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The fractional telegraph equation is a kind of important evolution equation, which has an important application in signal analysis
such as transmission and propagation of electrical signals. However, it is difficult to obtain the corresponding analytical solution, so
it is of great practical value to study the numerical solution. In this paper, the alternating segment pure explicit-implicit (PASE-I)
and implicit-explicit (PASI-E) parallel difference schemes are constructed for time fractional telegraph equation. Based on the
alternating segment technology, the PASE-I and PASI-E schemes are constructed of the classic explicit scheme and implicit
scheme. It can be concluded that the schemes are unconditionally stable and convergent by theoretical analysis. The convergence
order of the PASE-I and PASI-E methods is second order in spatial direction and 3-α order in temporal direction. The
numerical results are in agreement with the theoretical analysis, which shows that the PASE-I and PASI-E schemes are superior
to the classical implicit schemes in both accuracy and efficiency. This implies that the parallel difference schemes are efficient for
solving the time fractional telegraph equation.

1. Introduction

Nowadays, the fractional derivative and fractional differential
equation have many applications in various fields, such as
boundary layer effects in ducts, colored noise, dielectric polar-
ization, electromagnetic waves, fractional kinetics, power-law
phenomenon in fluid and complex network, quantitative
finance, and viscoelastic mechanics [1–3]. The fractional tele-
graph equation especially is applied into signal analysis for
transmission, propagation of electrical signals, and so on
[4]. Because the analytical solution of the fractional tele-
graph equation is difficult to give explicitly or contains spe-
cial functions such as the Mittag-Leffler function, which are
difficult to calculate, the development of effectively numerical
algorithms for solving the fractional telegraph equation is
important [5–7].

Because of the historical dependence and global correlation
of fractional calculus, the computational and storage require-
ments of fractional differential equations’ numerical simulation
are enormous [8–10]. Even with high-performance com-
puters, it is difficult to simulate long-term or large-scale com-

putational domains. With the rapid development of multicore
and cluster technology, parallel algorithm has become one of
the mainstream technologies in improving the computational
efficiency [11]. Zhang et al. constructed a segment implicit
scheme by using Saul’yev asymmetric scheme and used the
alternative technique to establish a variety of alternating
explicit-implicit and implicit parallel methods [12]. The
methods have been well applied to numerical solving integer
partial differential equation [13–16]. However, efficient paral-
lel numerical methods for integer order differential equations
may not be effective for fractional order differential equations.
It may even produce completely different numerical analysis
processes. How to extend the existing parallel difference
method of integer order differential equation to the method
of fractional order differential equation is a great challenge to
computational mathematics (physics).

In recent years, many scholars have studied the numeri-
cal algorithms of the fractional telegraph equation. For
example, Ford et al. used the finite difference method to
numerically solve the fractional telegraph equation [17]. Saa-
datmandi and Mohabbati proposed a numerical solution
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by combining orthogonal Legendre polynomial and Tau
method for the fractional telegraph equation [18]. Niu et al.
applied the Chebyshev polynomial to get the numerical solu-
tion of the fractional telegraph equation [19]. Zhao and Li
applied the finite difference method and Galerkin finite ele-
ment method to solve the time-space fractional telegraph
equation numerically [20]. Chen constructed the implicit dif-
ference scheme for the Riesz space fractional order telegraph
equation [21]. Ren and Liu presented a high-order compact
finite difference method for a class of time fractional Black-
Scholes equation [22]. The scheme has the second-order
temporal accuracy and the fourth-order spatial accuracy.
The existing numerical algorithms of fractional differential
equations are mostly serial algorithms, which have low com-
putational efficiency.

In recent years, some progress has been made in fast
algorithms for fractional partial differential equations [23,
24], most of which are parallel algorithms for algebraic sys-
tems based on the view of numerical algebra. For example,
Diethelm implemented the second-order Adams-Bashforth-
Moulton method of fractional diffusion equations on a paral-
lel computer and discussed the accuracy of parallel method
[25]. Gong et al. parallelizes the explicit difference scheme
of the space fractional reaction-diffusion equation [26]. Gong
et al. parallelizes the implicit scheme of the time fractional
diffusion equation [27] and the core of parallelization is to
do parallel computation for the product of matrix and vector
and the addition of vector and vector. Sweilam et al. applied
preconditioned conjugate gradient method was used to solve
discrete algebraic equations in parallel, based on Crank-
Nicolson difference schemes for time fractional parabolic
equations [28]. Wang et al. studied the parallel algorithm of
implicit difference schemes for fractional reaction-diffusion
equations [29]. The algorithm is based on the principle of
minimizing communication, allocating computing tasks rea-
sonably, and not changing the original serial difference
schemes as much as possible.

In order to obtain more accurate and stable parallel dif-
ference schemes, we are prepared to take the parallel path
of traditional difference schemes and hope to find another
way to parallelize them beyond the difficulty of numerical
algebra [30, 31]. In this paper, a kind of alternating seg-
ment pure explicit-implicit (PASE-I) and implicit-explicit
(PASI-E) parallel difference schemes is obtained. The numer-
ical experiments and theoretical analysis are consistent,
showing that the PASE-I and PASI-E schemes are uncon-
ditionally stable and convergent. The numerical examples
show that the PASE-I and PASI-E difference schemes
have obvious parallel computational properties. It shows
that the parallel intrinsic difference schemes proposed in
this paper is efficient for solving the time fractional tele-
graph equations.

