �휌)�儨�儨�儨�儨x − x0

�儨�儨�儨�儨
= �휌�儨�儨�儨�儨x − x0

�儨�儨�儨�儨.

(7.20)

dist(x, �휕C(�푁)
�푏�푏�푘+1�퐿�푘+1

(x0)) ≥ �푏�푏�푘+1�퐿�푘+1 − �儨�儨�儨�儨x − x0
�儨�儨�儨�儨

≥ (1 + �휌)�儨�儨�儨�儨x − x0|−|x − x0
�儨�儨�儨�儨

= �휌�儨�儨�儨�儨x − x0
�儨�儨�儨�儨.

(7.21)dist(x, �휕�퐴�푘+1(x0)) ≥ �휌����x − x0
����.

(7.22)⋃
�푘≥�푘3

∼
�퐴�푘+1(x0) = R

�푁�푑\C(�푏�푘3�퐿�푘3)/1−�휌(x0).
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B. Proof of Lemma 16

Set �푅 := 2�퐿 + �푟0 and assume that diam �훱u = max�푖,�푗|�푢�푖 − �푢�푗| ≥ �푛�푅.  
If the union of cubes �(1)

�푅/2(��푖), �푖 = 1, . . . , �푛 were not decomposa-
ble into two (or more) disjoint groups, then, it would be connected 
hence its diameter would be bounded by �푛(2(�푅/2)) = �푛�푅 hence 
diam�u ≤ �� which contradicts the hypothesis. �erefore, there 
exists an index subset B ⊂ {1, . . . , �푛} such that |�푢�1 − �푢�2 | ≥ 2(�푅/2) 
for all �1 ∈ B and �2 ∈ B

�푐, this implies that
  

C. Proof of Lemma 17

If for some positive �

then there exists 1 ≤ �푗0 ≤ �푛 such that |�푥�0 − �푦�0 | ≥ �푅. Since both 
cubes are fully interactive,

By the triangle inequality, for any 1 ≤ �푖, �푗 ≤ �푛, and 
�푅 ≥ 7�푛�퐿 ≥ 6�푛�퐿 + 2�푛�푟0, we have

�erefore, for any 1 ≤ �푖, �푗 ≤ �푛,

which proves the claim.

D. Proof of Lemma 24

Assume that �푀sep(C(�푛)
�퐿�푘+1

(u), �퐸) is less than 2 (i.e.,there is 
no pair of separable cubes of radius �� in (C(�푛)

�퐿�푘+1
(u)) but 

�푀(C(�푛)(u), �퐸) ≥ �휅(�푛) + 2. �en C(�푛)
�퐿�푘+1

(u) must contain at least 
�휅(�푛) + 2 cubes C(�푛)

�퐿�
(v�푖), 0 ≤ �푖 ≤ �휅(�푛) + 1 which are not separable 

but satisfy |v� − v�� | ≥ 7�푁�퐿� for all � ̸= ��. On the other hand, by 
Lemma 6 there are at most �휅(�푛) cubes C(�푛)

2�푛�퐿�
(y�푖), such that any cube 

C
(�푛)
�퐿�
(x) with x ∉ ⋃�푗C

(�푛)
2�푛�퐿�

(y�푗), is separable from C(�푛)
�퐿�
(v0). Hence 

v�푖 ∈ ⋃�푗C
(�푛)
2�푛�퐿�

(y�푗) for all �푖 = 1, . . . , �휅(�푛) + 1. But since for all � ̸= ��
|v� − v�� | ≥ 7�푁�퐿� there must be at most one center v� per cube 
C

(�푛)
2�푛�퐿�

(��푗), 1 ≤ �푗 ≤ �휅(�푛). Hence we come to a contradiction

�e same analysis holds true if we consider only PI cubes.

(B.1)

dist(�훱
B
C

(�푛)
�퐿 (u), �훱B

�푐C
(�푛)
�퐿 (u))

= min
�푗1∈B,�푗2∈B�푐

dist(�퐶(1)
�퐿 (�푢�푗1), �퐶

(1)
�퐿 (�푢�푗2))

≥ min
�푗1∈B,�푗2∈B�푐

�儨�儨�儨�儨�儨�푢�푗1 − �푢�푗2
�儨�儨�儨�儨�儨 − 2�퐿 ≥ �푟0.

(C.1)�푅 ≤ �儨�儨�儨�儨x − y
�儨�儨�儨�儨 = max

1≤�푗≤�푛

�儨�儨�儨�儨�儨�푥�푗 − �푦�푗
�儨�儨�儨�儨�儨,

(C.2)
�儨�儨�儨�儨�儨�푥�푗0 − �푥�푖

�儨�儨�儨�儨�儨 ≤ diam �훱
x
≤ �푛(2�퐿 + �푟0),�儨�儨�儨�儨�儨�푦�푗0 − �푦�푗

�儨�儨�儨�儨�儨 ≤ diam �훱
y
≤ �푛(2�퐿 + �푟0).

