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In this paper, we study a class of the Kirchhoft-Schrodinger-Poisson system. By using the quantitative deformation lemma and
degree theory, the existence result of the least energy sign-changing solution u is obtained. Meanwhile, the energy doubling
property is proved, that is, we prove that the energy of any sign-changing solution is strictly larger than twice that of the least

energy. Moreover, we also get the convergence properties of 1 as the parameters b\0 and A\0.

1. Introduction and the Main Results

In this paper, the following Kirchhoft-Schrédinger-Poisson
system is considered:

—(a+bJ |Vu|2dx>Au+)Lgbx:g(u), xeQ
0

~Ap =12, M)

U=¢=0>

x €0,
x € 002,
where Q ¢ R? is a bounded domain with a smooth boundary
00, a,b,A e R* = (0,4+00), and ge C(R,R) satisfies some
basic assumptions.
For b=0, problem (1) reduces to the following
Schrédinger-Poisson system:
—alu+ Ap(x)u=g(u),x €,
—A¢ = u2> X € Q: (2)
¢, u=0,x€0Q.
Alves and Souto [1] studied the above Schrédinger-

Poisson system for a= A =1. Under some suitable assump-
tions on the nonlinearity g(u), by using the deformation

lemma and Brouwer’s topological degree theory, they proved
that the above system possessed a least-energy sign-changing
solution, which changed sign only once.

For A =0, the problem (1) reduces to the following prob-
lem:

—(a+bJ |Vu|2dx)Au=g(u), xeQ
Q

x € 0Q.

(3)

u=0,

The problem (3) has been studied in [2, 3]. Under
different assumptions on g(u), the authors in [2, 3] obtained
the existence and some qualitative properties of the sign-
changing solution by using the Non-Nehari manifold
method and deformation lemma. We can find that the results
in [3] improve and generalize the results in [2]. In fact, the
studies about the existence of the positive solutions, sign-
changing solutions for a class of elliptic equations, have been
studied extensively. For more details about such problems,
we refer the reader to [4-19].

To our best knowledge, the results of the sign-changing
solutions for the Kirchhoft-Schrédinger-Poisson system
under a weak assumption that g € C(RR, R) have not been
studied yet. This paper attempts to fill this gap in the litera-
ture. Motivated by the above papers, we study the problem
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(1). For the purpose of getting the results, we use the varia-
tional method and some mathematical skills to obtain the
existence of the sign-changing solution and its corresponding
properties.

In this paper, we assume g € C(RR, R) satisfies the follow-
ing four conditions:

(9,) lim(g(5)5) =0
(92) lirréog(s)/é =00
(g
(g

5) 1g(s)] < co(1 +[s|*),Vs € R, where ¢, is a constant
,) there exists a 6, € (0, 1) such that for any s > 0 and

TeR\ {0},

g(r) g(sf)l sign (1-s) + adohy[1 - <] >0, (4)

e (st) (st)

where A, is the first eigenvalue for the following problem:

-Au=Au, x€Q,
(5)
u=0, x € 0Q0.

Throughout this paper, we will use the following
notations.

Let H = Hy(2) be the usual Sobolev space equipped with
the following norm:

= (| vuax) (©)

The usual L norm is denoted by [|ul|, = ([, |ulf dx) Y7 In

this way, we know ||u|| = || Vu/l,.
For the Poisson system,
~Ap=u*, xeQ,
(7)
¢ =0, x€0Q,

where there exists a unique ¢, =1/47, (1*(y)/|x - y|)
dy € H , such that ¢, satisfies the above system. It is known
that ¢, satisfies the following conditions [17-19]:

() [,,u2dx= [, |V, dx < Cl|Vuly

(i) ¢,>0and ¢, >0 for u+0

(iii) foru=u*+u € H, ¢
S =10,

(iv) if u, — u in Hy(Q), then ¢, — ¢, in Hy(©2) and
lim [, ¢, u,’dx= ngbudx, if uf—u* in Hj

(Q), then liminf [ ¢, )Vdx = ) ) dx.