2. PASE-I Scheme for Fractional
Telegraph Equation

2.1. Time Fractional Telegraph Equation. Consider the fol-
lowing time fractional telegraph equation [3–5]:

∂αu x, tð Þ
∂tα

+ ∂α−1u x, tð Þ
∂tα−1

= K
∂2u x, tð Þ

∂x2
+ f x, tð Þ, 0 ≤ x ≤ L, t ≥ 0, 1 < α ≤ 2:

ð1Þ

The initial conditions: uðx, 0Þ = φ0ðxÞ, ð∂uðx, 0ÞÞ/ð∂tÞ =
φ1ðxÞ:

The boundary conditions: uð0, tÞ = 0, uðL, tÞ = 0:

2.2. Construction of PASE-I Scheme. In order to obtain the
PASE-I difference scheme for the fractional telegraph
equation, the solution region is first meshed: the space and
time steps are taken h = L/M and τ = T/N, where M and N
are natural numbers; xi = ihði = 1, 2,⋯,MÞ,Mh = L; tk = kτ
ðk = 1, 2,⋯,NÞ,Nτ = T; and the grid nodes are ðxi, tkÞ.

The time fractional derivative can be approximated by L1
formula [8, 9]:

∂α−1u xi, tk+1ð Þ
∂tα−1

= 1
Γ 2 − αð Þ〠

k

j=0

u xi, t j+1
� �

− u xi, t j
� �

τ

ð j+1ð Þτ

jτ

� dξ

tk+1 − ξð Þα−1
+O τ3−α
� �

≈
τ2−α

2 − αð ÞΓ 2 − αð Þ〠
k

j=0

u xi, tk+1−j
� �

− u xi, tk−j
� �

τ

� j + 1ð Þ2−α − j2−α
� �

= τ1−α

Γ 3 − αð Þ〠
k

j=0
cj∇tu xi, tk−j

� �
,

ð2Þ

∂αu xi, tk+1ð Þ
∂tα

= 1
Γ 2 − αð Þ〠

k

j=0

� u xi, tk+1−j
� �

− 2u xi, tk−j
� �

+ u xi, tk−j−1
� �

τ2

�
ð j+1ð Þτ

jτ

dξ

tk+1 − ξð Þα−1
+O τ3−α
� �

≈
τ−α

Γ 3 − αð Þ〠
k‐1

j=0
djδ

2
t u xi, tk−j
� �

+ 2dk u xi, t1ð Þ − u xi, t0ð Þ − τut xið Þð Þ:
ð3Þ

Spatial second derivatives are discretized by central dif-
ference method:

∂2u xi, tk+1ð Þ
∂x2

= δ2x θu xi, tk+1ð Þ + 1 − θð Þu xi, tkð Þ½ �
+O h2
� �

:

ð4Þ

Here, δ2xuðxi, tkÞ = ð1/h2Þ½uðxi−1, tkÞ − 2uðxi, tkÞ + uðxi+1,
tkÞ�,∇tuðxi, tkÞ = ð1/τÞuðxi, tk+1Þ − uðxi, tkÞ,
cj = ðj + 1Þ2−α − j2−α,dj = ðj + 1Þ2−α − j2−α,j = 0, 1, 2,⋯, k − 1:
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By substituting formulas (2), (3), (4) into equation (1),
the universal difference schemes are obtained as follows:

τ−α

Γ 3 − αð Þ〠
k‐1

j=0
cjδ

2
t u xi, tk−j
� �

+ τ1−α

Γ 3 − αð Þ〠
k

j=0
dj∇tu xi, tk−j

� �

= K

h2
δ2x θu xi, tk+1ð Þ + 1 − θð Þu xi, tkð Þ½ � + f xi, tk+1ð Þ:

ð5Þ

Let uki denote the value of uðx, tÞ at the point ðxi, tkÞ,
f ki denote the value of f ðx, tÞ at the pointðxi, tkÞ, and a =
ðτ−α/ðΓð3 − αÞÞÞ,b = ðτ1−α/ðΓð3 − αÞÞÞ,r = K/h2. The univer-
sal difference scheme can be written as follows:

a〠
k−1

j=0
djδ

2
t u

k−j
i + 2dk u xi, t1ð Þ − u xi, t0ð Þ − τut xið Þ½ �

+ b〠
k−1

j=0
cj∇tu

k−j
i = rδ2x θuk+1i + 1 − θð Þuki

� �
+ f k+1i , k = 0, 1, 2,⋯:

ð6Þ

When θ = 0, (6) is the explicit scheme, its advantage is
explicit parallel computation, but its disadvantage is condi-
tional stability. When θ = 1, (6) is the implicit scheme, its
advantage is unconditional stability. The disadvantage is that
it needs to calculate tridiagonal equations, which is not easy
to parallel computation and has low computational efficiency.