(C.3)
�儨�儨�儨�儨�儨�푥�푖 − �푦�푗|≥|�푥�푗0 − �푦�푗0 |−|�푥�푗0 − �푥�푖|−|�푦�푗0 − �푦�푗

�儨�儨�儨�儨�儨
≥ 6�푛�퐿 + 2�푛�푟0 − 2�푛(2�퐿 + �푟0) = 2�푛�퐿.

(C.4)
min
�푖,�푗

dist(�퐶(1)
�퐿 (�푥�푖), �퐶(1)

�퐿 (�푦�푗)) ≥ min
�푖,�푗

�儨�儨�儨�儨�儨�푥�푖 − �푦�푗
�儨�儨�儨�儨�儨 − 2�퐿 ≥ 2(�푛 − 1)�퐿.

(D.1)�휅(�푛) + 1 ≤ �휅(�푛).

(1)  We decompose the vector y into maximal �-clusters 
�훤1, . . . , = �훤�푀 (each of diameter ≤ 2�푛�퐿) with �푀 ≤ �푛.

(2)  Each position �� corresponds to exactly one cluster 
�훤�,�푗 = �푗(�푖) ∈ {1, . . . ,�푀}.

(3)  If there exists �푗 ∈ {1, . . . ,�푀} such that 
�훤�푗 ∩ �훱C

(�푛)
�퐿�
(x) = Ø, then the cubes C(�푛)

�퐿�
(y) and C(�푛)

�퐿�
(x) 

are separable.
(4)  If (3) is wrong, then for all �푘 = 1, . . . ,�푀,  

�훤�푘 ∩ �훱C
(�푛)
�퐿 (x) ̸= Ø. �us for all �푘 = 1, . . . ,�푀,  

∃�푖 = 1, . . . , �푛 such that �훤�푘 ∩ �퐶(1)
�퐿 (�푥�푖) ̸= Ø. Now for any 

�푗 = 1, . . . , �푛 there exists �푘 = 1, . . . ,�푀 such �푦� ∈ �훤�.  
�erefore for such �, by hypothesis there exists 
�푖 = 1, . . . , �푛 such that �훾�푘 ∩ �퐶(1)

�퐿 (�푥�푖) ̸= Ø. Next let 
�푧 ∈ �훤�푘 ∩ �퐶(1)

�퐿 (�푥�푖) so that |�푧 − �푥�| ≤ �퐿. We have that

since �푦� ∈ �훤�.
Notice that above we have the bound |�푦� − �푧| ≤ 2�푛�퐿 − �퐿   because 

�� is a center of the �-cluster �� Hence for all �푗 = 1, . . . , �푛�� must 
belong to one of the cubes �(1)

2�푛�퐿(��푖) for the �-positions (�푦1, . . . , �푦�푛).  
Set �휅(�푛) = �푛�. For any choice of at most �휅(�푛) possibilities; 
y = (�푦1, . . . , �푦�푛) must belong to the cartesian product of � cubes of 
side length 2�퐿 i.e., an ��-dimensional cube of size 2�푛�퐿, the assertion 
then follows.

(B) Set �푅(y) = max1≤�푖,�푗≤�푛|�푦�푖 − �푦�푗| + 5�푁�퐿 and consider a cube 
C

(�푛)
�퐿 (x) with |y − x| ≥ �푅(y). �en there exist �푖0 ∈ {1, . . . , �푛} such 

that |�푦�0 − �푥�0 | ≥ �푅(y). Consider the maximal connected compo-
nent �훬

x
:= ⋃�푖∈B�퐶(1)

�퐿 (�푥�푖) of the union ⋃�푖�퐶(1)
�퐿 (�푥�푖) containing ��0.  

Its diameter is bounded by 2�푛�퐿. We have

now, since

then

Recall that diam (�훬
x
) ≤ 2�푛�퐿 and

for some �푗 = 1, . . . , �푛 such that v ∈ �(1)
�퐿 (��푗). Finally, we get

and the latter quantity is strictly positive. �is implies that 
C

(�푛)
�퐿 (x) is B separable from C(�푛)

�퐿 (y).  

