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With the advancement in modern computational technologies like cloud computing, there has been tremendous growth in the �eld 
of data processing and encryption technologies. In this contest there is an increasing demand for successful storage of the data in the 
encrypted domain to avoid the possibility of data breach in shared networks. In this paper, a novel approach for speech encryption 
algorithm based on quantum chaotic system is designed. In the proposed method, classical bits of the speech samples are initially 
encoded in nonorthogonal quantum state by the secret polarizing angle. In the quantum domain, encoded speech samples are 
subjected to bit-�ip operation according to the Controlled–NOT gate followed by Hadamard transform. Complete superposition 
of the quantum state in both Hadamard and standard basis is achieved through Hadamard transform. Control bits for C-NOT 
gate as well as Hadamard gate are generated with a modi�ed ��̇-hyperchaotic system. Secret nonorthogonal rotation angles and 
initial conditions of the hyperchaotic system are the keys used to ensure the security of the proposed algorithm. e computational 
complexity of the proposed algorithm has been analysed both in quantum domain and classical domain. Numerical simulation 
carried out based on the above principle showed that the proposed speech encryption algorithm has wider keyspace, higher key 
sensitivity and robust against various di�erential and statistical cryptographic attacks.

1. Introduction

1.1. Background. Speech encryption techniques have been 
widely used in con�dential areas such as defence, voice over IP, 
voice-conferencing, news telecasting, e-commerce etc. In these 
applications, Integrity protection of the voice data is the major 
security concern, which demands the development of secure 
speech cryptographic algorithms. Classical data encryption 
methods are poorly suited for audio encryption, due to its 
bulky data capacity, strong correlation between adjacent 
data samples and the presence of unvoiced data segments. 
Furthermore, there is no theoretical limit on cloning or copying 
of data in classical cryptography. Quantum information 
processing is one of the promising �elds of cryptography, 
in which the fundamental principles of quantum mechanics 
like Heisenberg uncertainty principle and principle of photon 
polarization are directly exploited [1]. Any attempt made by 
an intruder to clone or copy an unknown quantum state will 
destroy the state and it will be detected [2]. Furthermore, 
nonorthogonal quantum states cannot be readily distinguished 

even if the states are known. Quantum cryptography was 
developed in 1984 by the physicist Charles Henry Bennett 
and it was experimentally demonstrated in 1992 [3]. In 1982, 
Richard Feynman introduced the idea of a quantum computer, 
which uses the basic principles of quantum mechanics to its 
advantage [4]. Quantum computational model theoretically 
has high computational power to solve realtime mathematical 
problems much faster than classical computers [5, 6]. With the 
development in this �eld, computationally e¦cient quantum 
algorithms like Shores factoring algorithm, Grover’s searching 
algorithm and discrete algorithm have been designed which 
may threaten classical cryptosystem [6]. Also, quantum signal 
processing outperforms classical signal processing since 
quantum Fourier transform [7], quantum discrete cosine 
transform [8, 9] and quantum wavelet transforms [10] are more 
e¦cient than their classical counterparts. us, cryptanalysts 
have to design new algorithms according to the principle of 
quantum mechanics to protect classical information.