The matrix form of universal difference scheme is as
follows:

Here, q0 = ad0 + bc0,

q1 = að2d0 − d1Þ + bðc0 − c1Þ, qj = −aðdj−2 − 2dj−1 + djÞ + bð
cj−1 − cjÞ,j = 2, 3,⋯, k − 1, qk = a ð−dk−2 + 2dk−1 − dkÞ + bð
ck−1 − ckÞ,qk+1 = að−dk−1 + dkÞ + bck,
bk+1 = ðrðθuk+11 + ð1 − θÞuk1Þ, 0,⋯, 0, rðθuk+1M+1 + ð1 − θÞ ukM+1
ÞÞ′,Uk = ½uk1, uk2,⋯, ukM−1�′,U0 = ½φ0ðx1Þ, φ0ðx2Þ,⋯, φ0ð
xM−1Þ�′,H = ½φ1ðx1Þ, φ1ðx2Þ,⋯, φ1ðxM−1Þ�′,F = ½ f1, f2, ⋯ ,
f M−1�′,A = ðad0 + bc0ÞI + rθG,
B = ðað2d0 − d1Þ + bðc0 − c1ÞÞI − rð1 − θÞG,E is the unit
matrix of order ðM − 1Þ,

G =

2 −1
−1 2 −1

⋱ ⋱ ⋱

−1 2 −1
−1 2

2
666666664

3
777777775

M−1ð Þ× M−1ð Þ

: ð8Þ

By alternatingly segment applying explicit and implicit
schemes, the alternating segment explicit-implicit (PASE-I)
scheme for fractional telegraph equation is designed as fol-
lows: Let M − 1 = ql, q, l ∈N+, l ≥ 3, q an odd number, and
q ≥ 3. The points to be computed in the same even time layer
are divided into q segments, which are computed accordingly

by the rule of “explicit segment-implicit segment-explicit seg-
ment”. Similarly, the next odd layer is also divided into q seg-
ment calculation. The calculation rule is changed to “implicit
segment-explicit segment-implicit segment”. The computa-
tional lattice diagram of PASE-I scheme is shown in
Figure 1. The blue circle indicates the classical explicit scheme,
and the blue square indicates the classical implicit scheme.
The PASE-I format will be obtained.

For the PASE-I scheme and i0 ≥ 0, consider the calcula-
tion of pointsði0 + i, k + 1Þ, i = 1, 2,⋯, l in implicit segments.
The implicit segment format is as follows:

2ad0 + bc0ð ÞI + rG½ �Vk+1

= a 2d0 − d1ð Þ + b c0 − c1ð Þð ÞI½ �Vk

+ q2V
k−1+⋯+qk−1V2 + qkV

1 + qk+1V
0

+ 2adkτH1 + bk+1im + F1
k+1:

ð9Þ

The explicit segment format is as follows:

2ad0 + bc0ð ÞI½ �Vk+1 = a 2d0 − d1ð Þ + b c0 − c1ð Þð ÞI + rG½ �Vk

+ q2V
k−1+⋯+qk−1V2 + qkV

1

+ qk+1V
0 + 2adkτH1 + bk+1ex + F1

k+1:

ð10Þ

. . . . . .. . . . . . . . .

. . . . . . . . . . . . . . .

l l l l l

l l l ll

k+1

k

Figure 1: Computational lattice diagram of PASE-I scheme.

2a + bð ÞI + rθG½ �U1 = 2a + bð ÞI − r 1 − θð ÞG½ �U0 + 2aτH + b1 + F1,

AUk+1 = BUk + q2U
k−1+⋯+qk−2U2 + qk−1U

1 + qkU
0 + 2adkτH + bk+1 + Fk+1:

(
ð7Þ
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Here, Vn = ðuni0+1, uni0+2,⋯, uni0+lÞ′,H1 = ½φ1ðxi0+1Þ, φ1 ð

xi0+2Þ,⋯, φ1ðxi0+lÞ�′,F1 = ½ f i0+1, f i0+2,⋯, f i0+l�′,

bk+1im = ðruk+1i0−1, 0,⋯, 0, ruk+1i0+l+1Þ′,

bk+1ex = ðruk1, 0,⋯, 0, ruki0+l+1Þ′:
The PASE-I scheme is as follows:

n = 1, 3, 5⋯ , bn+11 = ðrun0 , 0,⋯, 0, runMÞ′,bn+22 = ðrun+20 , 0
,⋯, 0, run+2M Þ′,Ql ′ is a zero matrix of order l′,
l′ = ððl − 1Þ/l − 2Þ ;G1,G2 is martix of order ðM − 1Þ and
the definition is as follows:

G1 =

Ql−1

Gl+2

Ql−2

Gl+2

⋱

Ql−2

Gl+2

Ql−1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

M−1ð Þ× M−1ð Þ

,

G2 =

~Gl+1

Ql−2

Gl+2

Ql−2

⋱

Gl+2

Ql−2

�Gl+1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

M−1ð Þ× M−1ð Þ

:

ð12Þ

Here,

Gl+2 =

0 0
−1 2 −1

⋱ ⋱ ⋱

−1 2 −1
0 0

0
BBBBBBBB@

1
CCCCCCCCA

l+2ð Þ× l+2ð Þ

, ð13Þ

~Gl+1 =

2 −1
−1 2 −1

⋱ ⋱ ⋱

−1 2 −1
0 0

0
BBBBBBBB@

1
CCCCCCCCA

l+1ð Þ× l+1ð Þ

, ð14Þ

�Gl+1 =

0 0
−1 2 −1

⋱ ⋱ ⋱

−1 2 −1
−1 2

0
BBBBBBBB@

1
CCCCCCCCA

l+1ð Þ× l+1ð Þ

: ð15Þ

3. Numerical Analysis of PASE-I and PASI-E
Difference Schemes

3.1. Existence and Uniqueness of PASE-I Solution

Lemma 1. The matrices ðað2d0 − d1Þ + bðc0 − c1ÞÞI +G1 and
ðað2d0 − d1Þ + bðc0 − c1ÞÞI +G2 defined by PASE-I format
are nonsingular matrices.

Proof. From the definition of G1 and að2d0 − d1Þ + bðc0 −
c1Þ > 0, we can know that ðað2d0 − d1Þ + bðc0 − c1ÞÞI +G1 is
a strictly diagonally dominant matrix, and the principal diag-
onal element is a positive real number. So ðað2d0 − d1Þ +
bðc0 − c1ÞÞI + G1 is a nonsingular matrix, and its inverse
matrix also exists. Thus, there is the following theorem.

Theorem 2. The PASE-I difference scheme (11) for the time
fractional telegraph equation is uniquely solvable.

3.2. Stability Analysis of PASE-I Scheme

Lemma 3. If the matrix C is a nonnegative real matrix, for any
parameter ρ ≥ 0,0 ≤ σ1 ≤ σ2, there is an estimate

σ1I − ρCð Þ σ2I + ρCð Þ−1�� ��
2
≤ 1: ð16Þ

Proof. kðσ1I − ρCÞðσ2I + ρCÞ−1k22 = max
φ∈Rn ,φ≠0

fððσ1I − ρCÞðσ2I
+ ρCÞ−1φ, ðσ1I − ρCÞðσ2I + ρCÞ−1φÞ/ðφ, φÞg:

Make a transformation ψ = ðσ2I + ρCÞ−1φ, then

σ1I − ρCð Þ σ2I + ρCð Þ−1�� ��2
2

= max
φ∈Rn ,φ≠0

σ1I − ρCð Þψ, σ1I − ρCð Þψð Þ
σ2I + ρCð Þψ, σ2I + ρCð Þψð Þ

= max
ψ∈Rn ,ψ≠0

σ1
2 ψ, ψð Þ − 2σ1ρ Cψ, ψð Þ + ρ2 Cψ, Cψð Þ

σ2
2 ψ, ψð Þ + 2σ2ρ Cψ, ψð Þ + ρ2 Cψ, Cψð Þ :

ð17Þ

q0I + rG1ð ÞUn+1 = q1I − rG2ð ÞUn + q2U
n−1 ⋯ +qn−1U2 + qnU

1 + qn+1U
0 + 2adkτH + bn+11 + Fk+1,

q0I + rG2ð ÞUn+2 = q1I − rG1ð ÞUn+1 + q2U
n ⋯ +qnU2 + qn+1U

1 + qn+2U
0 + 2adk+1τH + bn+22 + Fn+2:

(
ð11Þ
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From 0 ≤ σ1 ≤ σ2, we have kðσ1I − ρCÞðσ2I + ρCÞ−1k2
≤ 1:

Let ~uni be the approximate solution of the difference
scheme, and uni be the exact solution of difference scheme.

Let εni = ~uni − uni ,En = ðεn1 , εn3 ,⋯,εnM−1Þ,1 ≤ n ≤N + 1,
εn0 = 0, εnM = 0, so we have

where n = 1, 3,⋯,w1 = ad0 + bc0,
w2 = að2d0 − d1Þ + bðc0 − c1Þ:

When n ≥ 3, we have

En+2 = q0I +G2ð Þ−1 q1I −G1ð Þ q0I +G1ð Þ−1 q1I − G2ð ÞEn

+ q0I + G2ð Þ−1 q1I −G1ð Þ q0I +G1ð Þ−1
� q2E

n−1+⋯+qn−1E2 + qnE
1� �

+ q0I + G2ð Þ−1 q2E
n+⋯+qnE2 + qn+1E

1� �
:

ð19Þ

Take norms on both sides of formula (19):