=¢, +¢, andfort#0,

ut+u-

Consequently, (u, ) € Hy(Q) x Hy(Q) is a solution of
problem (1), that is, ¢ = ¢, and u € Hj(Q) are a solution of
the following problem:
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- a+bJ Vuzdx)Au+/\¢uu=g(u), x€Q,
o

/N

x €0Q.
(8)

u=0,

In this paper, u € H} () is called a solution for problem
(1), which implies (u, ¢,) € Hy(Q) x Hy() is a solution of
problem (1).

Next, we can define the energy functional corresponding
to problem (1) F : Hy(Q) — R by

2
F(u) = ? |Vu|*dx + b |Vuldx | + A ¢ uldx
2)a 4\Jo 4)a0""

- J G(u)dx,
)

where G(s) = [} g(t)dt. Obviously, the functional F is well
defined and belongs to C'(H, R). By a simple computation,

we have that for any u, ¢ € H}(Q),

<F’(u),g0>=J aVuV(pdx+bJ \Vu\zdxj VuVedx
Q o Q

+ JQ A, updx — J g(u)edx.

Q

(10)

It is clear that the critical points of F are the weak
solutions for the problem (1). If ue€ H is called a sign-
changing solution of problem (1), then u* #0 and for any
¢ € H, (F'(u), p) = 0, where u*(x) = max {u(x),0}, u"(x) =
min {u(x),0}.

For u e H and u=u" +u~, by (9) and (10), we have

F(u)=F(u")+ F(u ) +

A A
4] geterars 5[ o @

b 2 -112
S IVt [ )Va |3

(11)

(E'(w, ") = (F' (), ) + 0|V 3] Var | .
+ J A, (u") dx,
Q
(F' ) ) = (F' (@), + 0|9 3] Va |

(13)
+ JQ A, (1) dx.
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To get the main results, we restrict u in the following sets:
ar={ueH :ut#0,(F (w,u")=0,(F (u)u) =0},
/V:{ueH u+0, <F’(u),u>:0}.

(14)

To get the energy doubling property, we define m =
inf,. ,F(u) and c=inf . , F(u).

To prove the convergence property, we give the following

definitions. Firstly, we define the energy functional corre-
sponding to (2) F,, : Hy(Q2) — R by

Fy, (u) = J |Vuldx + = J ¢, u’dx — J G(u)dx. (15)
Q
Similarly, we have

<Fb0 "(u), (p> = JQ aVuVeodx + L) A, updx — J g(u)pdx.

The set .#, is defined by 4, ={ue€H :u*+0,(F, !

(u), u) = (E,, " (u),u”) =0}
The energy functional F)
to (3) can be defined by

Fy ()= ;JQ Vu2dx + Z (JQ Vuzdx)z - JQ G(u)dx.
(17)

: Hy(©2) — R corresponding

Also, we can compute that
<FA "(u), (p> = J aVuVedx + bJ |Vu|2de VuVedx
’ 0 0 0

—J g(u)pdx.
Q
(18)

To seek the sign-changing solution of (3), we define

the set
FAO’(u), u+> = <F,\0’(”)> u_> = 0}.
(19)

The main results of this paper are described as follows.

%AO:{uEH:ui¢0,<

Theorem 1. Assume that (g,) — (g,) hold, then problem (1)
possesses a least-energy sign-changing solution u, € M such
that F(u,) = inf , F > 0, which changes sign only once.

Theorem 2. Assume that (g,) - (g,) hold. Then problem (1)
possesses a solution u; € N such that F(u;) =inf ,F. More-
over, m > 2c.

Theorem 3. Assume that (g,) — (g,) hold. Then problem (2)
possesses a  sign-changing solution v, € M, such that

F, (vo) =inf , F, >0, which changes sign only once. More-
0

over, for any sequence {b,} with b,\0O as n —> oo, there

exists a subsequence of {w, }, still denoted by {w, }, such that

w, — uy, in Hy(Q), where u, €., is a sign-changing

solution of problem (2) with F, (u,, )= inf/,lbg F, >0.

