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The existence, nonexistence, and multiplicity of vector solutions of the linearly coupled Choquard type equations

−Δu +V1ðxÞu = ðIα ∗ jujðN+αÞ/NÞjujα/N−1u + λv, x ∈ℝN ,
−Δv +V2ðxÞv = ðIα ∗ jvjðN+αÞ/NÞjvjα/N−1v + λu, x ∈ℝN ,
u, v ∈H1ðℝNÞ,

8<: are proved, where α ∈ ð0,NÞ, N ≥ 3, V1ðxÞV2ðxÞ ∈ L∞ðℝNÞ are

positive functions, and Iα denotes the Riesz potential.

1. Introduction

We deal with the linearly coupled Choquard type equations:

−Δu + V1 xð Þu = Iα ∗ uj jN+α
N

� �
uj jαN−1u + λv, x ∈ℝN ,

−Δu + V2 xð Þv = Iα ∗ vj jN+α
N

� �
vj jαN−1v + λu, x ∈ℝN ,

u, v ∈H1 ℝN� �
,

8>>>><>>>>:
ð1Þ

where N ≥ 3, α ∈ ð0,NÞ, and V1, V2 ∈ L∞ðℝNÞ are positive
functions, ðN + αÞ/N is the lower critical exponent with
respect to a Hardy-Littlewood-Sobolev inequality (see ([1],
Theorem 3.1) or ([2], Theorem 4.3)), and Iα denotes the
Riesz potential defined on ℝN \ f0g by

Iα xð Þ = Γ N − αð Þ/2ð Þ
2απN/2Γ α/2ð Þ xj jN−α : ð2Þ

The single equation

−Δu +V xð Þu = Iα ∗ uj jp� �
uj jp−2u, u ∈H1 ℝN� �

, ð3Þ

appears in various physical contexts (see [3–6]). Mathemati-
cally, equations of this type have received considerable atten-
tion due to the appearance of the nonlocal term
ðIα ∗ jujpÞjujp−2u, which makes the problem challenging
and interesting. The readers can refer to [4, 7–18] and refer-
ences therein for research on related problems.

Recently, Chen and Liu [19] established the existence and
asymptotic behavior of the vector ground state of the linearly
coupled system:

−Δu + u = Iα ∗ uj jp� �
uj jp−2u + λv, x ∈ℝN ,

−Δv + v = Iα ∗ vj jqð Þ vj jq−2v + λu, x ∈ℝN ,
u, v ∈H1 ℝN� �

,

8>><>>: ð4Þ

where 0 < λ < 1, ðN + αÞ/N < p, q < ðN + αÞ/ðN − 2Þ. Xu, Ma
and Xing [20] extended the results in [19] to (4) in the case that
ðIα ∗ jujpÞjujp−2u and ðIα ∗ jujqÞjujq−2u are replaced with
general subcritical nonlinearities ðIα ∗ FðuÞÞF ′ðuÞ and ðIα ∗ G
ðuÞÞG′ðuÞ, respectively. Yang et al. [21] obtained the existence
of the vector ground state of (4) in the following three cases:

p = N + α

N
, N + α

N
< q < N + α

N − 2 ,
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p = N + α

N − 2 ,
N + α

N
< q < N + α

N − 2 ,

p = N + α

N
, q = N + α

N − 2 : ð5Þ

They also proved that (4) has no nontrivial solutions if p =
q = ðN + αÞ/N or p = q = ðN + αÞ/ðN − 2Þ.

As we know, when α⟶ 0, the local system

−Δu + u = uj jp−2u + λv, x ∈ℝN ,
−Δv + v = vj jq−2v + λu, x ∈ℝN ,
u, v ∈H1 ℝN� �

,

8>><>>: ð6Þ

which has application in a large number of physical problems
such as in nonlinear optics, can be regarded as a limiting sys-
tem of (4). Systems of this type have received great attention
in recent years (see [22–28] for instance). However, linearly
coupled systems with nonlocal nonlinearities have been less
studied.

In this paper, we are interested in the existence, nonexis-
tence, and multiplicity of solutions of system (1) with positive
nonconstant potentials. We assume that

(H1) ViðxÞ ≥ C > 0, ViðxÞ ∈ L∞ðℝNÞ and limjxj⟶∞ViðxÞ
= 1, i = 1, 2

(H2) lim inf ∣x∣⟶∞ð1 −ViðxÞÞjxj2 ≥ ðN2ðN − 2ÞÞ/ð4ðN
+ 1ÞÞ, i = 1, 2

(H3) 0 < ∣λ ∣ <inf x∈ℝN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðxÞV2ðxÞ

p
For simplicity, the integral

Ð
ℝN · dx is denoted by

Ð ·.
According to (H1), the norm in H ≔H1ðℝNÞ ×H1ðℝNÞ
can be defined by

u, vð Þk k≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uk k21 + vk k22

q
, ð7Þ

where

uk k21 ≔
ð

∇uj j2 + V1 xð Þu2� �
,

uk k22 ≔
ð

∇uj j2 +V2 xð Þu2� �
:

ð8Þ

Then, a solution of system (1) can be found as a critical
point of the energy functional E : H↦ℝ defined by

Eλ u, vð Þ≔ 1
2 u, vð Þk k2−

ð
λuv −

N
2 N + αð Þ

ð
Iα ∗ uj j N+αð Þ/N
� �

uj j N+αð Þ/N
�

+ Iα ∗ vj j N+αð Þ/N
� �

vj j N+αð Þ/N
�
:

ð9Þ

Set

N ≔ u, vð Þ ∈H \ 0, 0ð Þf g ∣ Eλ
′ u, vð Þ, u, vð Þ

D E
= 0

n o
,

cλ ≔ inf
N

Eλ u, vð Þ:
ð10Þ

We first show that cλ is attained.

Theorem 1. Assume that (H1), (H2), and (H3) hold. Then,
there exists a vector ground state ðuλ, vλÞ of system (1). Addi-
tionally, if fλng ⊂ ð0, inf x∈ℝN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðxÞV2ðxÞ

p Þ is a sequence
satisfying λn ⟶ 0+ as n⟶ +∞, then up to a subsequence,
either ðuλn , vλnÞ⟶ ðû, 0Þ or ðuλn , vλnÞ⟶ ð0, v̂Þ in H as n
⟶∞, where û is a ground state of

−Δu +V1 xð Þu = Iα ∗ uj j N+αð Þ/N
� �

uj jα/N−1u, u ∈H1 ℝN� �
,

ð11Þ

and v̂ is a ground state of

−Δu +V2 xð Þu = Iα ∗ uj j N+αð Þ/N
� �

uj jα/N−1u, u ∈H1 ℝN� �
:

ð12Þ

Remark 2. We call a solution ðu, vÞ ∈H of system (1) a non-
trivial solution if ðu, vÞ ≠ ð0, 0Þ and a vector solution if u ≠ 0
and v ≠ 0. A nontrivial solution ðu, vÞ satisfying Eλðu, vÞ ≤
Eλðh, kÞ for any nontrivial solutions ðh, kÞ ∈H of system (1)
is called a ground state.