En+2�� �� = q0I + G2ð Þ−1 q1I −G1ð Þ q0I +G1ð Þ−1 q1I −G2ð Þ�� ��
� Enk k + q0I + G2ð Þ−1 q1I −G1ð Þ q0I +G1ð Þ−1�� ��
� q2E

n−1+⋯+qn−1E2 + qnE
1� ��� �� + q0I +G2ð Þ−1�� ��

� q2E
n+⋯+qnE2 + qn+1E

1� ��� ��:
ð20Þ

The growth matrix of PASE-I scheme is T =
ðq0I +G2Þ−1ðq1I −G1Þðq0I + G1Þ−1ðq1I −G2Þ. According to
the definition of the matrix, Gl,G1, and G2 have the same
eigenvalue. Let ~T = ðq0I +G2ÞTðq0I +G2Þ−1, suppose the
eigenvalue of G1 or G2 in the matrix is r. From the
Lemma 3, we have

Tk k = ~T
��� ��� = q1I − rG1ð Þ q0I + rG1ð Þ−1��
� q1I − rG2ð Þ q0I + rG2ð Þ−1��

=max q1 − r
q0 + r

	 
2
�����

�����
( )

≤ 1:

ð21Þ

If q1 > r, let q1 = μrðμ > 1Þ, because jðq1 − rÞ/ðq0 + rÞj ≤ 1,
we have μ ≤ 2.

The following is proven by mathematical induction kEn

k ≤ kE1k.
When n = 1,

E2�� �� = q0I + rG1ð Þ−1 q1I − rG2ð ÞE1�� �� ≤ E1�� ��: ð22Þ

When n = 2, case I max fq1, rg = q1, and r < q1 ≤ 2r:

E3�� �� ≤ q0I + rG2ð Þ−1 q1I − rG1ð Þ q0I + rG1ð Þ−1 q1I − rG2ð Þ�� ��
� E1�� �� + q0I + rG2ð Þ−1�� �� q2E

1�� ��
≤max q1 − r

q0 + r

����
����
2

( )
E1�� �� +max q2

q0 + r

����
����

� 
E1�� ��

≤max r − q2
q0 + r

����
����

� 
E1�� �� ≤ E1�� ��:

ð23Þ

When max fq1, rg = r,

E3�� �� ≤ q0 I + rG2ð Þ−1 q1I − rG1ð Þ q0I + rG1ð Þ−1 q1I − rG2ð Þ�� ��
� E1�� �� + q0I + rG2ð Þ−1�� �� q2E

1�� ��
≤max q1 − r

q0 + r

����
����

� 
E1�� �� +max q2

q0 + r

����
����

� 
E1�� ��

≤max r + q2j j
r + q0

� 
E1�� �� ≤ E1�� ��:

ð24Þ

Suppose kEnk ≤ kE1kwhen n ≤ k + 1:When n = k + 2, we
consider the following two situations.

Case 1. max fq1, rg ≤ q1, and r < q1 ≤ 2r.

Ek+2
��� ��� = q0I + r�G2

� �−1 q1I − r�G1
� ����

� q0I + r�G1
� �−1 q1I − r�G2

� ����
� Ek
��� ��� + q0I + r�G2

� �−1 q1I − r�G1
� �

q0I + r�G1
� �−1��� ���

� q2E
k−1+⋯+qk−1E2 + qkE

1
� ���� ���

+ q0I + r�G2
� �−1��� ��� q2E

k+⋯+qkE2 + qk+1E
1

� ���� ���
≤

r
q0 + r

	 
2
E1�� �� + r q0 − q1j j

q0 + rð Þ2 E1�� �� + q0 − q1j j
q0 + r

E1�� ��
≤

r
q0 + r

E1�� �� + q0 − q1j j
q0 + r

E1�� �� ≤ E1�� ��:
ð25Þ

a0I +G1ð ÞEn+1 = w1I − G2ð ÞEn +w2E
n−1 ⋯ +wn−1E

2 + anE
1,

a0I +G2ð ÞEn+2 = w1I − G1ð ÞEn+1 +w2E
n ⋯ +wnE

2 + an+1E
1:

(
ð18Þ

5Advances in Mathematical Physics



Case 2. max fq1, rg ≤ r.

Ek+2
��� ��� = q0I + �G2

� �−1 q1I − �G1
� �

q0I + �G1
� �−1 q1I − �G2

� ���� ���
� Ek
��� ��� + q0I + �G2

� �−1 q1I − �G1
� �

q0I + �G1
� �−1��� ���

� q2E
k−1+⋯+qk−1E2 + qkE

1
� ���� ��� + q0I + �G2

� �−1��� ���
� q2E

k+⋯+qkE2 + qk+1E
1

� ���� ���
≤

r
a0 + r

	 
2
E1�� �� + r q1 − q0ð Þ

a0 + rð Þ2 E1�� �� + q1 − q0
a0 + r

E1�� ��
= r
q0 + r

r
q0 + r

+ q1 − q0
q0 + r

	 

E1�� �� + q1 − q0

q0 + r
E1�� ��

≤
r

q0 + r
E1�� �� + q1 − q0

q0 + r
E1�� �� ≤ E1�� ��:

ð26Þ

To sum up, we have the following theorem.

Theorem 4. The PASE-I difference scheme (11) for the time
fractional telegraph equation is unconditionally stable.