(A.2)
�儨�儨�儨�儨�儨�푦� − �푥�

�儨�儨�儨�儨�儨 ≤
�儨�儨�儨�儨�儨�푦� − �푧|+|�푧 − �푥�

�儨�儨�儨�儨�儨
≤ 2�푛�퐿 − �퐿 + �퐿 = 2�푛�퐿,

(A.3)dist(�훬
x
; �훱C

(�푛)
�퐿 (y)) = min�푢,v |�푢 − v|,

(A.4)
�儨�儨�儨�儨�儨�푥�0 − �푦�0

�儨�儨�儨�儨�儨 ≤
�儨�儨�儨�儨�儨�푥�0 − �푢�儨�儨�儨�儨�儨 + |�푢 − v| + �儨�儨�儨�儨�儨v − �푦�0

�儨�儨�儨�儨�儨,

(A.5)

dist(�훬
x
, �훱C

(�푛)
�퐿 (y)) = min�푢,v |�푢 − v| − diam(�훬

x
) −max

v,�푦�푖0

�儨�儨�儨�儨�儨v − �푦�푖0
�儨�儨�儨�儨�儨.

(A.6)max
v,�푦�푖0

�儨�儨�儨�儨�儨v − �푦�푖0
�儨�儨�儨�儨�儨 ≤ max

v

�儨�儨�儨�儨�儨v − �푦�푗
�儨�儨�儨�儨�儨 +max�푦�푖0

�儨�儨�儨�儨�儨y�푗 − �푦�푖0
�儨�儨�儨�儨�儨,

(A.7)
dist(�훬

x
, �훱C

(�푛)
�퐿 (y)) ≥ �푅(y) − diam(�훬

x
) − (2�퐿 + diam(�훱y)),
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E. Proof of Lemma 25

Suppose that �푀PI(C(�푛)
�퐿�푘+1

(u), �퐼) ≥ �휅(�푛) + 2, then by Lemma 24 

�푀sep
PI (C(�푛)

�퐿�푘+1
(u), �퐼) ≥ 2  i.e., there are at least two separable (�퐸,�푚)

-S PI cubes C(�푛)
�퐿�푘
(u(�푗1)), C(�푛)

�퐿�푘
(u(�푗2)) inside C(�푛)

�퐿�푘+1
(u). �e number 

of possible pairs of centers {u(�1), u(�2)} such that

is bounded by (32�푛�푑/2)�퐿2�푛�푑
�푘+1. �en, setting

with P{��푘} ≤ �−4�푁�푝
�푘 + �−4�푝4N−n

�푘 .

F. Proof of Lemma 27

Suppose there exist 2ℓ pairwise separable fully interactive cubes 
C

(�푛)
�퐿�푘
(u(�푗)) ⊂ C

(�푛)
�퐿�푘+1

(u), 1 ≤ �푗 ≤ 2ℓ. �en by Lemma 17 for any pair 

C
(�푛)
�퐿�
(u(2�푖−1)), C(�푛)

�퐿�
(u(2�푖)) the corresponding random Hamiltonians 

H
(�푛)
C

(�푛)
�퐿�푘(u(2�푖−1)) and H(�푛)

C
(�푛)
�퐿�푘(u(2�푖)) are independent and so are their spectra 

and their Green functions. For �푖 = 1, . . . , ℓ, we consider the events:

then by assumption (��.�푘, �푛,�푁), we have for �푖 = 1, . . . , ℓ

and by independence of the events �퐴1, . . . , �퐴ℓ

To complete the proof, note that the total number of dif-
ferent families of 2ℓ cubes C(�푛)

�퐿�푘
(u(�푗)) ⊂ C

(�푛)
�퐿�푘+1

(u), 1 ≤ �푗 ≤ 2ℓ is 
bounded by
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(E.1)C
(�푛)
�퐿�푘
(u(�푗1)),C(�푛)

�퐿�푘
(u(�푗2)) ⊂ C

(�푛)
�퐿�푘+1

(u)

(E.2)

�퐵�푘 = {∃�퐸 ∈ �퐼,C(�푛)
�퐿�푘
(u(�푗1)),C(�푛)

�퐿�푘
(u(�푗2)) are (�퐸,�푚) − S}

P{�푀sep

PI
(C(�푛)

�퐿�푘+1
(u), �퐼) ≥ 2} ≤ 32�푛�푑

2 �퐿2�푛�푑
�푘+1 × P{�퐵�푘}

(F.1)�퐴 �푖 = {∃�퐸 ∈ �퐼 : C(�푛)
�퐿�
(u(2�푖−1)) andC(�푛)

�퐿�
are (�퐸,�푚) − S},

(F.2)P{�퐴 �푖} ≤ �퐿−2�푝4�푁−�푛

�푘 ,

(F.3)P{ ⋂
1≤�푖≤ℓ

�퐴 �푖} =
ℓ∏
�푖=1

P{�퐴 i} ≤ (�퐿−2�푝4�푁−�푛

�푘 )ℓ.

(F.4)
1

(2ℓ)!
�����C

(�푛)
�퐿�푘+1

(u)�����
2ℓ ≤ �퐶(�푛,�푁, �푑, ℓ)�퐿2ℓ�푑�푛�훼

�푘 .
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