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Different nanostructures of boron nitride have been observed experimentally such as fullerenes, tubes, cones, and graphene. They
have received much attention due to their physical, chemical, and electronic properties that lead them to numerous applications in
many nanoscale devices. Joining between nanostructures gives rise to new structures with outstanding properties and potential
applications for the design of probes for scanning tunneling microscopy and other nanoscale devices, as carriers for drug
delivery and liquid separation. This paper utilizes calculus of variations to model the joining between two types of BN
nanostructures, namely, BN nanotubes and BN nanocones. Based on the curvature of the join curve, the joining of these
structures can be divided into two models. Model I refers to when the join profile includes positive curvature only, and Model II
contains both positive and negative curvatures. The main goal here is to formulate the basic underlying structure from which
any such small perturbations can be viewed as departures from an ideal model. For this scenario of joining, we successfully
present simple models based on joining BN nanotubes to BN nanocones with five different angles of the cone.

1. Introduction

Boron nitride (BN) nanostructures have been the focus of
extensive research area in current years. BN nanostructures
are chemical compounds containing atoms of boron and
nitrogen. They are similar to carbon nanomaterials in their
geometrical structures and vary in their physiochemical
properties. In particular, BN in nanoscale materials are
important because of their electronic, optical, mechanical,
and magnetic properties. Moreover, they have high oxidation
resistance, high thermal conductivity, constant wide band
gap, and lower toxicity. This makes them a promising candi-
date for application in different conditions [1]. Similar to car-
bon nanostructures, BN in nanoscale has different structures
such as nanotubes, sheets, fullerenes, and nanocones [2].

Boron nitride nanotubes (BNNTs) were first predicated
in 1994 and synthesized in 1995. BNNTs can be created by
rolling graphene sheet as a cylinder. They have significant
attention in recent years due to their different physical prop-
erties. For example, they have high thermal conductivity,
mechanical strength with an elastic modulus of 1.2TPa,
and wide band gap of about 5.5 eV with exceptional radiation
shielding compared to carbon NTs [3, 4]. In addition, they

are stable in air and in an inert atmosphere. Based on these
fantastic properties, BNNTs have different applications
such as in biomedical applications specially in drug delivery
and bone scaffolding, electronic and microelectronic
mechanical devices, and energy storage [3, 5, 6]. Also, they
can be used as alternative to CNTs to help enhance
strength of materials [4].

BN nanocones are another form of BN nanostructures.
BNNCs are discovered in 1994 as cap nanotubes end; then,
they are synthesized as free structures by different groups.
BNNCs can be made by rolling nanostructure sheet [1, 7].
Their physical, chemical, and electronic features such as
chemical oxidation inertness, mechanical toughness, and
thermal stability attract researchers’ more attention to
explore their potential applications in different aspects [2, 8].

Joining nanostructures can enhance the physiochemical
and trochemical performance of the joined structures with
new applications. In particular, the new produced structures
are useful for the design of probes for scanning tunneling
microscopy, energy storage, and other electronic devices as
carriers for drug delivery [9].

Researches in [9], [10–13] minimize the elastic energy
which depends on the axial curvature only by using calculus
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of variations to determine the joining curve between two car-
bon nanostructures. Following [9–14], this paper extends this
model to determine the joining curve between two boron
nitride nanostructures: BN nanotubes and BN nanocones.
We comment that this model does not take into account
the chemical issues, such as positions of atoms and bonds.
Finally, using Willmore energy which depends on the axial
and rotational curvatures to determine the joining between
nanostructures gives rise to similar joining profiles of using
elastic energy as studied in [15]. Furthermore, similar tech-
niques have been used and investigated by many researches
such as in [16–18] and [19].

In the following section, we state the fundamental equa-
tions of the calculus of variations to model the joining region
between BNNTs and BNNCs. Namely, Model I denotes pos-
itive joining curvature while Model II denotes positive and
negative joining curvatures. Results and discussion are given
in Section 3. Section 4 provides the conclusion.

2. Model

In this section, the basic variational equations of the model
that is used to join boron nitride nanocone and boron nitride
nanotube are formulated. In particular, variational calculus is
used to specify the curve adopted by a line smoothly connect-
ing BN nanocone base to a vertical BN nanotube, where the
arc length of the joining curve and the defect site at the BN
nanocone base are specified. Thus, the distance in y-direc-
tion y0 of the join to the cylindrical tube is not specified
and it is found as a part of the solution.