Remark 3. Under assumptions (H1) and (H2), the exis-
tence of ground states of equations (11) and (12) has been
proved by Moroz and Van Schaftingen ([17], Theorem 3
and Theorem 6).

To prove Theorem 1, it is crucial to give an estimate of
the upper bound of the least energy cλ due to the lack of com-
pactness. In our case, the estimate is quite involved, since we
are dealing with a coupled system, which is more complex
than a single equation. The method we follow can be
sketched as follows. We first study the minimizing problem

S0 = inf
u,vð Þ∈L2 ℝNð Þ×L2 ℝNð Þ\ 0,0ð Þf g

Ð
uj j2 + vj j2 − 2λuv
� �

Ð
Iα ∗ uj j N+αð Þ/N
� �

uj j N+αð Þ/N+ Ð Iα ∗ vj j N+αð Þ/N
� �

vj j N+αð Þ/N
� �N/ N+αð Þ , ð13Þ
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which can be considered an extension of the classical problem

S1 = inf
u∈L2 ℝNð Þ\ 0f g

Ð
uj j2Ð

Iα ∗ uj j N+αð Þ/N
� �

uj j N+αð Þ/N
� �N/ N+αð Þ :

ð14Þ

By the results that S1 is attained if and only if

u xð Þ =Ub xð Þ≔ A
b

b2 + x − aj j2
 !N/2

, ð15Þ

where A > 0 is a fixed constant, a ∈ℝN , and b ∈ ð0,∞Þ (see
([1], Theorem 3.1) or ([2], Theorem 4.3)), and studying the
minimum point of a function hðτÞ defined on ½0, +∞Þ by

h τð Þ = 1 + τ2 − 2 ∣ λ ∣ τ
1 + τ 2 N+αð Þð Þ/N� �N/ N+αð Þ , ð16Þ

we show that S0 is attained at ðUb, τminUbÞ if 0 < λ < 1 and
at ðUb,−τminUbÞ if −1 < λ < 0 (see Theorem 7 in Section 2),
which combined with the existence of ground states for
equations (11) and (12) enables us to obtain the precise
upper bound of cλ.

Our second goal is to show the existence of a higher
energy vector solution of (1).

Theorem 4. Assume that (H1) and (H2) hold. Then, for
some λ∗ ∈ ð0, inf x∈ℝN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðxÞV2ðxÞ

p Þ, there exists a vector
solution ð�uλ, �vλÞ of system (1) if 0 < λ < λ∗. Additionally,
if fλng ⊂ ð0, λ∗Þ is a sequence satisfying λn ⟶ 0+ as n
⟶ +∞, then up to a subsequence, ð�uλn , �vλnÞ⟶ ð�u, �vÞ
in H, where �u is a ground state of (11) and �v is a ground
state of (12).

Remark 5. For λ > 0 sufficiently small, it is trivial to see that
the solutions obtained in Theorem 1 and Theorem 4 are dif-
ferent, which implies that there exists at least two vector solu-
tions of system (1) if λ > 0 is small enough.

Finally, we prove the nonexistence of the nontrivial solu-
tion of system (1) by establishing the Pohozaev type identity.

Theorem 6. Assume that (H3) holds. If ViðxÞ ∈W1,1
locðℝNÞ ∩

L∞ðℝNÞ, i = 1, 2 and

sup
x∈ℝN

xj j2∇Vi xð Þ · x < N − 2ð Þ2
2

, i = 1, 2, ð17Þ

then, system (1) has no nontrivial solutions in H:

This paper is structured as follows. Some preliminary
results are provided in Section 2. The proofs of Theorems

1 and 4 are presented in Section 3 and Section 4, respec-
tively. In Section 5, we show the nonexistence of nontrivial
solutions.

2. Preliminary Results

In this section, we show the sharp constant S0 defined in
(13) is attained and give an estimate of the upper bound
of cλ:

Theorem 7. If 0 < ∣λ ∣ <1, then S0 is attained. Moreover, ðUb
, τminUbÞ (or ðUb,−τminUbÞ) is a solution of (13) for 0 < λ <
1 (or −1 < λ < 0), where τmin > 0 is a minimum point of hðτÞ
defined on ½0, +∞Þ by

h τð Þ = 1 + τ2 − 2 ∣ λ ∣ τ

1 + τ 2 N+αð Þð Þ/N� �N/ N+αð Þ : ð18Þ

Proof. First, we show that there exists τmin > 0 such that

h τminð Þ =min
τ≥0

h τð Þ: ð19Þ

Calculating directly, we have

h′ τð Þ = τ−∣λ∣+∣λ ∣ τ 2 N+αð Þð Þ/N − τ N+2αð Þ/N

2 1 + τ 2 N+αð Þð Þ/N� � 2N+αð Þ/ N+αð Þ : ð20Þ

Set f ðτÞ = τ − ∣λ ∣ + ∣ λ ∣ τð2ðN+αÞÞ/N − τðN+2αÞ/N : It can be
easily seen that f ðτÞ⟶ − ∣ λ ∣ as τ⟶ 0, and f ðτÞ⟶ +
∞ as τ⟶ +∞: Then, there is τmin > 0 such that f ðτminÞ =
0, and hðτminÞ =minτ≥0hðτÞ:

In the next step, we prove

S0 = h τminð ÞS1, ð21Þ

where S1 is defined in (14). We employ the idea in ([29], The-
orem 5) to prove (21). For the case λ > 0, taking ðu, vÞ = ð
Ub, τminUbÞ gives

S0 ≤
1 + τ2min − 2λτmin
� � Ð

Ubj j2

1 + τminð Þ 2 N+αð Þð Þ/N Ð Iα ∗ Ubj j N+αð Þ/N
� �

Ubj j N+αð Þ/N
� �N/ N+αð Þ

= h τminð ÞS1:
ð22Þ

Let ðun, vnÞ ∈ L2ðℝNÞ × L2ðℝNÞ be a minimizing

sequence for S0: Set zn = tnun, where tn = ðÐ jvnj2/ Ð junj2Þ1/2
: Then, ð

znj j2 = t2n

ð
unj j2 =

ð
vnj j2, ð23Þ

ð
znvn = tn

ð
unvn ≤

ð
vnj j2 =

ð
znj j2: ð24Þ

Collecting (23) and (24) leads to
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Then, (21) follows from (22) and (25). For the case λ < 0,
the conclusions follow by replacing ðUb, τminUbÞ with ðUb,
−τminUbÞ and repeating the proof previously.

Lemma 8. Assume that (H1) and (H3) holds, then for any ðu,
vÞ ∈H \ fð0, 0Þg, there exists t0 > 0 such that t0ðu, vÞ ∈N and

Eλ t0u, t0vð Þ =max
t≥0

Eλ tu, tvð Þ: ð26Þ

Proof. This result is standard and the proof can be found in
([30], Lemma 12). We omit it.