Chaos is another elucidating theory from the �eld of non-
linear dynamics, which has potential applications in several 
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functional areas of a digital system such as compression, 
encryption, and modulation. It is one of the subtle behaviours 
associated with the evolution of a nonlinear physical system 
with signi�cant properties such as topological transitivity, ape-
riodicity, deterministic pseudo randomness, and sensitive 
dependence on initial conditions [11]. e complex chaos the-
ory have been utilized in many conventional cryptographic 
approaches like RC5 stream cipher and elliptical curve cryp-
tography to strengthen the security of encryption processes 
[12, 13]. Cryptographic algorithms based on chaos theory 
consist of two operations such as permutation and di�usion. 
In the permutation process data samples in the plaintext is 
rearranged to destroy the local correlation, making the data 
unable to understand. While in the di�usion stage data sample 
is masked by the pseudorandom number generated with the 
chaotic systems to change the sample values. Amin and Abd 
El-Latif [14] proposed a secret sharing algorithm, which com-
bines random grids (RG), error di�usion (ED) and chaotic 
permutation to improve the security. Gopalakrihnan and 
Ramakrishnan [15] introduced an image encryption algorithm 
where they adopted multiple chaotic systems such as Logistic-
Tent Map (LTM), Logistic-Sin Map (LSM), and Tent-Sin Map 
(TSM) for intermediate chaotic keystream generation. e 
reproducibility and deterministic nature of chaotic functions 
add value to cryptographic processes since the process can be 
repeated for the same function and same initial conditions. 
ese properties improve the security of the cryptographic 
process by multiple iterations of chaotic maps based on sub-
stitution and di�usion operations [16, 17]. Moreover, S–box 
generation mechanism based on chaotic function along with 
substitution and permutation process increases the complexity 
of the algorithm, consequentially enhances the security [18, 
19]. Wang et al. [20] proposed a dynamic keystream selection 
mechanism for � box generation, which avoids the possibility 
of the chosen plain text and chosen ciphertext attacks. Data 
encryption techniques based on a lower dimensional chaotic 
system have weak resistance to brute force attack, which cannot 
ensure the security of data due to the small keyspace. To 
improve the keyspace most of the chaos-based encryption algo-
rithms tend to take advantage of combining more than one 
chaotic system, but it increases the computational complexity, 
system resources and time. Consequently, encryption tech-
niques based on hyperchaotic systems have been introduced 
[21–23]. ese systems have more than one positive Lyapunov 
exponent and rich complex dynamic behaviour. Nonlinear 
dynamics and fractional order dynamical systems have been 
widely studied in recent years. Synchronization of fractional 
order complex dynamical systems has potential applications 
in secure communication systems. Sheue [24] proposed a 
speech encryption algorithm based on fractional order chaotic 
systems. It is based on two-channel transmission method where 
the original speech is encoded using a nonlinear function of 
the Lorenz chaotic system. ey also, analysed the conditions 
for synchronization between fractional chaotic systems theo-
retically by using the Laplace transform.

1.2. Review of Related Works. Quantitative modelling 
and �nite precision realization of nonlinear phenomenon 
could be easily realized with the development of quantum 

computational models. erefore researchers have attempted 
to combine two fundamental theories of physics like 
deterministic chaos and probabilistic quantum dynamics to 
develop new cryptographic algorithms. Vidal et al., introduced 
an encryption technique, which attributes rich dynamics 
of hyperchaotic system and some fundamental properties 
of quantum cryptography [25]. Arnold Cat transform is 
applied widely as a permutation matrix in several quantum 
data encryption algorithm [26–29]. Abd El-Latif et al., [26] 
proposed an image encryption algorithm method where he 
utilized the concept of toral automorphism, low frequency �
-luminance subband scrambling and quantum chaotic map. In 
this method discretized quantum chaotic Cat map is employed 
for substitution by generating an intermediate chaotic key 
stream. Jiang et al., proposed a quantum image scrambling 
circuit based on Arnold and Fibonacci transformation [27]. 
Zhou et al., proposed an algorithm based on double phase 
random coding and generalized Arnold transform [28], in 
which image pixels are permuted by the Arnold transform and 
grey level information is encrypted by the double random-
phase process. Akhshani et al., studied the nature of dissipative 
quantum systems and proposed an image encryption 
algorithm based on the quantum logistic map [29]. Liang et 
al., proposed a method, where quantum image is encrypted 
by XOR operation with C-NOT gate which is controlled 
by pseudorandom number generated by the Logistic map 
[30]. Gong et al., introduced an algorithm, in which Chen 
hyperchaotic system is utilized to control the C-NOT 
operation [31], where the grey level information is encoded 
by quantum XOR operation. Later, Li et al., [32] designed a 
quantum colour image encryption based on multiple discrete 
chaotic systems where Logistic map, Asymmetric Tent map 
and Logistic Chebyshev map are used to generate control bits. 
Recently researchers have attempted to develop quantum key 
distribution in chaotic regime [33, 34].