3.3. Convergence of PASE-I Scheme. Firstly, the accuracy of
explicit and implicit schemes is analyzed, respectively, and
Taylor expansion will be carried out at ðxi, tn+1Þ. The trunca-

tion errors are recorded as T1ðτ, hÞ and T2ðτ, hÞ. It is known
that C

0D
α
t uðxi, tn+1Þ has second-order accuracy. We have

T1 τ, hð Þ =Dα
t u +Dα−1

t u − K

 
uxx + τuxxt −

τ2

2 uxxtt

−
h2

12 uxxxx +
τh2

12 uxxxxt

!
+O τ3−α + h2
� �

,

T2 τ, hð Þ =Dα
t u +Dα−1

t u − K

 
uxx − τuxxt −

τ2

2 uxxtt

−
h2

12 uxxxx −
τh2

12 uxxxxt

!
+O τ3−α + h2
� �

:

ð27Þ

For the PASE-I scheme, the explicit and implicit schemes
are alternately used for each grid point in spatial direction.
For T1ðτ, hÞ and T2ðτ, hÞ, the coefficients of uxxt and uxxxxt
are equal and symbolically opposite. When the explicit and
implicit schemes are alternately used, the errors of the two
terms will be offset. Therefore, the accuracy of the PASE-I
scheme is second order in spatial direction and 3 − α order
in time direction.

Let uðxi, tnÞ, ði = 1, 2,⋯,M ; n = 1, 2,⋯,NÞ be the exact
solution of equation (1) at grid point ðxi, tnÞ: Let eni = uðxi,
tnÞ − uni ,en = ðen1 , en3 ,⋯, enM−1ÞT . eni = uðxi, tnÞ − uni is intro-
duced into the PASE-I scheme,

Obviously, e1 = 0, Rn =O ≤ ðτ3−α + h2Þ, there exists a pos-
itive constant C, such that ταRn = ταCðτ3−α + h2Þ.

When n = 1,

e2 = I +G1ð Þ−1 I −G2ð Þe1 + I +G1ð Þ−1R2

= I +G1ð Þ−1R:
ð29Þ

Combination Lemma 3 has

e2
�� ��

∞ = I +G1ð Þ−1R1�� ��
∞ ≤ Rk k∞ ≤ C τ3−α + h2

� �
= q−11 C τ3−α + h2

� �
:

ð30Þ

When n = 2,

a0I + G2ð Þe3 = q1I − G1ð Þe2 + q2e
1 + R3,

e3
�� �� = q0I +G2ð Þ−1 q1I − G1ð Þe2 − q2e

1 + R3� �
≤ q0I + G2ð Þ−1�� �� q1I −G1k k − q2 − q3½ �q−13 R:

ð31Þ

Case 3. max fw1, rg ≤w1,

e3
�� �� ≤ q0I +G2ð Þ−1�� �� q1I −G1k k − q2 − q3½ �q−13 R

≤
1

q0 + r
q1 + q1 − q0ð Þð Þq−13 R

� �
≤ q−13 R

≤ q−13 C τ3−α + h2
� �

:

ð32Þ

Case 4. max fw1, rg ≤ r,

e3
�� �� = q0I + G2ð Þ−1 q1I −G1ð Þe2 − q2e

1 + R3� �
≤ q0I +G2ð Þ−1�� �� w1I −G1k k − q2 − q3½ �q−13 R

≤
1

q0 + r
r − q1 − q0 − q1ð Þð Þq−13 R

� �
≤
2q1 − q0 + r

q0 + r
q−13 R ≤ q−13 R ≤ q−13 C τ3−α + h2

� �
:

ð33Þ

Suppose the inequality kenk ≤ ke1k holds, when n ≤ k + 1.
When n = k + 2, reference to the proof process of stability,
have

a0I +G1ð Þen+1 = q1I − G2ð Þen + q2e
n−1 ⋯ +qn−1e2 + qne

1 + ταRn+1,
a0I +G2ð Þen+2 = q1I − G1ð Þen+1 + q2e

n ⋯ +qne2 + qn+1e
1 + ταRn+2:

(
ð28Þ
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ek+2
��� ��� = q0I +G2ð Þ−1 q1I − G1ð Þ q0I +G1ð Þ−1 q1I −G2ð Þ�� ��

� ek
��� ��� + q0I +G2ð Þ−1 q1I −G1ð Þ q0I +G1ð Þ−1�� ��
� q2e

k−1+⋯+qk−1e2 + qke
1

� ���� ���
+ q0I +G2ð Þ−1�� �� q2e

k+⋯+qke2 + qk+1e
1

� ���� ���
+ q0I +Gð Þ−1�� ��Rk+2 ≤

r
q0 + r

	 
2
R + r 1 −w1ð Þ

q0 + rð Þ2 R

+ 1
q0 + r

q2+⋯+qk + qk+1ð Þq−1k+1R

≤
r2

q0 + rð Þ2 + r q0 − q1j j
q0 + rð Þ2 + q0 − q1j j

q0 + r

" #
a−1k+1R

≤
r

q0 + r
r

q0 + r
+ q0 − q1j j

q0 + r

	 

+ q0 − q1j j

q0 + r

� �
q−1k+1R

≤
r

q0 + r
+ q0 − q1j j

q0 + r

� �
q−1k+1R ≤ q−1k+1R

≤ q−1k+1C τ3−α + h2
� �

:

ð34Þ

Because qk = −aðdk−1 − dkÞ + bck, then there is a posi-
tive finite constant C1, makes the inequality ken+1k ≤ q−1n+1
C1ðτ3−α + h2Þ hold. We have the following conclusions:

u xi, tnð Þ − unik k∞ ≤ C1 τ3−α + h2
� �

: ð35Þ

In summary, the theorem is obtained.