For equations (11) and (12), we set

Ji uð Þ = 1
2 uk k2i −

N
2 N + αð Þ

ð
Iα ∗ uj j N+αð Þ/N
� �

uj j N+αð Þ/N ,

ð27Þ

and Bi = infN i
J iðuÞ, where

N i = u ∈H1 ℝN� �
/ 0f g ∣ Ji ′ uð Þ, u

D E
= 0

n o
, i = 1, 2: ð28Þ

Then, according to ([17], Theorem 3 and Theorem 6), we
have

Bi <
α

2 N + αð Þ S
N+αð Þ/α
1 , i = 1, 2, ð29Þ

and Bi is achieved, where S1 is defined in (14). By Theorem 7
and ([17], Theorem 3 and Theorem 6), we are able to get the
following estimate.

Lemma 9. Assume that (H1), (H2), and (H3) hold. Then,

0 < cλ <min B1, B2,
α

2 N + αð Þ S
N+αð Þ/α
0

� �
: ð30Þ

Proof. We first show the positivity of cλ. By (H3), we have

C u, vð Þk k2 ≤ u, vð Þk k2 − 2
ð
λuv =

ð
Iα ∗ uj j N+αð Þ/N
� �

uj j N+αð Þ/N
�

+ Iα ∗ vj j N+αð Þ/N
� �

vj j N+αð Þ/NÞ ≤ S−11

ð
uj j2

	 
 N+αð Þ/N

+ S−11

ð
vj j2

	 
 N+αð Þ/N
≤ S− N+αð Þ/N

1 u, vð Þk k 2 N+αð Þð Þ/N ,

ð31Þ

for some C > 0, which suggests that there exists M1 > 0 such
that ∥ðu, vÞ∥>M1: Thus, we obtain

cλ = inf
N
Eλ u, vð Þ = inf

N

α

2 N + αð Þ u, vð Þk k2 − 2
ð
λuv

	 

≥

α

2 N + αð ÞCM
2
1 > 0:

ð32Þ

Second, we show

cλ <
α

2 α +Nð Þ S
N+αð Þ/α
0 : ð33Þ

From the assumptions (H1)–(H3), we see that 0 < ∣λ ∣ <1,
and so Theorem 7 holds. For the case λ > 0, by Lemma 8,
there is t > 0 such that tðUb, τminUbÞ ∈N ; then, we have

cλ ≤ Eλ tUb, tτminUbð Þ

= t2

2

ð
1 + τ2min
� �

∇Ubj j2 + V1 xð Þ + τ2minV2 xð Þ − 2τminλ
� �

Ubj j2� �
−
Nt2 N+αð Þ/N

2 N + αð Þ 1 + τ
2 N+αð Þ/N
min

� � ð
Iα ∗ Ubj j N+αð Þ/N
� �

Ubj j N+αð Þ/N

= t2

2 1 + τ2min − 2τminλ
� � ð

Ubj j2 − Nt2 N+αð Þ/N

2 N + αð Þ 1 + τ
2 N+αð Þ/N
min

� �
�
ð

Iα ∗ Ubj j N+αð Þ/N
� �

Ubj j N+αð Þ/N + t2

2

ð
1 + τ2min
� �

∇Ubj j2�
+ V1 xð Þ − 1ð Þ + τ2min V2 xð Þ − 1ð Þ� �

Ubj j2Þ ≤ α

2 α +Nð Þ S
N+αð Þ/α
0

+ t2

2

ð
1 + τ2min
� �

∇Ubj j2 + V1 xð Þ − 1ð Þð�
+ τ2min V2 xð Þ − 1ð Þ� Ubj j2Þ:

ð34Þ

The last inequality in (34) follows from Theorem 7 and
direct calculation. Denote

Li uð Þ = t2

2

ð
∇u ∣ 2 + Vi xð Þ − 1ð Þ�� ��u��2� �

, i = 1, 2: ð35Þ

To prove (33), it is enough to show

Li Ubð Þ < 0, i = 1, 2, ð36Þ

S0 + o 1ð Þ =
Ð

unj j2 + vnj j2 − 2λunvn
� �

Ð
Iα ∗ unj j N+αð Þ/N
� �

unj j N+αð Þ/N+ Ð Iα ∗ vnj j N+αð Þ/N
� �

vnj j N+αð Þ/N
� �N/ N+αð Þ

≥
t−2n
Ð
znj j2+ Ð vj j2n − 2λt−1n

Ð
vnj j2

t− 2 N+αð Þð Þ/N
n

Ð
Iα ∗ znj j N+αð Þ/N
� �

znj j N+αð Þ/N+
Ð

Iα ∗ vnj j N+αð Þ/N
� �

vnj j N+αð Þ/N
� �N/ N+αð Þ ≥ h t−1n

� �
S1 ≥ h τminð ÞS1:

ð25Þ
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for some b > 0. Since

ð
xj j2

1 + xj j2� �N+2 = N − 2
4 N + 1ð Þ

ð 1
x2 1 + x2ð ÞN

, ð37Þ

we have

ð
∇Ubj j2 = N2 N − 2ð Þ

4 N + 1ð Þ
ð
Ubj j2
xj j2 : ð38Þ

Then, by a transformation x = a + bz, we get

Li ubð Þ =
ð

N2 N − 2ð Þ
4 N + 1ð Þ zj j2 − b2 1 − Vi a + bzð Þð Þ
	 


C2

1 + zj j2� �N dz:

ð39Þ

Taking the assumption (H2) into consideration, we see
that that (36) holds. Then, (33) follows from (34).

Now, it remains to show

cλ <min B1, B2f g: ð40Þ

Denote ground states of (11) and (12) by U and V ,
respectively. Since ðU , 0Þ ∈N and ð0, VÞ ∈N , we have cλ ≤
min fB1, B2g: If cλ =min fB1, B2g, then we see that at least
one of ðU , 0Þ and ð0, VÞ is a solution of system (1), which
is impossible since λ ≠ 0, so (40) holds.

3. Proof of Theorem 11

Lemma 10. Assume that (H1), (H2), and (H3) hold. Then,
there exists a vector ground state of system (1).

Proof. According to Ekeland’s variational principle, there
exists fðun, vnÞg ⊂N such that

Eλ un, vnð Þ⟶ cλ, Eλ ′ un, vnð Þ��
N
⟶ 0 as n⟶∞: ð41Þ

For simplicity, we denote Iλðu, vÞ≔ hEλ ′ðu, vÞ, ðu, vÞi.
First, we prove Eλ ′ðun, vnÞ⟶ 0. Indeed,

o 1ð Þ = Eλ ′ un, vnð Þ��
N
= Eλ ′ un, vnð Þ − σnIλ ′ un, vnð Þ ð42Þ

for some σn and sufficiently large n. Particularly,

o 1ð Þ = Eλ ′ un, vnð Þ, un, vnð Þ
D E
− σn Iλ ′ un, vnð Þ, un, vnð Þ

D E
= −σn Iλ ′ un, vnð Þ, un, vnð Þ

D E
:

ð43Þ

From the proof of Lemma 9, we observe that there exists

M1,M2 > 0 such that M1 ≤ ∥ðun, vnÞ∥≤M2. Then, we have

Iλ′ un, vnð Þ, un, vnð Þ
D E

= 2 un, vnð Þk k2 − 2
ð
λunvn

	 