Theorem 4. Assume that (g,) — (g,) hold. Then problem (3)
has a sign-changing solution w, € M, such that F) (w,) =
inf a, 2, >0, which changes sign only once. Moreover, for

any sequence {A,} with A, \0 as n — 00, there exists a sub-
sequence of {u, }, still denoted by {u, }, such that u, —

uy, in Hy(Q), where uy €M, is a sign-changing solution
of (3) with F, (u, ) =inf , F, >0.
0

The rest of the paper is organized as follows. In Section 2,
we will give several estimates. In Section 3, some critical
lemmas are proved. In Section 4, we will give the proof of
the existence of the least-energy sign-changing solution. In
section 5, the energy doubling property is proved. Section 6
is devoted to proving the convergence property.

2. Several Estimates

Lemma 5. If the assumptions (g,) — (g,) hold, then

1;54 <F’(u),u+>
+ ! ;t4 <F'(u), u_>
a(1—52)2(1—90)

a(1-12)(1-6,)

F(u)>F(su" +tu”) +

[Vu*|

+ 12

W

Va3

b(s-1 ’ 2 2
ML G WP

A

+4] @ -2,

+ (£ =57) o, (u )Z}dx, Vu=u"+u €H,s,t>0.
(20)

Proof. According to (g,), we can deduce that

-t oA, 7 (1 - £2)°
L8 g(tyr+ Grr) - G(r) + W

[ {g(r) _g(st) . aByh, (1-5%)
LT (s (s7)*

$18ds>0, V£ 20,7 € R\ {0}.

(1)




From (9), (12), (13), and (21), we have

F(u) - F(su® + tu) = ;{IIWHi — |lsVu* + tVu’||§}
b B}
+ 2 {Ivuld = sy + v}
+ & [ {qﬁuuz = P (U tu')z} dx
4- Q
+ [ [G(su® + tu™) — G(u)]dx
JOQ

_ 1-s +112 b 2 +112
== IVl + b Va5 Ve

Jﬂ g(u*)u*dx}

—t -2 2 -2
oI e

+ JQ A, (u*) dx -

1
.
+[ A(bu(u’)zdx—[ g(u’)u’dx}

JO JOQ

a(l1-5)? , a(1-£)" _
N R SN T

b(s* - 12)* B
) o2

ST

£ =), (u‘)z} dx

), (1)

+

+
[0}

(
N J'Q {1 ;S4g(u+)u+ ~G(u) + G(su*)] dx
J

{1 ;t4 g ) —Gu) + G(“f)} dx

45 <F'(u),u*> oL

1

[\

i<F'(u),u’>

_tz)z 2 2
L v e 2

a(l —52)2(1 -0,)

2
+ Ve

o

+a(l 2)°(1-6,)

. 192713
+ %[Q {(sz—t )2, (u*)’
=) )

I

~Gu') + all=) Ok
1-t
5
L 21-)60h ) \’\]
ks <F’(u),u+> + 1:4 <F'(u),u’>
G AT
X8 o2
a(1-)*(1-6,)
4
L=y
4
2

+ %JQ {(s -

g(u)ut + G(su™)

)6 \u*\}dx

(u)u” +G(tu) - G(u")

v

+ HV”+\|§

HV“ [

), (U + (= )P, (u’)z} dx.
(22)

The above inequality implies that (20) holds.
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Corollary 6. If the assumptions (g,) - (g,
+u” €M, then

) hold and u=u*

a(l1-s2)°(1-6, 5
p-sra-a) .

F(u)>F(su® +tu”) + II5

4
a(1-2)°(1-6,) _ _
+ wnvu 12
b(s? - 12)° . ~ 23
LGy WEREE 23)

A 22 2
+ ZJQ [(s )5’ (u")
+ (£ -5%) t2¢u+(u’)2} dxVs, t > 0.

From ue M, we have <F'(u),u*>=<F'(u),u>=0.
Therefore, we can immediately get the above conclusion
by (20).

F(u"+u ) =maxF(su" +tu). (24)

5,t>0

Lemma 7. Assume that (g,) holds, then

2g( )7 - G(7) + ot —071 125 0T eR. (25)

We can get (25) by taking t=0 in (21).

Lemma 8. If the assumptions (g,) —
u € H, we have

(g,) hold, then for any

F(u) > F(tu) + 1=t F'(u), u>

a(1-0)(1- ) 26)
++||wu§,vrzo.