Using calculus of variations to find the curve yðxÞ, with
an element of arc length ds, which minimizes the energy
functional J½y� that is given by

J y½ � =
ðℓ
0
κ2ds + λ

ðℓ
0
ds, ð1Þ

where κ is the curvature, λ is a Lagrange multiplier corre-
sponding to the fixed length constraint, and ℓ is the length
of the joining curve. The boundaries of the join region are
x0 and x1, where at x = x0; we have s = 0, and at x = x1; we
have s = ℓ. For a curve in two dimensions described as a graph

y = yðxÞ, we have κ = €y/ð1 + _y2Þ3/2, and ds = ð1 + _y2Þ1/2dx, so
that equation (1) becomes

J y½ � =
ðb sin γ/2ð Þ

a

€y2

1 + _y2
� �5/2 dx + λ

ðb sin γ/2ð Þ

a
1 + _y2
� �1/2

dx,

ð2Þ

where throughout this paper, dot denotes differentiation
with respect to x. Applying the delta variational operator
and integration by parts twice, the standard equation can
be written as

δJ y½ � = F _y −
d
dx

F€y

� �
δy + F€yδ _y

� �b sin γ/2ð Þ

a

+
ðb sin γ/2ð Þ

a
Fy −

d
dx

F _y +
d2

dx2
F€y

 !
δydx,

ð3Þ

where subscripts denote partial derivatives and here the
function F is given by

F _y, €yð Þ = €y2

1 + _y2
� �5/2 + λ 1 + _y2

� �1/2
: ð4Þ

By imposing the continuity of the function y and its
derivatives, the boundary conditions at the join to the
nanocone can be determined as

y b sin γ

2
� 	� 	

= b cos γ

2
� 	

,

_y b sin γ

2
� 	� 	

= cot γ2 :
ð5Þ

As the height of the nanotube y0 is unknown, we require
the natural or alternative boundary condition given by

F _y −
d
dx

F€y

� �� �
x=a

= 0: ð6Þ

The value of _y, in Model I, ranges from cot ðγ/2Þ, at
x = b sin ðγ/2Þ, to ∞ at x = a. Thus, the boundary condition
for this model is _yðaÞ =∞. For Model II, _y ranges from
cot ðγ/2Þ to ∞, where it changes sign and then ranges from
−∞ down to some finite negative value before turning to
−∞. Thus, the boundary condition in the case of Model
II is _yðaÞ = −∞. From equation (3) the usual Euler-
Lagrange equation for Fðx, y, _y, €yÞ, is given by

Fy −
d
dx

F _y +
d2

dx2
F€y = 0: ð7Þ

Solving this equation and using the above alternative
boundary condition,

F − €yF€y = −α, ð8Þ

where α is an arbitrary constant of integration. Now,
substituting (4) into (8), the curvature κ can be written as
in [11],

κ = ± λ + α

1 + _y2
� �1/2

 !1/2

: ð9Þ

2.1. Model I: Positive Curvature. The curvature in Model I
is positive along the entire arc length ℓ as shown in
Figure 1(a). Based on that, the positive case from (9) is
considered only. By using _y = tan θ, equation (9) becomes
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κ = λ + α cos θð Þ1/2: ð10Þ

From the definition of the curvature κ = €y/ð1 + _y2Þ3/2,
making the same substitution for _y, and simplifying that
by introducing a new parametric variable ϕ which is
defined by

cos θ = 1 − 2k2 sin2ϕ, ð11Þ

where k = ½ðγ + αÞ/2α�1/2, that gives

dy
dϕ

= 2βk sin ϕ, ð12Þ

where β = ð2/αÞ1/2. Now by integrating this equation and
using the boundary conditions at the point ðb sin ðγ/2Þ, b
cos ðγ/2ÞÞ of attachment to the nanocone to find the con-
stant of the integration, we have

y ϕð Þ = 2βk cos ϕ0 − cos ϕð Þ + b cos γ

2 , ð13Þ

where

ϕ0 = sin−1 1 − sin γ/2ð Þ½ �
2k2


 �1/2
 !