−
2 N + αð Þ

N

ð
Iα ∗ unj j N+αð Þ/N
� �

unj j N+αð Þ/N
�

+ Iα ∗ vnj j N+αð Þ/N
� �

vnj j N+αð Þ/N
�

−
2α
N

un, vnð Þk k2 − 2
ð
λunvn

	 

≤ −C un, vnð Þk k2 ≤ −CM1 < 0:

ð44Þ

Taking (43) into consideration, we obtain that σn ⟶ 0
as n⟶∞. Then, from (42), we get Eλ ′ðun, vnÞ⟶ 0:

We may assume that

un, vnð Þ⇀ u, vð Þ inH,
un, vnð Þ→ u, vð Þ in Lrloc ℝN� �

× Lrloc ℝN� �
2 ≤ r < 2∗ð Þ,

un, vnð Þ→ u, vð Þ a:e inℝN :

ð45Þ

Then, E′λðu, vÞ = 0: To complete the proof, it is sufficient
to prove that ðu, vÞ ≠ ð0, 0Þ: Actually, if ðu, vÞ ≠ ð0, 0Þ: By
Fatou’s lemma, we get

cλ ≤ Eλ u, vð Þ = α

2 N + αð Þ
ð

Iα ∗ uj j N+αð Þ/N
� �

uj j N+αð Þ/N
�

+ Iα ∗ vj j N+αð Þ/N
� �

vj j N+αð Þ/N
�

≤ lim inf
n→∞

α

2 N + αð Þ
ð

Iα ∗ unj j N+αð Þ/N
� �

unj j N+αð Þ/N
�

+ Iα ∗ vnj j N+αð Þ/N
� �

vnj j N+αð Þ/N
�
= cλ:

ð46Þ

Furthermore, since Eλ′ðu, vÞ = 0 and λ ≠ 0, we see from
(1) that u≡0 and v≡0, that is, ðu, vÞ is a vector ground state
of (1).

Suppose the assertion is false, that is, ðu, vÞ = ð0, 0Þ: On
the one hand, we know from (H1) thatð

V1 xð Þu2n + V2 xð Þv2n
� �

=
ð
Br 0ð Þ

V1 xð Þu2n + V2 xð Þv2n
� �

+
ð
ℝN \Br 0ð Þ

V1 xð Þu2n +V2 xð Þv2n
� �

=
ð
Br 0ð Þ

V1 xð Þu2n + V2 xð Þv2n
� �

+
ð
ℝN \Br 0ð Þ

u2n + v2n
� �

+ o 1ð Þ

=
ð
u2n + v2n
� �

+ o 1ð Þ,

ð47Þ
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as n⟶∞. Then, it followsð
∇unj j2 + ∇vnj j2 + u2n + v2n − 2λunvn
� �

+ o 1ð Þ

= un, vnð Þk k2 − 2
ð
λunvn

ð48Þ

as n⟶∞. Using Theorem 7, we obtain

cλ = Eλ un, vnð Þ − 1
2 Eλ

′ un, vnð Þ, un, vnð Þ
D E

+ o 1ð Þ

= α

2 N + αð Þ
ð

Iα ∗ unj j N+αð Þ/N
� �

unj j N+αð Þ/N
�

+ Iα ∗ vnj j N+αð Þ/N
� �

vnj j N+αð Þ/N
�

+ o 1ð Þ ≤ α

2 N + αð Þ S
− N+αð Þ/N
0

ð
u2n + v2n − 2λunvn
� �	 
 N+αð Þ/N

+ o 1ð Þ ≤ α

2 N + αð Þ S
− N+αð Þ/N
0

�
ð

∇unj j2 + ∇vnj j2 + u2n + v2n − 2λunvn
� �	 
 N+αð Þ/N

+ o 1ð Þ = α

2 N + αð Þ S
− N+αð Þ/N
0 un, vnk k2 − 2

ð
λunvn

	 
 N+αð Þ/N

+ o 1ð Þ:
ð49Þ

On the other hand,

cλ =
α

2 N + αð Þ un, vnð Þk k2 − 2
ð
λunvn

	 

+ o 1ð Þ: ð50Þ

Collecting (49) and (50) yields

cλ ≥
α

2 N + αð Þ S
N+αð Þ/α
0 , ð51Þ

which contradicts Lemma 9. Thus, ðu, vÞ ≠ ð0, 0Þ:

Proof of Theorem 11. By Lemma 10, we need only show the
asymptotic behavior of the vector ground state when λ⟶
0+: First, we claim that cλ decreases strictly monotonically
with respect to λ ∈ ð0, inf x∈ℝN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðxÞV2ðxÞ

p Þ: Indeed, fix λ1
, λ2 ∈ ð0, inf x∈ℝN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðxÞV2ðxÞ

p Þ with λ1 < λ2: Denoting a
vector ground state of system (1) when λ = λ1 by ðuλ1 , vλ1Þ
and letting t > 0 be the constant such that ðtuλ1 , tvλ1Þ ∈
N λ=λ2 , we obtain

uλ1 , vλ1
� ��� ��2 − 2

ð
λ1uλ1vλ1

=
ð

Iα ∗ uλ1
�� �� N+αð Þ/N� �

uλ1
�� �� N+αð Þ/N�

+ Iα ∗ vλ1
�� �� N+αð Þ/N� �

vλ1
�� �� N+αð Þ/N�,

uλ1 , vλ1
� ��� ��2 − 2

ð
λ2uλ1vλ1

= t2α/N
ð

Iα ∗ uλ1
�� �� N+αð Þ/N� �

uλ1
�� �� N+αð Þ/N�

+ Iα ∗ vλ1
�� �� N+αð Þ/N� �

vλ1
�� �� N+αð Þ/N�

:

ð52Þ

Then, by λ1 < λ2, we deduce that t < 1, which gives

cλ2 ≤ Eλ2
tuλ1 , tvλ1
� �

= α

2 N + αð Þ t
2 N+αð Þ/N

ð
Iα ∗ uλ1

�� �� N+αð Þ/N� �
uλ1
�� �� N+αð Þ/N�

+ Iα ∗ vλ1
�� �� N+αð Þ/N� �

vλ1
�� �� N+αð Þ/N�

< α

2 N + αð Þ
ð

Iα ∗ uλ1
�� �� N+αð Þ/N� �

uλ1
�� �� N+αð Þ/N�

+ Iα ∗ vλ1
�� �� N+αð Þ/N� �

vλ1
�� �� N+αð Þ/N� = cλ1 :

ð53Þ

The claim is proved.
Now, choose fλng ⊂ ð0, inf x∈ℝN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðxÞV2ðxÞ

p Þ satisfying
λn ⟶ 0+ as n⟶∞ and denote a vector ground state of
system (1) when λ = λn by ðuλn , vλnÞ: Then ∀ðh1, h2Þ ∈H,
we have

lim
n⟶∞

E0 ′ uλn , vλn
� �

, h1, h2ð Þ
D E

= lim
n⟶∞

Eλn
′ uλn , vλn
� �

, h1, h2ð Þ
D E

= 0,

lim
n⟶∞

E0 uλn , vλn
� �

= lim
n⟶∞

Eλn
uλn , vλn
� �

: ð54Þ

By cλn <min fB1, B2g and (29), we obtain

lim
n⟶∞

E0 uλn , vλn
� �

= lim
n⟶∞

cλn ≤min B1, B2f g

< α

2 N + αð Þ S
N+αð Þ/α
1 :

ð55Þ

Repeating an argument as in Lemma 10, we deduce that
ðuλn , vλnÞ⟶ ðû, 0Þ or ðuλn , vλnÞ⟶ ð0, v̂Þ in H, where û
and v̂ are ground states of (11) and (12), respectively.