We can get the conclusion by a similar deduction as
Lemma 5

Corollary 9. If the assumptions (g,) — (g,) hold and u e ¥,

then

F(u) > F(tu) +

1-0,)(1-1)°
a=ftizr) f’)f L o,

(27)
F(u)= ntla})xF(tu),‘v’t >0.

3. Some Critical Preliminaries
Lemma 10. If the assumptions (g,) — (g,

with u* # 0, then there exists a unique pair (s,,,
numbers such that s,u* +t,u” € M.

) hold and ue H
t,) of positive

Proof. From the definition of the set /, s,u* +t,u” € #
implies that <F'(s,u* +t,u"),s,u*>=<F (s,u*+tu),
t,u~>=0. Thus, we assume
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fi(s,t)=<F'(su* +tu), su’ >

= gs? ||Vu+||§ + hs4||Vu+||§ + bsthIIVu+||§||Vu_ II§
+54J A¢w(u+)2dx+s2tzj A, (1) dx
(0] (0]

- J g(su®)su®dx,
Q

(28)

fo(s,t) = <F'(su* +tu), tu” >
= at?|Vu |5 + bt |Vu || + b | Vut [5IVu I3

+t4J A¢u,(u_)2dx+sztzj Ag,. (u)*dx
Q Q

- J g(tu")tu dx.
(29)

If there is a unique pair (s, t) of positive numbers such
that g,(s,t) = g,(s,t) =0, then Lemma 10 holds. Next, we
will give the detailed proof.

By (g,) and (g, ), we have that f, (s, s) > 0, f, (s, s) > 0 for
s> 0 small enough and f (¢, t) <0, f,(t,t) <0 for ¢ >0 large
enough. Thus, there exists 0 < « < 8 such that

file @) >0, f, (e, ) >0, f,(B, B) <0, £,(B, B) <0.  (30)

According to (28) and (29), it is clear that f,(s,t) is
increasing on ¢ for fixed s and f, (s, t) is increasing on s for
fixed t. Thus, combining (30) we have

fila: ) >0, 1, (B 1) <OVt € at, B, (31)

fr(s,@)>0,f,(s, B) <OVs € [, f]. (32)

Miranda’s theorem [20] implies that there exists some
point (s,,t,) such that f,(s,,t,) =f,(s,, t,) =0, where s,
t, € (a, B). Therefore, there exists a positive pair of numbers
(s, t,) such that s, u* +t,u" € M.

Next, we will prove that (s,,t,) is unique for (28) and
(29). Let (s;,t;) and (s,,t,) be such that su®™ +t,u € /.
From Corollary 6, we have

s t
F(syu" +tju") > F(—Zslu+ + t—ztlu_>,
s
1 1 (33)
s t
F(s,u” +tyu™) > F(—lszu+ + —ltzu) .
) t

The above two inequalities implies that F(s;u* +t,u")
= F(syu* + tyu™), that is, (s, ;) = (s,, t,). The uniqueness
is proved. Therefore, Lemma 10 holds.

Corollary 11. If the assumptions (g,) — (g,) hold and u e
HY(Q)\ {0}, then there exists a unique t,>0 such that
tueN.

5
Lemma 12. If the assumptions (g,) — (g,) hold, then
: o v
Lgl/f”F(u) =m= uEI!II)luf;#O E}gg{F(su +tu”). (34)

Proof. Firstly, by Corollary 6, one has
inf maxF(su" +tu") < inf maxF(su® +tu”) = inf F(u)=m.
ueH,u*#0 s,t>0 ueMl s,;t=0 ueMl

(35)

Secondly, for any ue H with u*#0, it follows from
Lemma 10 that

gggF(su* +tu") > F(s,u’ +t,u")> 1}?2F(v) =m. (36)

Combining (35) and (36), we can get Lemma 12.

Lemma 13. If the assumptions (g,) — (g,) hold, then m >0
can be achieved.