Theorem 5. The PASE-I difference scheme (11) for the time
fractional telegraph equation is convergent, and kuðxi, tnÞ −
uni k∞ ≤ Cðτ3−α + h2Þ, C is a positive number.

3.4. PASI-E Parallel Difference Scheme. The PASI-E scheme
of the time fractional telegraph equation can be obtained by
changing the computational order of explicit segment and
implicit segment. In the even time layer, the PASI-E scheme
is obtained by using the rule “implicit segment-explicit
segment-explicit segment” and the rule “explicit segment-
implicit segment-explicit segment” in the odd time layer.
The PASI-E scheme for solving the time fractional telegraph
equation is as follows:

Here, n = 1, 3, 5⋯ , the definition of G1,G2,H, Fn, bn1 is
defined as before.

Since the difference between PASE-I format (11) and
PASI-E (36) lies only in the order of using explicit format

and implicit format, the computational complexity of the
two formats should be equal in theory.

By the same proof process, the following theorem can be
obtained.
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Figure 2: Exact and numerical solutions of surfaces (M = 50, N = 100).

q0I +G2ð ÞVn+1 = q1I −G1ð ÞVn + q2V
n−1 ⋯ +qn−1V2 + qnV

1 + 2adkτH + bn+11 + Fk+1,
q0I +G1ð ÞVn+2 = q1I −G2ð ÞVn+1 + q2V

n ⋯ +qnV2 + qn+1V
1 + 2adk+1τH + bn+21 + Fn+2:

(
ð36Þ
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Theorem 6. The PASI-E difference scheme (36) of the time
fractional telegraph equation is unconditionally stable and
convergent. Moreover, kuðxi, tnÞ − uni k∞ ≤ Cðτ3−α + h2Þ, C is
a positive number.

4. Numerical Experiments

The numerical experiment is based on Intel Core i5-2400
CPU@3.10GHz and is carried out under the environment
of MATLAB R2014a. We will verify the theoretical analysis
by numerical experiments.

Example 1. Consider the following time fractional telegraph
equation, take α = 1:8 [6, 7].

∂1:8u x, tð Þ
∂t1:8

+ ∂0:8u x, tð Þ
∂t0:8

= ∂2u x, tð Þ
∂x2

+ f x, tð Þ, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1:
ð37Þ

Here, f ðx, tÞ = xð1 − xÞðð2/ðΓð1:2ÞÞÞt0:2 + ð2/ðΓð2:2ÞÞÞ
t1:2Þ + 2ð1 + t2Þ:

The initial condition: uðx, 0Þ = xð1 − xÞ, utðx, 0Þ = 0, 0 <
x < 1:

The boundary condition: uð0, tÞ = 0, uð1, tÞ = 0.
Then, the equation has exact solutions: uðx, tÞ = ð1 + t2Þ

xð1 − xÞ.

When M = 50, N = 100, the analytical solution surface
and numerical solution surface of the three difference
schemes of the fractional telegraph equation are shown in
Figure 2. From Figure 2, we can see that the PASE-I and
PASI-E difference schemes and implicit schemes are smooth
and can approximate analytical solutions very well. The error
surfaces of the three difference schemes are shown in
Figure 3. From Figure 3, we can see that the error of implicit
difference schemes is less than 2.5e-3, and the error limits of
PASE-I and PASI-E schemes are less than 3e-4. The accuracy

of PASE-I or PASI-E scheme is better than the implicit differ-
ence scheme.

Because the accuracy of PASE-I and PASI-E are similar,
we take PASE-I as an example to investigate the variation
of relative error (RE) of PASE-I in time direction. The rela-
tive error is defined as follows. The analytical solution is
regarded as the control solution, and the solution of PASE-I
scheme is regarded as the perturbation solution. The formula
for relative error is

RE ið Þ = 〠
M

j=1

uij − �uij
��� ���

uij
: ð38Þ

The space step h is 1/50 and the time step is 1/100,
respectively. The RE of PASE-I is shown in Figure 4. From
Figure 4, we can know that the RE of PASE-I scheme is less
than 0.16. The RE decreases with the advance of time step,
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Figure 4: The curve of RE changes with time.
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which indicates that the PASE-I scheme of time fractional
telegraph equation is computationally stable.