4. Proof of Theorem 18

In this section, we study the existence of a higher energy vec-
tor solution of system (1) for λ > 0 sufficiently small. We sup-
pose that B1 ≤ B2 without loss of generality. Let U , V be
ground states of (11) and (12), respectively. Then, we may
assume that U and V are positive since ∣U ∣ and ∣V ∣ are also
ground states of (11) and (12), respectively. Now, we set

A =A1 ×A2, ð56Þ
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where

A i = u ∈H1 ℝN� �
, Ji ′ uð Þ = 0, Ji uð Þ = Bi

n o
: ð57Þ

Then ðU , VÞ ∈A . Moreover, by a similar argument as
that in ([28], Lemma 12), we obtain the following.

Lemma 12. Assume that (H1) and (H2) hold. Then, A ⊂H is
compact, and there exist 0 < a1 < a2 such that

a1 ≤ uk k1, vk k2 ≤ a2,∀ u, vð Þ ∈A : ð58Þ

Proof. The proof can be found in ([28], Lemma 12) and will
be omitted here.

By the definition of U and V , we know that

B1 = J1 Uð Þ =max
t>0

J1 tUð Þ, B2 = J2 Vð Þ =max
t>0

J2 tVð Þ, ð59Þ

J1 tUð Þ ≤ B1
4 ,

∀t ∈ 0, t1ð � ∪ t2,+∞½ Þ,

J2 sVð Þ ≤ B2
4 ,

∀s ∈ 0, s1ð � ∪ s2,+∞½ Þ,

ð60Þ

for some t1, t2, s1, and s2 satisfying 0 < t1 < 1 < t2 and 0 < s1
< 1 < s2. Denote A≔ ½0, t2� × ½0, s2� and define bγ : A↦H by

bγ t, sð Þ = bγ1 tð Þ, bγ2 sð Þð Þ≔ tU , sVð Þ: ð61Þ

Then, maxðt,sÞ∈A∥bγðt, sÞ∥≤a0 for some a0 > 0: Define

ĉλ ≔ inf
γ∈bΓ max

t,sð Þ∈A
Eλ γ t, sð Þð Þ,mλ ≔ max

t,sð Þ∈A
Eλ bγ t, sð Þð Þ, ð62Þ

where

bΓ ≔ γ ∈ℂ A,Hð Þ∣ max
t,sð Þ∈A

γ t, sð Þk k ≤ 2a2 + a0,
�

γ t, sð Þ = bγ t, sð Þ for t, sð Þ ∈ A \ t1, t2ð Þ × s1, s2ð Þf g
�
,

ð63Þ

and a2 is defined in Lemma 12. Obviously, bγðt, sÞ ∈ bΓ:More-
over, we havethe following.

Lemma 13. Assume that (H1), (H2), and 0 < λ < inf x∈ℝNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðxÞV2ðxÞ

p
hold. Then,

lim
λ⟶0+

ĉλ = lim
λ⟶0+

mλ = ĉ0 =m0 = B1 + B2: ð64Þ

Proof. By λ > 0, we see that Eλðbγðt, sÞÞ ≤ E0ðbγðt, sÞÞ and
mλ ≤m0 = max

t,sð Þ∈A
E0 bγ t, sð Þð Þ

= max
t∈ 0,t2½ �

J1 bγ1 tð Þð Þ + max
s∈ 0,s2½ �

J2 bγ2 sð Þð Þ

= J1 Uð Þ + J2 Vð Þ = B1 + B2:

ð65Þ

Observing that ĉλ ≤mλ since bγ ∈ bΓ , we deduce
lim sup
λ⟶0+

ĉλ ≤ lim inf
λ⟶0+

mλ ≤ lim sup
λ⟶0+

mλ ≤m0, ĉ0 ≤m0: ð66Þ

Now, for γðt, sÞ = ðγ1ðtÞ, γ2ðsÞÞ ∈ bΓ , define a function
f ðγÞ on ½t1, t2� × ½s1, s2� by

f γð Þ t, sð Þ≔ ϕ1 γ1 tð Þð Þ − ϕ2 γ2 sð Þð Þ, ϕ1 γ1 tð Þð Þ + ϕ2 γ2 sð Þð Þ − 2ð Þ,
ð67Þ

where ϕ1, ϕ2 : H ↦ℝ are given by

ϕ1 uð Þ≔

Ð
Iα ∗ uj j N+αð Þ/N
� �

uj j N+αð Þ/NÐ
∇uj j2 + V1 xð Þu2� � , if u ≠ 0,

0, if u = 0,

8>><>>:
ϕ2 uð Þ≔

Ð
Iα ∗ uj j N+αð Þ/N
� �

uj j N+αð Þ/NÐ
∇uj j2 + V2 xð Þu2� � , if u ≠ 0,

0, if u = 0:

8>><>>:
ð68Þ

Noting that ϕ1, ϕ2 are continuous and f ðbγÞð1, 1Þ = 0,
we deduce deg ð f ðbγÞ, ½t1, t2� × ½s1, s2�, ð0, 0ÞÞ = 1: Moreover,
we know from (60) that f ðγÞðt, sÞ = f ðbγÞðt, sÞ ≠ ð0, 0Þ for
any ðt, sÞ ∈ ∂ð½t1, t2� × ½s1, s2�Þ, which implies deg ð f ðγÞ, ½t1
, t2� × ½s1, s2�, ð0, 0ÞÞ is well defined and

deg f γð Þ, t1, t2½ � × s1, s2½ �, 0, 0ð Þð Þ
= deg f bγð Þ, t1, t2½ � × s1, s2½ �, 0, 0ð Þð Þ = 1:

ð69Þ

Therefore, there exists ðt∗, s∗Þ ∈ ½t1, t2� × ½s1, s2� satisfy-
ing f ðγÞðt∗, s∗Þ = ð0, 0Þ, that is, ϕ1ðγ1ðt∗ÞÞ = ϕ2ðγ2ðs∗ÞÞ = 1
: Recalling the definition of ϕ1, ϕ2, we have γ1ðt∗Þ ∈N 1,
γ2ðs∗Þ ∈N 2. Then, it follows

max
t,sð Þ∈A

E0 γ t, sð Þð Þ ≥ E0 γ t∗, s∗ð Þð Þ = J1 γ1 t∗ð Þð Þ + J2 γ2 s∗ð Þð Þ

≥ B1 + B2 =m0:

ð70Þ

Thus, ĉ0 ≥m0. Taking account of (66), we obtain ĉ0 =
m0: Now, it remains to prove

liminf
λ⟶0+

ĉλ ≥m0: ð71Þ

If (12) is not true, there exists a sequence λn ⟶ 0+,
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γnðt, sÞ = ðγ1,nðtÞ, γ2,nðsÞÞ ∈ bΓ and ε > 0 satisfying

max
t,sð Þ∈A

Eλn
γn t, sð Þð Þ ≤m0 − 2ε: ð72Þ

For the ε given above, the definition of bΓ leads to

max
t,sð Þ∈A

λn

ð
∣γ1,n tð Þγ2,n sð Þ∣ ≤ Cλn < ε, ∀ n ≥N0 ð73Þ

for some N0 > 0 sufficiently large. Then, it follows

max
t,sð Þ∈A

E0 γn t, sð Þð Þ ≤ max
t,sð Þ∈A

Eλn
γn t, sð Þð Þ + ε ≤m0 − ε, ∀n ≥N0,

ð74Þ

which contradicts (70), implying that (71) holds.

Set

Ad ≔ u, vð Þ ∈H : dist u, vð Þ,Að Þ ≤ df g, Ec
λ

≔ u, vð Þ ∈H : Eλ u, vð Þ ≤ cf g:
ð75Þ

Then, we show the compactness of the PS sequence.

Lemma 14. Assume that (H1) and (H2) hold. Denote d0 ≔ 1
/2ðð2ðN + αÞ/αÞB1Þ1/2 and let d ∈ ð0, d0Þ: If fλng satisfies λn
> 0 and λn ⟶ 0 as n⟶∞ and fðun, vnÞg ⊂Ad is a
sequence with

lim
n→∞

Eλn
un, vnð Þ ≤ ĉ0, limn→∞

Eλn
′ un, vnð Þ = 0, ð76Þ

then, there exists ðu, vÞ ∈A such that ðun, vnÞ⟶ ðu, vÞ inH:

Proof. Observing that fðun, vnÞg is bounded by the choice of
d and Lemma 12, we assume ðun, vnÞ⇀ ðu, vÞ inH. Then, by
a similar argument as in ([28], Lemma 14), we obtain that

u, vð Þ ∈A2d: ð77Þ

Moreover, using the definition of d again, we get u ≠ 0,
v ≠ 0:

We now prove ðun, vnÞ⟶ ðu, vÞ ∈A . Actually, for ðh1,
h2Þ ∈H, we have

E0′ u, vð Þ, h1, h2ð Þ
D E

= lim
n⟶∞

E0′ un, vnð Þ, h1, h2ð Þ
D E

= lim
n⟶∞

Eλn
′ un, vnð Þ, h1, h2ð Þ

D E
= 0,

ð78Þ

lim
n⟶∞

E0 un, vnð Þ = lim
n⟶∞

Eλn
un, vnð Þ ≤ ĉ0: ð79Þ

Then, it holds

E0 u, vð Þ = α

2 N + αð Þ
ð

Iα ∗ uj j N+αð Þ/N
� �

uj j N+αð Þ/N
�

+ Iα ∗ vj j N+αð Þ/N
� �

vj j N+αð Þ/N
�

≤ lim inf
n→∞

α

2 N + αð Þ
ð

Iα ∗ unj j N+αð Þ/N
� �

unj j N+αð Þ/N
�

+ Iα ∗ vnj j N+αð Þ/N
� �

vnj j N+αð Þ/N
�

= lim inf
n→∞

E0 un, vnð Þ:
ð80Þ

Note that from (78), ðu, vÞ ∈A : Then, combining Lemma
13 with (79) and (80), we have E0ðu, vÞ = ĉ0 and ðun, vnÞ
⟶ ðu, vÞ ∈A in H.

Next, we will construct a PS sequence using a perturba-
tion approach.

Lemma 15. Assume that (H1) and (H2) hold. Then, for a d
∈ ð0, d0/2Þ, where d0 was defined in Lemma 14, there are �λ
∈ ð0, inf x∈ℝN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðxÞV2ðxÞ

p Þ and a ∈ ð0, 1Þ such that

∥Eλ ′ u, vð Þ∥ ≥ a, ∀ u, vð Þ ∈ Emλ

λ ∩ Ad \A d
2

� �
, λ ∈ 0, �λ

� �
:

ð81Þ

Proof. We prove indirectly. Suppose that there exists fλng
satisfying limn⟶∞λn = 0 and fðun, vnÞg ⊂ E

mλn
λn

∩ ðAd \
Ad/2Þ with ∥Eλn

′ðun, vnÞ∥⟶0 as n⟶∞. Then, we see
immediately that Eλn

ðun, vnÞ ≤ ĉ0 from Lemma 13, and ðun,
vnÞ⟶ ðu, vÞ in H for some ðu, vÞ ∈A by Lemma 14. Thus,
ðun, vnÞ ∈Ad/2 for n sufficiently large, which is in contradic-
tion with fðun, vnÞg ⊂ E

mλn
λn

∩ ðAd \Ad/2Þ, so the conclusion
holds.

In the sequel, we assume that d, a, �λ be fixed such that
Lemma 15 holds.

Lemma 16.Assume that (H1) and (H2) hold. Then, there existbλ ∈ ð0, �λÞ and δ > 0 such that ∀λ ∈ ð0, bλÞ
Eλ bγ t, sð Þð Þ ≥ ĉλ − δ implies bγ t, sð Þ ∈Ad/2: ð82Þ

Proof. Arguing indirectly, we suppose that there exist λn
⟶ 0, δn ⟶ 0 and ðtn, snÞ ∈ A satisfying

Eλn
bγ tn, snð Þð Þ ≥ ĉλn − δn, bγ tn, snð Þ∈Ad/2: ð83Þ

We may suppose ðtn, snÞ⟶ ð̂t, ŝÞ ∈ A. Then, from
Lemma 13 and (83), we deduce

E0 bγ t̂, ŝ
� �� �

≥ lim
n⟶∞

ĉλn − δn
� �

= B1 + B2: ð84Þ
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Recalling the definition of bγðt, sÞ, we have ð̂t, ŝÞ = ð1, 1Þ,
and so

lim
n⟶∞

bγ tn, snð Þ − bγ 1, 1ð Þk k = lim
n⟶∞

bγ tn, snð Þ − U , Vð Þk k = 0,

ð85Þ

which is in contradiction with bγðtn, snÞ∈Ad/2:

For δ and bλ given in Lemma 16, we define

δ0 ≔min δ

2 ,
B1
4 , 18 da

2
� �

: ð86Þ

Then,

∣̂cλ −mλ∣ < δ0, ∣̂cλ − B1 + B2ð Þ∣ < δ0, ∀λ ∈ 0, λ∗ð Þ, ð87Þ

for some λ∗ ∈ ð0, bλ�.
Lemma 17. Assume that (H1) and (H2) hold. For fixed λ
∈ ð0, λ∗Þ, there is fðun, vnÞg ⊂Ad ∩ Emλ