Proof. For all ue ./, we have <F'(u),u>=0. According
to (g,),(g;), and the Sobolev embedding theorem, we
can get

a||Vu||§ < a||Vu||§ + bIqu||‘21 + /\J </>uu2dx
Q

ak
=J glujudx < =2 ully + clul (37)
Q

a 2 5
<3 IVull; + s IVull,

where ¢ and ¢; are positive constants. Thus we have
||Vu||§2(a/265)2/3>0. Therefore, by (9), (10), (25), and
(37), we have

F(u) = F(u) - i <F'(u),u>

1Vul? +J

1
—g(u)u—G(u)dx
o4

aby
4

2
IVl

L IR ST BN

2
> —[IVull; -

a(1-06,)
4

2/3
5 4(1-0) (i) 0
4 2¢;

Since 6, € (0, 1), thus, for any u € ., F(u) >0 and m > 0.
Let {u,} C A be such that F(u,) — m. For large n€ N,
one has

lual3 (38)

[\

<F'(un),u >2M

1
m+12F(u,)- - " 1

IVu,l3. (39)



Thus, {u,} is bounded in H}(Q) for 6, € (0, 1), then
there exists u, € H such that 4} — v in H. From u, € /,
we have <F'(un), u;> =0, that is

all Vi |3 + bV, 31V iy 13 +J 4., (ui)zdx=J g(uy)updx.
Q 0

(40)

By a similar deduction as (37), we have IIVunllg > p for all
n e N. From (g,) and (g,), for any & > 0, there exists ¢, >0
such that

g(s)s<es’ +c.8° Vs eR. (41)

Thus, ‘MSIIVuflII% <1/af, g(u,)u;dx < elalu;, II§ + (c./a)
lu]:. Since {u,} is bounded in H, there is ¢, >0 such
that [, |uZ|*dx < ¢,, which implies

&c C
i 1 (42)

Choose &€= au/2c,, then y/2£cs/alluﬁllg, that is ||u§||§
>au/2c,. By the compactness of the embedding Hy(Q2)’
L1(Q) for g€ 2,6), we have

L) |u§|5dx2 %. (43)

Thus u5#0. By (g,),(9;), and the compactness
lemma of Strauss [21], we have

limJ g(uy,)uydx :J g(uy) ugdx, (44)
"o Q
limj G(uﬁ)dx=J G (uy ) dx. (45)
n—00 Q O

Also, according to the properties of the solution for
the Poisson system, we have

limian ¢ || dx = J b, |ut | dx. (46)
0 o

n—00
By the weak semicontinuity of norm, we have

+12 21145112
allVugll; + bllVu 3 1Vugll;

. (47)
< llggf{aIIVuillg + bIIVunH%IIVuﬁII%}.
From (40), (44), (46), and (47), we have
a||Vu§||§ + b||Vu0||§||Vu§||§ + J $u, ’uﬂzdx
° (48)

Slimian g(uﬁ)uﬁdx=J g(uy ) ugdx,
0

n—00 o)
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that is,

<F'(up), ut > <0. (49)

Since ||Vu||§ —Go)tlllulli >(1 —GO)IIVullg, for all ueH,
by (9), (10), (20), and (25), the weak semicontinuity of
norm, Fatou’s lemma, and Lemma 12, we can get

n—00

- tim {51+ | Sl - Gl

a. .
> Zhgloréf(HVun 5 - Go)tlllunﬂg)

m=hm{FWQ—£<F%%LW>}

O

1 0,1
+ limian (—g(un)un -G(u,) + ot |”n|2) dx
o\4 4

n—00

= (”VMO"% - 9(#‘1"”0”%)

JQ (ig(uo)uo - G(uy) +

INES

+

afyA
o)

a 1
= ||Vu0||§ + J [Zg(uo)uo - G(uo)} dx
Q

1
=F@@—Z<F%%L%>

> sup {F(sug +tug) +
5,20

1-t
+

1
< F’(uo),u6>] ~ 1 <F’(u0),u0>

4
= sup [F(sug +tug) — S < F'(uo), uy >
s,t>0 4

o .
7 < F(uy), ug >
> maxF(sug + tug) =m

5,620

(50)

Thus,  1im (195, 13 - 002, s, 12) = 12413 = O, g2

Consequently, u,, — u, in Hy(Q) and F(uy) =m, u, € M.
Corollary 14. Assume that (g,) — (g,) hold. Then

SEE == ko EF() ey

and ¢ > 0.