1.3. Motivation and Objective of the Present Work. Most of the 
proposed classical encryption methods are �awed by limited 
keyspace, computational complexity and weak resistance to 
di�erential attacks. However, the proposed chaotic-quantum 
algorithms are computationally e¦cient and unconditionally 
secure [26–35]. But they fail to provide complete superposition 
of quantum states in encrypted domain. is paper introduces 
a speech encryption algorithm in the quantum scenario, where 
in classical bits are encoded in the nonorthogonal quantum 
states. Nonorthogonal quantum states are prepared by unitary 
rotations of the classical bits through secret rotation angles. 
en, the encoded qubits are encrypted by controlled-NOT 
operation followed by Hadamard transform based on the key 
generated by the hyperchaotic system. Here quantum gates 
are controlled by the keystreams generated with the four 
dimensional hyperchaotic system proposed by Zhou and 
Yang [35] based on 3D Lü system. is proposed algorithm 
extends the security by encrypting quantum messages in both 
Standard and Hadamard basis. Both secret rotating angles and 
initial conditions of the hyperchaotic systems constitute the 
key, which enlarges the keyspace. e resulting algorithm 
ensures security against various di�erential and statistical 
attacks due to its enlarged keyspace.
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The rest of this paper is organized as follows: The pre-
liminary study of the proposed speech encryption algo-
rithm is presented in Section 2. Theoretical framework of 
the proposed approach is given in Section 3. Numerical 
simulations and performance evaluations are discussed in 
Section 4. Comparison of the proposed method with other 
state-of-art is discussed in Section 5, followed by conclusion 
in Section 6.

2. Preliminary Studies

2.1. Encoding Classical Bits in Nonorthogonal Quantum 
States. Speech samples are mapped into quantum data 
media as nonorthogonal quantum state which could be in 
Standard or Hadamard basis. Figure 1 shows the two pairs of 
nonorthogonal quantum states in Standard and Hadamard 
basis. Unlike orthogonal quantum states, nonorthogonal 
quantum states cannot be discriminated deterministically. 
Quantum data that encode the classical bits into nonorthogonal 
quantum states increases the robustness against PNS (photon 
number splitting) attacks.

Classical bits of the speech samples are encoded in the 
nonorthogonal quantum state by secret polarizing angle 
through unitary rotations. Classical binary bit to be encoded 
in quantum state is �{0, 1}. Sender encodes the classical bits 
by choosing nonorthogonal angle �i randomly between 
[0 2�]. e rotation operator �(��) operates on classical bits 
�� results the nonorthogonal quantum states ������⟩. Tensor 
product generates the superposition states ������⟩ correspond-
ing to ������⟩.

e rotation operator in matrix form is expressed by:

In order to retrieve the classical data, the receiver has to rotate 
the �thquantum bit by the secret angle in the opposite direction. 
e rotation operator �(��) is unitary since �(��)�†(��)=I, 
where �†(��)is the adjoint of the matrix and I is the identity 
matrix.

Quantum states corresponding to each classical bit can be 
expressed as follows:

(1)�(��) = [ cos �� sin ��− sin �� cos �� ].

(2)

�(��)�†(��) = [ cos
2�� + sin2�� 0
0 cos2�� + sin2�� ] = [

1 0
0 1 ].

where ������⟩ is the quantum state corresponding to classical bits 
�� for the secret rotation angle ��. Tensor product between the 
quantum states refer to (3) generate the superposition states 
given as in (4):

Here the � qubit quantum system ������⟩, exist as the superpo-
sition of 2� states with equal probability.

Superposition states for a three qubit quantum system is 
described as follows:

2.2. Quantum Gates. Quantum gates are the basic tool for 
quantum information processing. It can be represented as unitary 
matrix of size 2� × 2�, if the quantum logic gates acts on a � qubit 
quantum system. A suitable network of quantum gates can process 
quantum information much faster than the corresponding 
classical networks. In the proposed algorithm, quantum gates like 
Controlled-NOT (C-NOT) gates and Hadamard gates are used.

2.2.1. Controlled-NOT Gate. Controlled-NOT (C-NOT) is 
the classical counter part of XOR gate. It has two input bits, 
one control bit and one target bit. If the control bit is set to 
|1⟩, the gate �ips the target qubit. If the control bit is set to 
|0⟩ target qubit remains same. Mathematical expression of the 
Controlled-NOT gate can be given as follows:

CNOT = [ I 00 � ] is the matrix form of CNOT gate, where 

I = [ 1 00 1 ]& � = [
0 1
1 0 ].