Next, time convergence order (order1) and space conver-
gence order (order2) are defined by the maximum modulus
error. The theoretical analysis is validated by the following
numerical experiments. With fixed space step h, the order1
is defined as follows [8, 9]:

order1 = log2
E∞ τ3−α + h2
� �

E∞ τ/2ð Þ3−α + h2
� �

 !
≈ 3 − α: ð39Þ

Let τ3−α = h2, the order2 is defined as follows:

order2 = log2
E∞ τ1

3−α + h2
� �

E∞ τ2
3−α + h/2ð Þ2� �

 !
= log2

E∞ h2
� �

E∞ h/2ð Þ2� �
 !

≈ 2:

ð40Þ

From Table 1, the convergence order of PASE-I and
PASI-E schemes in time direction is 3 − α order, and the
accuracy of implicit schemes is equal to that of PASE-I
and PASI-E schemes. From Table 2, we can see the spatial
convergence orders of PASE-I and PASI-E schemes are
both of second order, which is consistent with the theoretical
analysis.

Example 2. Consider the following time fractional telegraph
equation [1, 5].

∂1:8u x, tð Þ
∂t1:8

+ ∂0:8u x, tð Þ
∂t0:8

= ∂2u x, tð Þ
∂x2

, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1:

ð41Þ

The initial conditions: uðx, 0Þ = xð1 − xÞ, utðx, 0Þ = 0,
0 < x < 1:

The boundary conditions: uð0, tÞ = 0, uð1, tÞ = 0.
When the time division is 500 and the space mesh points

is 50, the numerical solution surfaces of the three schemes are
shown in Figure 5. From Figure 5, it can be seen that the
numerical solution surfaces of the PASE-I and PASI-E
schemes are the same and smooth as those of the classical
implicit scheme.

We define the speedup as Sp = T1/Tp (T1 is the CPU time
of implicit, Tp is the CPU time of parallel scheme) and the
efficiency as Ep = Sp/p (p is the number of processors in par-
allel processor) [30, 31]. We use four cores for this numerical
experiment. When the number of spatial grid points is 100,
200, 400, 800, 1600, and 3200, respectively, the CPU time
required for the three schemes is shown in Table 3. From
Table 3, it can be seen that the CPU time of serial difference
increases exponentially, and the parallel difference schemes
increase relatively slowly, with the increase of the number
of spatial grid points. Compared with serial difference
schemes, the computational efficiency of the PASE-I and
PASI-E parallel schemes are greatly improved with the
refinement of the spatial mesh. When the number of spatial
grids is small (100), the computing time of parallel difference
scheme is almost the same as that of the serial implicit
scheme, because the communication between modules con-
sumes a lot of CPU time. With the increase of computational
domain, the parallel computing characteristics of PASE-I and
PASI-E schemes will become more prominent. When the
number of grid points is 1600, the efficiency of parallel dif-
ference schemes is optimal in this example. The linear
acceleration ratio can be achieved when the number of
space grid points is more than 800. Compared with the
serial difference scheme, the computation time of PASE-I

Table 1: Time order (order1) of difference schemes (h = 1/200).

τ Implicit E∞
Implicit
order1

PASE-I E∞
PASE-I
order1

PASI-E E∞
PASI-E
order1

1/200 2.987928e-5 2.792870e-5 2.794564e-5

1/400 1.520501e-5 0.974597 1.197192e-5 1.222094 1.197806e-5 1.222228

1/800 7.720232e-6 0.977831 5.127047e-6 1.223454 5.129525e-6 1.223497

1/1600 3.911829e-6 0.980800 2.190633e-6 1.226780 2.191679e-6 1.226788

1/3200 1.978420e-6 0.983494 9.332082e-7 1.231076 9.336585e-7 1.231069

Table 2: Space order (order2) of difference schemes.

h Implicit E∞
Implicit
order2

PASE-I E∞
PASE-I
order2

PASI-E E∞
PASI-E
order2

1/10 1.500088e-4 6.358423e-4 6.304834e-4

1/20 4.820269e-5 1.637862 1.597008e-4 1.993297 1.596684e-4 1.981378

1/40 1.576648e-5 1.612252 3.994980e-5 1.999111 3.998717e-5 1.997470

1/80 5.148237e-6 1.614710 1.001469e-5 1.996069 1.002560e-5 1.995848

1/160 1.676390e-6 1.618720 2.529035e-6 1.985459 2.531798e-6 1.985453

1/320 5.420003e-7 1.628992 6.398285e-7 1.982830 6.405186e-7 1.982850
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and PASI-E scheme can save about 80% when the number
of grid points is great 800.

5. Conclusion

In this paper, a class of alternating segment pure explicit-
implicit (PASE-I) and implicit-explicit (PASI-E) parallel dif-
ference methods are constructed for the time fractional
telegraph equations. From theoretical analysis, it can be con-
cluded that the parallel difference methods are uncondition-
ally convergent and stable, with second-order convergence in
spatial direction and 3 − α order in temporal direction. The
numerical experiments show that the parallel difference
schemes are more efficient than the serial difference scheme
with the increase of space mesh generation. The numerical
experiments are in agreement with the theoretical analysis,
which show that the numerical algorithm is efficient and fea-
sible for solving the time fractional telegraph equation.
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