Lemma 15 (See for example [3]). Assume that (g,) - (g,)
hold. Then there exists a constant c, € (0,c| and a sequence

{u,} C E satisfying

F(u,) — ¢, | F' (u,) | (1+]|u,]l) — 0. (52)
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Lemma 16. If the assumptions (g,) — (g,) hold and u, € M
with F(u,) = m, then u, is a critical point of F.

Proof. For F'(u,) # 0, there exist o > 0 and p > 0 such that
u€ Hy(Q),||u—uy|| <30 = |IF'(u)lzp.  (53)

From (23), we have that

a(1-6,)(1 - s2)*
F(su§ + tuy) < F(uy) - %() IVug 13
a(1-6,)(1-£)*

_ %()Ilvualli
(-6 (1-) (54)
a - — S

=m- %nwgn%

1-6,)(1-2)?

_ w"v%ugvmzo.

Let D=(1/2,3/2) x (1/2,3/2), g(s, t) = sug + tuy. It fol-
lows from (54) that

X = (Snti)::g(DI(sug +tug) < m. (55)

For e=min {(m-x)/3,1, po/8},S=B(uy0), [22].
Lemma 7 yields a deformation # € C([0, 1] x H, H) such that
Q) n(Lu)=u,ifu¢ F'((m-2e,m+2e) ) Sy
(ii) (1, F™* (" B(uy,0)) C F"™*
(iii) F(n(1,

From Corollary 6, we have F(suj + tuy) < F(u,) = m for
s,t>0. For 5,£>0,|s— 1|2 +|t- 1|2 < 02/||u0||2, we know s
ug + tuy € F™¢ (N B(uy, 0), then it follows from (ii) that F(s
ug +tuy) <m-—e.

According to (iii) and (54), we have that

u)) < F(u),Yu € H(Q).

F(n(1, sug + tuy))
< F(sug + tug)
a(1-6,)(1-s2)*
RGN "l( Vv
a(1-6,)(1-1)*

L1

1-6 (56)
<m0 wmin (11912}
Ja-9) e (1-1)]
a(1-6y)0* 12 19|12
<m— 2207 min {IVug 21V 12}
4u|? UVl Pl

Vs, t >0, [s— 1] + |t = 1)* = o/llug|*.

Thus, maxF(1(1, g(s, t))) < m.
s,teD

Next, we prove that #(1, g(D)) (4 # &, which con-
tradicts to the definition of m. Let us define h(s, ) =#(1, g
(s,t)) and

7
Wo(s 1) = (F'(gls )us, ' (g5 1))
= (F’(sua’ +tug )ug, F' (sug + tua)ug),
V(s t) = GF’(h(s, ) (s, 1), %F’(h(s, ) (s, t)) :
(57)

Lemma 10 and the degree theory yields deg (¥, (s, t),
D,0) =1. By (55), we can deduce that g=h on 9Q. Con-
sequently, deg (¥, D, 0) =deg (¥,, D, 0) = 1. Therefore, we
have ¥, (s, t,) =0 for some (s, t,) € D, so that 5(1, g(sy
ty)) =h(sy, ty) € A, which is a contradiction. Thus, (53)
does not hold. In other words, u, is a critical point of F,
that is, u, is a sign-changing solution for problem (1).

4. The Existence Result of the Sign-
Changing Solutions

In this section, we mainly give the proof of Theorem 17.

Proof of Theorem 17. By Lemma 13 and Lemma 16, there is a
u, € A such that F(uy) =m and F'(uy) = 0. Therefore, u, is
exactly a sign-changing solution of problem (1). Now, we
prove that u, changes sign only once.

We assume by contradiction that u, = u; + u, + u,, where
u; #0,u;20,u, <0 and sup p (u;) (\supp (v;) = B,i #j(i, j
=1,2,3).