2.2.2. Hadamard Gate. In Hadamard basis qubit can be 
represented as {|+⟩, |−⟩}, which gives the sense of complete 
superposition between ground state |0⟩ and excited state |1⟩.

Hadamard gate operation on single qubit operation is given by:

(3)

�����1⟩ = cos �0|0⟩ + sin �0|1⟩,�����1⟩ = cos �0|0⟩ + sin �0|1⟩,�����1⟩ = cos �0|0⟩ + sin �0|1⟩,�����1⟩ = cos �0|0⟩ + sin �0|1⟩, 1 ∈ [1, �],

(4)������⟩ = �����1⟩ ⊗ �����2⟩ . . . ⊗ ������⟩ . . . ⊗ ������⟩.

(5)

������⟩ = 12�
2�−1∑
�=0

��������⟩ � ∈ [0, 2� − 1],
������⟩ = ����0102 . . . 0�⟩ + ����0102 . . . 1�⟩ . . . + ����. . . + ����1112 . . . 1�⟩����.

(6)

������⟩ = ����010203⟩ + 010213⟩ + 011203⟩ + ����011213⟩ + ����110203⟩
+ 110213 + ����111203⟩ + ����101113⟩.

(7)��,�|�⟩�����⟩→ |�⟩����� ⊕ �⟩ with �, � ∈ {0, 1}.

(8)
|+⟩ = 1√2(|0⟩ + |1⟩),
|−⟩ = 1√2(|0⟩ + |1⟩).

(9)� = 1√2[
1 1
1 −1 ] =

1
√2(� + �),

|1i

|+i |–i

|0i

|x

|y

θi

Figure 1: Nonorthogonal quantum pairs.
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Step 1. Set the values for initial conditions and system 
parameter for the hyperchaotic system. Generate four 
di�erent hyperchaotic sequences by iterating the hyperchaotic 
system by Runge-Kutta method for � = 2�.
e generated sequences are {��}, {��}, {��}, and {��} (1 ≤ � ≤ �).
Step 2. Convert the four hyperchaotic sequences into integer 
sequences {�∗� }, {�∗� }, {�∗� }, and {�∗� } as follows:

Step 3. Generate keystream �1& �2 as control bits for C-NOT 
operation and Hadamard operation.

Control bits �1 for CNOT operation is given by:

Control bits �2 for Hadamard transform is given by:

Step 4. Controlled NOT gate perform bit �ip operation on quan-
tum speech sample ������⟩ according to the control bits �1.Where 
�1 is realized from keystream ��� {0, 1} generated with hypercha-
otic sequence. Construct a C-NOT operator ��1 as follows:

where � is the bit �ip operator, that operates on the quantum 
state ������⟩ according to the control bit ���  resulting into new 
state �������1⟩.

(13)

�∗� = �����fix(�� − fix(��)) × 1014�����mod2�,
�∗� = �����fix(�� − fix(��)) × 1014�����mod2�,
�∗� = �����fix(�� − fix(��)) × 1014�����mod2�,
�∗� = �����fix(�� − fix(��)) × 1014�����mod2�.

(14)
�1 = ��� , ��−1� . . . �0� , ��� ∈ {0, 1} ,
� = 0, 1, . . . , 2� − 1, � = 0, 1, . . . �.

(15)�2 = ��� , ��−1� . . . �0� , ��� ∈ {0, 1},
� = 0, 1, . . . , 2� − 1, � = 0, 1, . . . �.

(16)��1 = {�,when �
�
� = 0,�, ��� = 1,

where

General operation of Hadamard gate on target qubits, which 
is both in Standard and Hadamard basis are as follows:

2.3. Hyperchaotic System. To improve keyspace and security, 
hyperchaotic systems are widely used in data encryption 
systems. In the proposed algorithm, keystream for the 
encryption process is generated from the 4-D hyperchaotic 
system discovered by Zhou and Yang by the fourth order 
Runge-Kutta method. e system is described as follows:

It has in�nite number of real equilibrium. e system (12) 
shows multiple dynamic behaviour over a wide range of con-
trol parameter �. e evolution of chaotic dynamics such as 
periodic, quasi periodic and chaotic attractors in this system 
can be obtained by varying control parameter � [0, 25] by 
�xing all other parameters constant. When � ∈ [13, 25] the 
system generates hyperchaotic attractor and this region is uti-
lized for encryption purpose. e encryption process in higher 
dimensional space eliminates periodic window problems such 
as limited chaotic range and nonuniform distribution. Figure 2 
illustrates the bifurcation diagram of modi�ed ��̇ system.