λ with

Eλ ′ un, vnð Þ⟶ 0, as n⟶∞: ð88Þ

Proof. For λ ∈ ð0, λ∗Þ, suppose contradictorily that ∥Eλ ′ðu
, vÞ∥≥lðλÞ for all ðu, vÞ ∈Ad ∩ Emλ

λ and some 0 < lðλÞ < 1:
Then, there is a pseudogradient vector field hλ for Eλ on
neighborhood Sλ of Ad ∩ Emλ

λ such that

hλ u, vð Þk k ≤ 2 min 1, Eλ ′ u, vð Þ�� ��n o
,

Eλ ′ u, vð Þ, hλ u, vð Þ
D E

≥min 1, Eλ ′ u, vð Þ�� ��n o
Eλ ′ u, vð Þ�� ��:

ð89Þ

Define a function ηλ on H satisfying 0 ≤ ηλ ≤ 1, ηλ ≡ 1
on Ad ∩ Emλ

λ and ηλ ≡ 0 on H \ Sλ, and a function ζλ on
ℝ with 0 ≤ ζλðtÞ ≤ 1, ζλðtÞ ≡ 1 if ∣t − ĉλ ∣ ≤δ/2, and ζλðtÞ
≡ 0 if ∣t − ĉλ ∣ ≥δ. Then both ηλ and ζλ are Lipschitz con-
tinuous. Set

gλ u, vð Þ =
−ηλ u, vð Þζλ Eλ u, vð Þð Þhλ u, vð Þ, u, vð Þ ∈ Sλ,
0, u, vð Þ ∈H \ Sλ:

(
ð90Þ

Then, the initial problem

d
dθ

ψλ u, v, θð Þ = gλ ψλ u, v, θð Þð Þ,
ψλ u, v, 0ð Þ = u, vð Þ,

8<: ð91Þ

has a global solution ψλ on H × ½0,+∞Þ with the
properties:

(i) ψλðu, v, θÞ = ðu, vÞ if θ = 0 or ðu, vÞ ∈H \ Sλ or ∣Eλð
u, vÞ − ĉλ ∣ ≥δ

(ii) kðd/dθÞψλðu, v, θÞk ≤ 2

(iii) ðd/dθÞEλðψλðu, v, θÞÞ = hEλ ′ðψλðu, v, θÞÞ, gλðψλðu,
v, θÞÞi ≤ 0

Now, the proof can be divided into two steps.
Step 1. We show that there exists θ0 ≥ 0 such that

ψλ bγ t, sð Þ, θ0ð Þ ∈ Eĉλ−δ0
λ ð92Þ

for ðt, sÞ ∈ A and δ0 defined in (86).
Arguing indirectly, we suppose

Eλ ψλ bγ t, sð Þ, θð Þð Þ > ĉλ − δ0, ∀θ ≥ 0, ð93Þ

for some ðt, sÞ ∈ A: Noting δ0 < δ and applying Lemma 16,
we get bγðt, sÞ ∈Ad/2: By property (iii) and the fact that

Eλ bγ t, sð Þð Þ ≤mλ < ĉλ + δ0, ð94Þ

we have

ĉλ − δ0 < Eλ ψλ bγ t, sð Þ, θð Þð Þ ≤mλ < ĉλ + δ0,∀θ ≥ 0: ð95Þ

Then, ζλðEλðψλðbγðt, sÞ, θÞÞÞ ≡ 1: If ψλðbγðt, sÞ, θÞÞ∈Ad

for all θ ≥ 0, then

ηλ ψλ bγ t, sð Þ, θð Þð ÞÞ ≡ 1,∥Eλ ′ ψλ bγ t, sð Þ, θð Þð Þ∥ ≥ l λð Þ,∀θ > 0:
ð96Þ

Thus,

Eλ ψλ bγ t, sð Þ, δ

l λð Þ2
 ! !

≤ ĉλ +
δ

2 −
ðδ/l λð Þ2

0
l2 λð Þdθ ≤ ĉλ −

δ

2 ,

ð97Þ

which contradicts (93). Hence, ψλðbγðt, sÞ, θ0Þ∈Ad for some
θ0 > 0. Observing that bγðt, sÞ ∈Ad/2, we deduce that for some
θ1, θ2 with 0 < θ1 < θ2 ≤ θ0, it holds ψλðbγðt, sÞ, θ1Þ ∈ ∂Ad/2,
ψλðbγðt, sÞ, θ2Þ ∈ ∂Ad , and ψλðbγðt, sÞ, θÞ ∈Ad \Ad/2 for all
θ ∈ ðθ1, θ2Þ: Then, according to Lemma 15, we get

Eλ
′ ψλ bγ t, sð Þ, θð Þð Þ�� �� ≥ a,∀θ ∈ θ1, θ2ð Þ: ð98Þ

Moreover, we deduce from property (ii) that

d
2 ≤ ψλ bγ t, sð Þ, θ1ð Þ − ψλ bγ t, sð Þ, θ2ð Þk k ≤ 2 θ1 − θ2j j, ð99Þ
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which yields ∣θ1 − θ2 ∣ ≥d/4. Then, we obtain

Eλ ψλ bγ t, sð Þ, θ2ð Þð Þ ≤ Eλ ψλ bγ t, sð Þ, θ1ð Þð Þ

+
ðθ2
θ1

d
dθ

Eλ ψλ u, v, θð Þð Þ ≤ ĉλ + δ0 − a2 θ2 − θ1ð Þ ≤ ĉλ

+ δ0 −
1
4 da

2, ≤ ĉλ − δ0,

ð100Þ

which contradicts (93), and the proof of this step is complete.
By step 1, we define

G t, sð Þ≔ inf θ ≥ 0 : Eλ ψλ bγ t, sð Þ, θð Þð Þ ≤ ĉλ − δ0f g ð101Þ

and γðt, sÞ≔ ψλðbγðt, sÞ,Gðt, sÞÞ. Obviously, Eλðγðt, sÞÞ ≤ ĉλ
− δ0 for all ðt, sÞ ∈ A:

Step 2. We prove

γ t, sð Þ ∈ bΓ: ð102Þ

Noting that

Eλ bγ t, sð Þð Þ ≤ E0 bγ t, sð Þð Þ = J1 bγ1 tð Þð Þ + J2 bγ2 sð Þð Þ
≤
B1
4 + B2 ≤ B1 + B2 − 3δ0 < ĉλ − δ0,

ð103Þ

for all ðt, sÞ ∈A \ ðt1, t2Þ × ðs1, s2Þ, we have Gðt, sÞ = 0 and γ
ðt, sÞ = bγðt, sÞ:

It remains to show kγðt, sÞk ≤ 2a2 + a0, ∀ðt, sÞ ∈ A, and
Gðt, sÞ is a continuous function of ðt, sÞ ∈ A. For any ðt, sÞ ∈
A, if Eλðbγðt, sÞÞ ≤ ĉλ − δ0, then Gðt, sÞ = 0 and γðt, sÞ = bγðt, s
Þ, so kγðt, sÞk = kbγðt, sÞk ≤ 2a2 + a0: If Eλðbγðt, sÞÞ > ĉλ − δ0,
then bγðt, sÞ ∈Ad/2 and