, ð14Þ

corresponds to θ = π/2 − γ/2, at the point ðb sin ðγ/2Þ,
b cos ðγ/2ÞÞ. Now if we use the boundary condition
of the tube open end at the point ða, y0Þ with ϕt =
sin−1ð1/ ffiffiffi

2
p

kÞ, where θ = π/2, we find

y0 = 2βk cos ϕ0 − cos ϕð Þ + b cos γ

2 , ð15Þ

and in this model θ ∈ ½π/2 − γ/2, π/2�: Similarly, we
derive

x ϕð Þ = b sin γ

2 + β 2 E ϕ, kð Þ − E ϕ0, kð Þ½ �f
− F ϕ, kð Þ − F ϕ0, kð Þ½ �g,

ð16Þ

where Fðϕ, kÞ and Eðϕ, kÞ denote the usual Legendre
incomplete elliptic integrals of the first and second
kinds, respectively. Using the boundary condition at
the point ða, y0Þ on the open tube end, we have

a− = β 2 E ϕt , kð Þ − E ϕ0, kð Þ½ � − F ϕt , kð Þ − F ϕ0, kð Þ½ �f g: ð17Þ

From the definition of the arc length, we have

ℓ =
ða
b sin γ/2ð Þ

1 + _y2
� �1/2

dx: ð18Þ

Upon substituting _y = tan θ, changing the parameter
to ϕ as in cos θ = 1 − 2k2 sin2ϕ, and integrating, we
have

ℓ = β F ϕt , kð Þ − F ϕ0, kð Þ½ �: ð19Þ

Now, substitute equation (19) into equation (17),
we derive

μ = 2 E ϕt , kð Þ − E ϕ0, kð Þ
F ϕt , kð Þ − F ϕ0, kð Þ

� �
− 1, ð20Þ

where μ = ða − b sin ðγ/2ÞÞ/ℓ, and −1 < μ < 1: For pre-
scribed values of a, b, γ, and ℓ, equation (20) can
be solved numerically to determine the value of k.
Then, substituting k into equation (19), the value of
β can be determined, and therefore, y0 can be
obtained from (15) [11].

2.2. Model II: Positive and Negative Curvatures. Two regions
are considered in this model as shown in Figure 1(b); the first
one involves positive curvature from the point of attachment
at the nanocone ðb sin ðγ/2Þ, b cos ðγ/2ÞÞ up until the critical
point ðxc, ycÞ where the sign of the curvature changed. In this
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Figure 1: Model I: positive curvature and Model II: positive and negative curvatures [11].

3Advances in Mathematical Physics



case, we follow the same process as in the last section. The
second region starts from the critical point ðxc, ycÞ to the
point of attachment at the nanotube ða, y0Þ where the curva-
ture is negative. The parameter value of θ as defined in the
previous section at the critical point is denoted by θc, and
from geometrical considerations, we have 0 < θc < π/2. The
same process is used to the region of positive curvature where
this region is bounded by the point of the curvature κ = 0;
using equation (10), we find

θc = cos−1 −
λ

α

� �
: ð21Þ

Applying the parameter variable ϕ as defined by equation
(11), we obtain ϕ = π/2, when θ = θc, and from equation (13)
and equation (16), we have the parametric equations for yc
and xc as

yc = 2βk cos ϕ0 + b cos γ

2 , ð22Þ

xc = b sin γ

2 + β 2 E kð Þ − E ϕ0, kð Þ½ � − K kð Þ − F ϕ0, kð Þ½ �f g,
ð23Þ

where β, k, and ϕ0 are defined in the last section. Fðϕ0, kÞ and
Eðϕ0, kÞ are defined as the usual incomplete elliptic integrals
of the first and second kinds, respectively, and kðkÞ and EðkÞ
are complete elliptic integrals of the first and second kinds,
respectively.

Similarly for the second region, considering the negative
sign of equation (9) and integrating, we obtain

y ϕð Þ = 2βk cos ϕ0 + cos ϕð Þ + b cos γ

2 , ð24Þ

noting that when ϕ = π/2, the constant of integration arises
from y = yc, and then we use equation (22) for yc. From the
boundary condition at the point of attachment to the nano-
tube, we have ϕ = ϕt , at the point ða, y0Þ, so we have

y0 = 2βk cos ϕ0 + cos ϕtð Þ + b cos γ

2 : ð25Þ

Similarly, we take the negative sign of equation (9) and
solving for the parametric form of x, we find

x ϕð Þ = b sin γ

2 + β 2 2E kð Þ − E ϕ, kð Þ − E ϕ0, kð Þ½ �f
− 2K kð Þ − F ϕ, kð Þ − F ϕ0, kð Þ½ �g:

ð26Þ

At the point ða, y0Þ where ϕ = ϕt , we have

a − b sin γ

2 = β 2 2E kð Þ − E ϕt , kð Þ − E ϕ0, kð Þ½ �f
− 2K kð Þ − F ϕt , kð Þ − F ϕ0, kð Þ½ �g:

ð27Þ

From the two regions, we obtain the arc length constraint
as

ℓ =
ðxc
b sin γ/2

1 + _y2
� �1/2

dx +
ða
xc

1 + _y2
� �1/2

dx, ð28Þ

by using _y = tan θ, and changing to the parameter ϕ,

ℓ = β 2K kð Þ − F ϕt , kð Þ − F ϕ0, kð Þ½ �, ð29Þ

μ = 2 2E kð Þ − E ϕt , kð Þ − E ϕ0, kð Þ
2K kð Þ − F ϕt , kð Þ − F ϕ0, kð Þ
� �

− 1: ð30Þ

We can solve equation (30) numerically to find the value of k,
and by substituting k into equation (29), we can determine
the value of β so that y0 can be determined. Noting that
equation (20) coincides with (30) for the value k = 1/

ffiffiffi
2

p
,

and k = f½1 − sin ðγ/2Þ�/2g
ffiffi
1

p 2: For k = 1/
ffiffiffi
2

p
, the value of

μ is denoted by μ1, and when k = 1/
ffiffiffi
2

p
, and k =

f½1 − sin ðγ/2Þ�/2g
ffiffiffiffiffi
1/2

p
, the value of μ is denoted by μ2 [11].

3. Numerical Results

In this section, we investigate the numerical solution for
Model I and Model II when they are characterized by the
nondimensional parameter μ = ½a − b sin ðγ/2Þ�/ℓ: Figure 2
shows the relation between μ = ½a − b sin ðγ/2Þ�/ℓ, where
−1 < μ < 1, and B = 1/k2. There are two main regions; the
first region is determined when μ < μ0, and the value of
B < 2, where μ0 is the asymptotic value for μ when k tends
to be zero, given by [11]

μ0 = 1 +
ffiffiffi
2

p
1 −

ffiffiffi
2

p
cos ω

� 	

ln
ffiffiffi
2

p
− 1

� 	
/ tan ω/2ð Þð Þ

h i , ð31Þ
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Figure 2: Relation between the parameters μ = ða − b sin ðγ/2ÞÞ/ℓ,
and B = 1/k2.
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where ω = ðπ − γÞ/4. This region may be divided into three
subregions. The first subregion is when μ3 < μ < μ0, where
μ3 is the asymptotic value of μ when k tends to be ∞ [11]

μ3 =
2
γ

1 − cos γ

2
� 	� 	

: ð32Þ

The value of the parameter B in this subregion is neg-
ative with a negative value of α an imaginary modulus k
for the elliptic functions. The second subregion is μ1 < μ
< μ3, where the value of the parameter B corresponds to
0 < B ≤ 2, with a positive value of α and real k. The third
subregion is −1 < μ < μ1, where the value of the parameter
B is between 1 < B ≤ 2, and positive value for α.

The second region is when μ > μ0, where the value of B
> 2/½1 − sin ðγ/2Þ�. This region also involves two subregions;
the first subregion is μ0 < μ < μ2, which corresponds to
Model I, and the second subregion is μ2 < μ < 1, which corre-
sponds to Model II. The values of the parameter B for these
two subregions are positive with a negative value of α.

Based on the above results, we join nanocones to nano-
tubes for Model I and Model II as in Figures 3 and 4, respec-
tively. In particular, here, we assume that heights of the cone
are equal and the cone radii are found from r = h tan ðγ/2Þ.
The five possible nanocones have fixed arc length which
assumed to be ℓ = 3.

4. Conclusion

This paper uses conventional applied mathematical model-
ling in an essentially discrete problem of determining the
profiles of the joins between boron nitride nanotubes and
boron nitride nanocones. These new combined nanostruc-
tures may be useful for the design of probes for scanning

tunneling microscopy and other nanoscale devices. In partic-
ular, calculus of variations is used to minimize the elastic
energy for the joining curve which leads to minimize the
covalent bond energy. During this joining, two models are
considered depending on the sign of the curvature: Model I
refers to the positive curvature only, and Model II refers to
both positive and negative curvatures. By considering these
two models, we join two boron nitride nanostructures which
are nanotubes and nanocones. Because of the real physical
composite structures which have undulations included from
pentagons in the cone, this system is assumed to be axially
symmetric and that is the problem that may be reduced to
two dimensions. The main purpose here is to formulate the
axially symmetric model to have a reference basis for the
comparison of real physical structures where it is believed
that the undulations are small. As a result, these models lead
to significative approximations to complex structures.
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