3. Proposed Algorithm

3.1. Encryption Process. In this section we systematically 
demonstrate the various steps in encryption process. Figure 3 
illustrates the proposed algorithm.

(10)� = [ 0 11 0 ] � = [
1 0
0 −1 ].

(11)�|0⟩ = |+⟩; �|1⟩ = |−⟩; �|+⟩ = |0⟩; �|−⟩ = |1⟩.

(12)

�̇ = 36(� − �),
�̇ = −�� + ��,
�̇ = �� − 3�,
�̇ = 18� − 0.5�.

30
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Figure 2: Bifurcation diagram of modi�ed ��̇ system.
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Controlled Hadamard gate operator ��2 is given by:

Hadamard gate for the � qubit operation

Apply Hadamard gate ��������⟩ under the control of key element 
�2

where ��1� is the density matrix for the quantum state �������1�⟩, 
��1� = �������1�⟩⟨��1� �����. Hadamard transformation for three qubit 
system is given in Table 2.

(18)��2 = {�,when �
�
� = 0,�, ��� = 1.

(19)�⊗� = 1√2� ∑�,�{0,1} (−1)��.

(20)
�������2⟩ = 12�

2�−1∑
�=0

I ⊗ �������1�⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
��� =0

+ 12�
2�−1∑
�=0
��1�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

��� =1

⊗�⊗�,
Table 1, describe the whole possible quantum states for three 
qubit system and its C-NOT transformations.

Step 5. Hadamard gate operates on �������1⟩ a¹er the bit �ip 
operation performed by Controlled-NOT gate. In this 
operation �2 is the control bit and it is realized from keystream 
w
�
� {0, 1} generated with the hyperchaotic system. Hadamard 

gate operates on the target qubit only when the control qubit 
is |1⟩ or else the target qubit remains the same.

(17)

��������⟩ = 12�
2�−1∑
�=0
⊗�=��=0�������� ⊗ ��1⟩,

��1 = ��� , ��−1� . . . �0� , ��� ∈ {0, 1},
�������1⟩ = 12�

2�−1∑
�=0
⊗�=��=0�������� ⊗ ��� ⟩,

�������1⟩ = ��� , ��−1� . . . �0� , ���⊗��=0 12�
2�−1∑
�=0

��������⟩.

|m

m

|ψm1

|ψ

|ψm2
H n

|ψm2
H

Classical channel 

R (θ)
θ 

Ck1
Hk1

⊗

nm1

Figure 3: Block diagram of the proposed algorithm.

Table 1: Controlled-NOT operations.

��������⟩ ��1 �������1�⟩�������0⟩ = |000⟩ �����10⟩ = |100⟩ �������10⟩ = |100⟩�������1⟩ = |001⟩ �����11⟩ = |001⟩ �������11⟩ = |000⟩�������2⟩ = |001⟩ �����12⟩ = |110⟩ �������12⟩ = |100⟩�������3⟩ = |011⟩ �����13⟩ = |101⟩ �������13⟩ = |110⟩�������4⟩ = |100⟩ �����14⟩ = |111⟩ �������14⟩ = |011⟩�������5⟩ = |101⟩ �����15⟩ = |011⟩ �������15⟩ = |110⟩�������6⟩ = |110⟩ �����16⟩ = |010⟩ �������16⟩ = |100⟩�������7⟩ = |111⟩ �����17⟩ = |000⟩ �������17⟩ = |111⟩�������0⟩ = |000⟩ �����10⟩ = |100⟩ �������10⟩ = |100⟩

Table 2: Hadamard Transformations.