ĉλ − δ0 < Eλ ψλ bγ t, sð Þ, θð Þð Þ ≤mλ < ĉλ + δ0,∀θ ∈ 0, G t, sð Þ½ �:
ð104Þ

So we get ζλðEλðψλðbγðt, sÞ, θÞÞÞ ≡ 1 for θ ∈ ½0,Gðt, sÞ�:
Then, we can prove that

γ t, sð Þ = ψλ bγ t, sð Þ,G s, tð ÞÞð Þ ∈Ad: ð105Þ

Indeed, if not, by similar arguments as in step 1, we know
that Eλðψλðbγðt, sÞ, θ2ÞÞ ≤ ĉλ − δ0 for some θ1, θ2 satisfying 0
< θ1 < θ2 <Gðt, sÞ, which is in contradiction with the defini-
tion of Gðt, sÞ. Thus, γðs, tÞ ∈Ad and

γ s, tð Þ − u, vð Þk k ≤ d ≤
a0
2 , ð106Þ

for some ðu, vÞ ∈A . Hence, from Lemma 12,

γ s, tð Þk k ≤ u, vð Þk k + a0
2 ≤ 2a2 + a0: ð107Þ

Now, we prove that Gðt, sÞ is continuous. For fixed ð�t,�sÞ
∈ A, if Eλðγð�t,�sÞÞ < ĉλ − δ0, then Gð�t,�sÞ = 0 and Eλðbγð�t,�sÞÞ

< ĉλ − δ0: Since bγ is continuous, we have

Eλ bγ t, sð Þð Þ < ĉλ − δ0,∀ t, sð Þ ∈ �t − τ,�t + τð Þ × �s − τ,�s + τð Þ ∩ A,
ð108Þ

for some τ > 0, which implies Gðt, sÞ = 0, ∀ðt, sÞ ∈ ð�t − τ,�t +
τÞ × ð�s − τ,�s + τÞ ∩ A: Thus, the continuity of G at ð�t,�sÞ is
proved. If Eλðγð�t,�sÞÞ = ĉλ − δ0, then we see from the proof
previously that γð�t,�sÞ = ψλðbγð�t,�sÞ,Gð�t,�sÞÞ ∈Ad , so

Eλ ′ ψλ bγ �t,�sð Þ,G �t,�sð Þð Þð Þ�� �� ≥ l λð Þ > 0, ð109Þ

and Eλðψλðbγð�t,�sÞ,Gð�t,�sÞ + ωÞÞ < ĉλ − δ0 for any ω > 0. By
the continuity of ψλ, we obtain Eλðψλðbγðt, sÞ,Gð�t,�sÞ + ωÞÞ
< ĉλ − δ0, ∀ðt, sÞ ∈ ð�t − τ,�t + τÞ × ð�s − τ,�s + τÞ ∩ A for some
τ > 0. Therefore, Gðt, sÞ ≤ Gð�t,�sÞ + ω and

0 ≤ lim sup
t,sð Þ⟶ �t,�sð Þ

G t, sð Þ ≤ G �t,�sð Þ: ð110Þ

If Gð�t,�sÞ = 0, then

lim
t,sð Þ⟶ �t,�sð Þ

G t, sð Þ = G �t,�sð Þ: ð111Þ

If Gð�t,�sÞ > 0, then Eλðψλðbγð�t,�sÞ,Gð�t,�sÞ − ωÞÞ > ĉλ + δ0
for any ω with 0 < ω <Gð�t,�sÞ. Then, since ψλ is continuous,
we deduce

liminf
t,sð Þ⟶ �t,�sð Þ

G t, sð Þ ≥ G �t,�sð Þ: ð112Þ

Combining with (110), we obtain the continuity ofGðs, tÞ
at ð�t,�sÞ: Consequently, (102) holds.

By Step 1 and Step 2, we have showed that γðt, sÞ ∈ bΓ and
maxðt,sÞ∈AEλðγðt, sÞÞ ≤ ĉλ − δ0, which is in contradiction with
the definition of ĉλ: Thus, the conclusion holds.

Proof of Theorem 18. Denote d0 ≔ 1/2ðð2ðN + αÞÞ/αB1Þ1/2.
From Lemma 17, we obtain that there exists fðuλn, vλnÞg ⊂
Ad such that

Eλ uλn, vλn
� �

≤mλ, Eλ
′ uλn, vλn
� �

⟶ 0, ð113Þ

for fixed λ ∈ ð0, λ∗Þ, where λ∗ ∈ ð0, inf x∈ℝN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðxÞV2ðxÞ

p Þ.
Then, by Lemma 14, ðuλn, vλnÞ⇀ ðuλ, vλÞ in H for some ðuλ,
vλÞ ∈A2d and Eλ ′ðuλ, vλÞ = 0. Moreover, recalling the defini-
tion of d, we have uλ ≠ 0, vλ ≠ 0, that is, ðuλ, vλÞ is a vector
solution of system (1.1).

Now, choosing fλng ⊂ ð0, λ∗Þ such that λn ⟶ 0 as n
⟶∞, by a repeat of the proof in Lemma 14, we obtain ð
uλn , vλnÞ⟶ ð�u, �vÞ ∈A in H, with �u and �v being ground
states of (11) and (12), respectively, which completes the
proof.
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5. Proof of Theorem 20

Lemma 19. Let N ≥ 3, ViðxÞ ∈W1,1
locðℝNÞ ∩ L∞ðℝNÞ, i = 1, 2,

and ðu, vÞ ∈H be a solution of system (1). If

sup
x∈ℝN

∇Vi xð Þ · xj j <∞,i = 1, 2, ð114Þ

then ðu, vÞ satisfies the Pohozaev identity

N − 2
2

ð
∇uj j2 + ∇vj j2� �

+ N
2

ð
V1 xð Þ uj j2�

+ V2 xð Þ vj j2 − 2λuv
�
+ 1
2

ð
∇V1 xð Þ · x uj j2+∇V2 xð Þ · x vj j2� �

= N
2

ð
Iα ∗ uj j N+αð Þ/N uj j N+αð Þ/N
�

+ Iα ∗ vj j N+αð Þ/N vj j N+αð Þ/N
�
:

ð115Þ

Proof. The lemma can be proved by a similar argument as
that in ([17], Proposition 11).

Proof of Theorem 20. Let ðu, vÞ be a solution of system (1). By
Lemma 19, we haveð

∇uj j2 + ∇vj j2� �
= 1
2

ð
∇V1 xð Þ · x uj j2+∇V2 xð Þ · x vj j2� �

:

ð116Þ

Then, the conclusion follows from a classical Hardy
inequality (see ([31], Theorem 6.4.10))

N − 2ð Þ2
4

ð
uj j2
xj j2 ≤

ð
∇uj j2: ð117Þ
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