Let v=u, +u,, then v* =u;,v" =u,, and v* #0. Note
that <F'(u,), v*> =0 and <F'(u,), v"> = 0, we have

<F'(V).v* > = =bIVus Vv [ - A j b (v, (58)
Q

<F'(v), Y>> = —b||Vu3||§||Vv_||§ - AJ ¢u3(v_)2dx. (59)
Q

From (9)-(13), (23), (25), (58), and (59), we have

02 (ot 4,07

1 1
= F(v) + F(u;) = < F'(v),v>—71 <F'(u3),uy >

1- 4
CCF(v)vt >

> sup {F(SV+ +1v7) +
5,120

1-t*
+

<F'(v),v > } + F(uy) - % <F'(v),v>



1
1 <F'(u3),u3> (60)
st 2917+ 12 +\2
> sup SV +tV + 7 b||Vu3||2||Vv ||2 +AJ ¢u3(" ) dx
5,620 0
4

(b||w3|| 191 A ¢>u3(v*>2dx) }

a 1
t [V |12 + J hg(%)% - G(u3)} dx
Q

1-0
) oy

>maxF(sv' +tv7) +
5,120

a(l1-0,
> m+ %uv%ng.

Since 0, € (0, 1), we have u; =0. Therefore, 1, changes
sign only once.

5. Energy Doubling Property

Under the above preparations, we give the proof of
Theorem 18.

Proof of Theorem 18. By Lemma 15, we know that there exists
a sequence {u, } C E satisfying (52), that is,

F(u,) —c,, < F'(u,),u, > =0. (61)

According to (9), (10), (25), and (61), we have for large
nelN

91 =00) oy 12 (62)

c, +1>F(u,)- "2

which shows that {u,} is bounded in Hy(Q) for 6, € (0,1).
By a standard argument, we can prove that there exists a u,

€ H}(Q)\ {0} such that F'(u,) = 0. This suggests that u, €
A is a nontrivial solution for problem (1) and F(u,) >c.
On the other hand, by using (9), (10), and (25), the weak
semicontinuity of norm and Fatou’s lemma, we have

n—oo

[ [1
= lim { [Vu, ||2 J {—g(un)un - G(un)} dx}
n—00 o 4
> Zligi(gf(w”""% +6,1, ||un||§)

+ liminf <J Fg(u")un - G(un) + M |u”|2} dx)
al4 4

1
czc, = lim (F(un) 1 F'(u,), u, >)

n—o00

> 2 (19 + 61, 1 1)
[, [t = Gl + 2% s
Vi 2 + JQ Eg(ul)ul - G(ul)} ix

1
=F(u) - 1< F'(u)),u; > = F(u),

+

LIRS

(63)

Advances in Mathematical Physics

which implies F(u;) <c. Thus, F(u,)=c= in/fVI >0. In
ue

view of Theorem 1, there exists u,€.# such that
I(uy) =m. Therefore, from (11), (24), and Corollary 14,
we have

m = F(uy) = sup F(suj + tug)
5,t>0

=sup {F(sug) + F(tuy)

$,t>0

bs 2
— IV 12V 12 (64)

/\s 2

| ) b

> sup F(sug ) + sup F(tuy) > 2c,
20 >0

which implies the energy of the least-energy sign-changing
solution is strictly larger than twice that of the ground state
solutions of the Nehari type.

6. The Convergence Property

In this part, we give the convergence property for b\O0.
Firstly, we have to give some estimates which will be used
in the following process. Choose w, € C;°(Q) such that

wy # 0, then there exists a constant ¢’ such that

+ —\2

JQ ¢swg+tw5‘ (SwO + two) dx
/ —14
<c'[IsVwy + tVay |5

I/ 4 4 4 — 14
<2¢ (s'IVag I3 + £ IVag 113).

Thus, by (g,) and (g;), there exist §, >0 and f3,>
max {(1+Ac)IVail3/lwi s, (1+Ac) Vg ll3/llawgll3} such
that

G(t) 2 B,|t|* - BVt € R. (66)

Proof of Theorem 19. It is clear that b=0 is allowed in
Section 3. Therefore, we can deduce that there exists a
uy, € My, such that F'bo(ub0)=0 and F, (4, )=m, =
inf,c 4, Fy (u), that is, problem (2) has the least-energy
0
sign-changing solution, which changes sign only once.
For b> 0, let u;, € M, = M be a sign-changing solution of
(1) obtained in Theorem 1, which changes sign only once and
satisfies Fy(u,) = F(u,) = m;, =inf,. , F,(u).
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Then, for any b € [0, 1], it follows from Lemma 12 and
(65)-(66), we have