�������1�⟩ ��2 �������2�⟩�������10⟩ = |100⟩ �����20⟩ = |100⟩ �������20⟩ = |−00⟩�������11⟩ = |000⟩ �����21⟩ = |001⟩ �������21⟩ = |00+⟩�������12⟩ = |1000⟩ �����22⟩ = |110⟩ �������22⟩ = |− + 0⟩�������13⟩ = |110⟩ �����23⟩ = |101⟩ �������23⟩ = |−1+⟩�������14⟩ = |011⟩ �����24⟩ = |111⟩ �������24⟩ = |+ − −⟩�������15⟩ = |110⟩ �����25⟩ = |011⟩ �������25⟩ = |1 − +⟩�������16⟩ = |100⟩ �����26⟩ = |010⟩ �������26⟩ = |1 + 0⟩�������17⟩ = |111⟩ �����27⟩ = |000⟩ �������27⟩ = |111⟩�������10⟩ = |100⟩ �����20⟩ = |100⟩ �������20⟩ = |−00⟩
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R2013a (version) so¹ware. Eight voice samples of male and 
female speech signal with sampling rate of 8000 samples/sec 
are selected for the test. e initial conditions are set as 
�0 = 0.423, �0 = −0.531, �0 = 0.256, �0 = 1. Time step for the 
fourth order Runge-Kutta method is taken as 0.005.

4.1. Correlation Analysis. Correlation analysis is a statistical 
metric to evaluate the performance of cryptographic algorithm 
over various statistical attacks. Correlation coe¦cient analysis 
measures the mutual relationship between similar segments 
in the plain audio �le and the encrypted audio �le. A secure 
data encryption algorithm converts original data into random-
like noisy signal with low correlation coe¦cient [36]. Low 
correlation coe¦cient indicates the narrow correlation 
between original and encrypted speech �les. Correlation 

Detailed encryption process for a four qubit quantum system 
with �xed �����1⟩ = |0011⟩ and �����2⟩ = |1010⟩ is given in Table 3.

3.2. Decryption Process. e procedure of decryption process is 
reverse of the encryption process. Since rotation operator �(�), 
C-NOT gate and H-gate are unitary operators, decryption can 
be done easily by means of the pre-shared keys. e decryption 
process is described as follows:

Step 1. Generate the same keystream or control bits �1 and �2
according to the steps 1–3 in encryption process.

Step 2. Perform Hadamard operation on �������2⟩.�������1⟩ = �⊗��������2⟩; Since �2 = I
Step 3. Perform Controlled –NOT operation on �������2⟩

Step 4. Do the inverse rotation operation on ������⟩ to retrieve 
the classical data.

4. Numerical Simulation and Results

e proposed algorithm is realized by classical counterpart of 
circuit elements equivalent to quantum circuit. e proposed 
algorithm is simulated on a classical computer with MATLAB 

(21)������⟩ = 12�
2�−1∑
�=0
⊗�=��=0�������1� ⊗ ��1⟩.

Table 3: Complete operation of four qubit quantum system.

��������⟩ ��1 �������1�⟩ ��2 �������2�⟩�������0⟩ = |0000⟩ �����1⟩ = |0011⟩ �������10⟩ = |0011⟩ �����2⟩ = |1010⟩ �������20⟩ = |−0 + 1⟩�������1⟩ = |0001⟩ �������11⟩ = |0010⟩ �������21⟩ = |−0 + 0⟩�������2⟩ = |0010⟩ �������12⟩ = |0001⟩ �������22⟩ = |−0 − 1⟩�������3⟩ = |0011⟩ �������13⟩ = |0000⟩ �������23⟩ = |−0 − 0⟩�������4⟩ = |0100⟩ �������14⟩ = |0111⟩ �������24⟩ = |−1 + 1⟩�������5⟩ = |0101⟩ �������15⟩ = |0110⟩ �������25⟩ = |−1 + 0⟩�������6⟩ = |0110⟩ �������16⟩ = |0101⟩ �������26⟩ = |−1 − 1⟩�������7⟩ = |0111⟩ �������17⟩ = |0100⟩ �������27⟩ = |−1 − 0⟩�������8⟩ = |1000⟩ �������18⟩ = |1011⟩ �������28⟩ = |+0 + 1⟩�������9⟩ = |1001⟩ �������19⟩ = |1010⟩ �������29⟩ = |+0 + 0⟩�������10⟩ = |1010⟩ �������110⟩ = |1001⟩ �������210⟩ = |+0 − 1⟩�������11⟩ = |1011⟩ �������111⟩ = |1000⟩ �������211⟩ = |+0 − 0⟩�������12⟩ = |1100⟩ �������112⟩ = |1111⟩ �������212⟩ = |+1 + 1⟩�������13⟩ = |1101⟩ �������13⟩ = |1110⟩ �������213⟩ = |+1 + 0⟩�������14⟩ = |1110⟩ �������14⟩ = |1101⟩ �������214⟩ = |+1 − 1⟩�������15⟩ = |1111⟩ �������15⟩ = |1100⟩ �������215⟩ = |+1 − 0⟩

Table 4: Encrypted signal numerical analysis.

Sample �les ��� Correlation PRD(Ø)
�. Male voice −12.45 dB 0.00669 0.521 × 105
�. Female voice −13.89 dB 0.00918 0.689 × 106
�. Male voice −21.89 dB 0.00693 0.723 × 105
�. Female voice −14.32 dB 0.00229 0.214 × 105
�. Male voice −22.89 dB 0.00527 0.934 × 105
�. Female voice −19.45 dB 0.00358 0.394 × 106
�. Male voice −11.76 dB 0.00992 0.861 × 105�. Female voice −23.23 dB 0.00136 0.231 × 106
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Scatter plot diagram is plotted for original and encrypted ver-
sion, which is shown in Figures 4(a) and 4(b) respectively. It 
clearly shows that the encrypted version is scattered or 
randomized.

4.2. Signal to Noise Ratio (SNR). Signal to noise ratio is one of 
the straight forward methods to validate the performance of 
data encryption algorithm. SNR measures the noise content in 
the encrypted data signal. Cryptanalyst always try to increase 
the noise content in the encrypted signal so as to minimize 
the information content in the encrypted data [37]. Figure 5 
displays the original and encrypted speech signal. It is clear 

coe¦cient is evaluated based on the equation (22) and it is 
tabulated in Table 4.

where �(�) and �(�) are mean and ��, �� are the standard 
deviation of the encrypted and decrypted speech signal. 

(22)

��� = ��v(�, �)���� ,

��� = (1/��)∑���=1(�� − �(�))(�� − �(�))√(1/��)∑���=1(�� − �(�))2√(/��)∑���=1(�� − �(�))2 , ��,
�� ̸= 0,
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Figure 4: Scatter plot diagram of (a) original speech signal (b) encrypted speech signal.
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Figure 5: (a) Original signal. (b) Compressed signal. (c) Data samples a¹er permutations. (d) Data samples a¹er substitution. (e) Decrypted 
signal.
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measurement is based on the assumption that the spectrum 
of meaningful speech segment is correlated than the noisy 
signal. e spectral measurement compares the entropy where 
the amplitude component of the power spectrum is taken as 
a probability parameter in entropy calculation. e amount 
of information can be calculated as the negative of entropy or 
the negative logarithm of probability. us, meaningful speech 
segments shows low entropy since it contains organized data 
samples. However the encrypted speech signals have high 
entropy and large spectral peaks similar to noisy signal. e 
entropy �� can be measured as follows:

where ���� is the normalized power spectrum and �� is the 
frequency of the signal. Irregularities of amplitude in original 
and encrypted signals are shown in Figure 6.

4.5. Keyspace and Key Sensitivity Analysis. e secret 
rotation angles �� and initial conditions and system parameter 
(�0, �0, �0, �0, �) of the hyperchaotic system determine the 
keyspace. In the recommended algorithm, �oating point 
accuracy of 10–16is used for the key components. erefore the 
keyspace achieved in this scheme is �� × (10−16)5 = �� × 2224 

(25)

�� = ∑
�
����(��) log (����(��)); � = 1, 2, 3 . . . . . . , �,

that encrypted speech signal contains more noise content that 
in original speech signal. e SNR values of encrypted audio 
�les are calculated based on the following equation (23) and 
it is given in Table 4.

4.3. Percent Residual Deviation (PRD). Percentage Residual 
Deviation is another statistical tool to measure the variation 
of the encrypted speech signal from original signal. PRD can 
be calculated for the given plain audio signal �� and encrypted 
signal �� as follows:

e calculated values of the percent residual deviation for var-
ious original and encrypted speech signals are given in Table 
4. It can be seen that the encrypted signal is highly deviated 
from its original signal.

4.4. Spectral Entropy. Spectral entropy measures the 
randomness in both encrypted and original speech signal. Its 

(23)��� = 10 ∗ log 10 ∑
��
�=1�2�

∑���=1(�� − ��)2
.