Fy(u,) = my, < maxF(swg + tw; )
S,t=

2 bs
as bs 4
= max <— IV I3 + - Vsl

2
- J G(swg )dx + 2 Ve, |2
o 2

bt

+—|IV 0||4 J G(tw, )dx
Q

2t2 5 5
+ —— Vg 3 1Vas 113

sw*ﬂw (swy + two) dx)

4
< max ( a3+ 2 19

- J G(swf)dx + — ||Vw5||§
o 2

bt

+—||Va)0||2 J G(tw, )dx
Q

bs* . bttt
+ TIIVwSIIZ + T”V“)O ”2

!

Ac _
+ ~ (54IIV(1.>(J§||‘21 + 14|V, ||§)

2 !

as 1+ Ac

< max <— ||ng||§ + —s4||ng II;1
5,t>0 2

J B, (swo) dx + IIVco0 ||2
Q

1+ Ac
+

I Veog l; - JQ By (twy) dx + 2P, IQ|>

2 ]
as 1+ Ac
< max | — |[Vawi |3 -

5,120 2 2

+ . Vg 115
— IV —
2 012

4
sHIVes I3

Ac! B
— |V, ||§> +26,12|
= A, € (0,00).

(67)

For any sequence {b,} with b,\0 as n — oo, by (9),
(10), (25), and (67), we have for large n € N

a(l1-6,)

Ag+12F, () = Z

\

1
3 <F, (), m, = 1724, I

(68)

Since 0, € (0, 1), {w, } is bounded in H(Q). Therefore,
there exists a subsequence of {b,}, still denoted by {b,}
and w, € H, such that u, — u, in Hy(Q). By a standard

argument, we can prove uj, — uj, # 0 in H, o(€). Since
n

<F'y (uy,)> 9> = aJQ Vu, Vedx + JQ g, up,pdx

- g(ubo)q)dx
Q

n—00

= lim {(a+ anIVubnllg)J Vu, Vodx
Q

+| Ay, w, pdx - J g(ubn)(pdx}
0 0

= lim < F', (u

n—-o0

b, )@ > =0.¥p e C°(Q).
(69)

/ p—

Thus, F'y, (uy ) =0, w, € M, ,and F, (u, ) >m,, . Next,
we give the proof of F, (1, ) =m, . Choose b, € [0, 1], from
(g,)» there exists a K, such that

2
as )
R

4
F, (svg +1tvy) = Ind Vg I3 - J G(svg)dx
Q

at> o bttt
+ THVVO "2 + n—”VV() ”2

b 2t2
—J Gltvy)dx + ~= [V IRV vy 2
0
A _
+ Z j_{) (/)sv(’;ﬂvg (5"3 + tVO )de

IN

) /
s 1+ Ac
-5 IVvils + TS4||VV3||§
at>
- J G(svg)dx + 5 Vv, ||§
Q

1+ Ac’
+

t4||Vv6 ||‘2L - J G(tvy)dx
o)
<0,Vs, t 2 K.
(70)

From Lemma 10, there exists (s,, t,) such that s,v} + £,
Vo €M, , (5.4) implies 0<s,,t, <K,. Since FIbO(VO) =0,
then from (9), (10), (15), (16), and (20), we have

by
Ly v s
2 Vvl
¢t ,
t<Fy (Vo) v >

My, = Fho("o) = an("o) -

>F, (s,vg +1,vp) +

- tfl F’ — b}’l 4
+ 1 <F, (vo)s Vo > _Z”V"ouz
1+K?
zm, -~ — 9] < F,bn("o)> v > | (71)
1+K4 _ b
S| < F'y (vo)svg > |- Z"nwoug‘
1+K4
=m, - b, Vvl IVve I3
1+K4
95, Vvl IV 5 — —"IIVVOII‘é,
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which implies

limsupm,, <my, . (72)

According to (9), (15), and (72), we have

my < Fy (4y,) = li?lsogpr” (up ) = linmjolipmb” <my, . (73)

This shows F,, (u;, ) = m, ,and the convergence property
of b\0 is proved.

Proof of Theorem 20. Since the proof is similar as the proof of
Theorem 19, we omit the details.
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