(24)0 = 100 × √∑��=1(�� − ��)2∑��=1�2� .
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Figure 6: Power spectral density of (a) Original speech signal. (b) Encrypted speech signal.

0 200 400 600
–2

–1

0

1
×10–3

(a)

0 200 400 600
–2000

0

2000

(b)

0 200 400 600
–2000

0

2000

(c)

Figure 7: Key sensitivity on encryption process (a) original speech signal (b) encrypted speech signal for key �0 = 0.413, �0 = −0.931, �0 = 0.465, �0 = 0 (c) encrypted speech signal for �0 = 0.913, �0 = −0.131, �0 = 0, �0 = 0.825.
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the slight variation in keyparameter will result completely 
di�erent encrypted signal. Figure 7 shows the encrypted 
signals with two di�erent initial conditions. To evaluate the 
key sensitivity of decrypted signal, encrypt the speech �le 
with one �xed secret key then decryption is performed with 
slightly di�erent keys. e resulting speech �les decrypted 
with wrong keys apparently looks di�erent and reveals no 
information.

Figure 8(a) shows the decrypted speech signal with correct 
key. Figures 8(b)–8(e) show the decrypted signal with slight 
variations in the initial conditions.

in classical computation. But in the quantum domain the 
keyspace exist as the superposition of 22224 quantum states, 
which is large enough to break various cryptographic attacks.

Key sensitivity is the essential quality for any good data 
encryption algorithm, which make sure that the security 
level of the algorithm against the brute-force attack. It 
means that a small variation for any key parameters bring 
an apparent change in both encrypted and decrypted speech 
signal. e e�ect of variation in keyparameter on encryption 
process is veri�ed by encrypting the signal with slightly dif-
ferent initial conditions. e simulation result shows that 
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Figure 8: Key sensitivity on decryption process (a) decrypted signal with correct key, decrypted signal with incorrect key (b) �0 + 10−15 (c) �0 + 10−15 (d) �0 + 10−15 (e) �0 + 10−15.

Table 5: Quality metrics comparison of encryption scheme with other methods.

Method Key length keyspace ��� NPCR UACI

AES 128,192,256 2128, 2192, 2256 0.009700 99.60327 33.4218
Ref [22] >264 >2624 0.00022 99.6399 33.8085
Ref [23] 744 2744 0.00121 99.6317 33.6781
Ref [26] >2107 2107 0.00321 99.6317 33.6782
[pro:meth] >2212 > 22212 0.000136 99.6320 33.6823
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realized with 22� XOR operations. erefore the computational 
complexity of classical encryption algorithm corresponding 
to its quantum version is �(2�).

5. Comparison with Existing Works

e proposed algorithm is compared with existing algorithms 
in both quantum and classical domain. Various quality 
metrices such as key length, keyspace NPCR, UACI and cor-
relation coe¦cient between original and encrypted signals are 
analysed and tabulated in Table 5.

e size of the proposed method’s key space is greater than 
2224 (Section 4.5). It is clear from the simulation results 
(Figure 4) that the encrypted speech signal contains more 
noise content that in the original speech signal. Correlation 
coe¦cient (CC) evaluated is almost zero (Table 4) for the pro-
posed algorithm. A standard Encryption Algorithm (AES), a 
fast colour image encryption algorithm based by hyperchaotic 
system [22], an algorithm based on hyperchaotic system and 
S boxes in the form of permutation–substitution network [23], 
and a colour image encryption based on quantum chaotic 
system [26] are taken for comparison.

6. Conclusion

In this paper, a new classical data encryption algorithm in 
quantum domain is proposed. e basic idea behind the secu-
rity of the proposed algorithm lies in protecting the classical 
information in the form of nonorthogonal quantum states. 
Furthermore the Controlled NOT operation and Hadamard 
operation in quantum domain extends the security of the pro-
posed algorithm. e introduction of modi�ed hyperchaotic 
��̇-system into quantum speech encryption algorithm 
increases the number of keys and improved the key sensitivity. 
Various simulations and numerical analysis have been carried 
on classical computer to evaluate the performance of the algo-
rithm. e simulation results demonstrated that the proposed 
approach is an excellent choice for classical data encryption 
in quantum domain.
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