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The present work is related to solving the fractional generalized Korteweg-de Vries (gKdV) equation in fractional time derivative
form of order α. Some exact solutions of the fractional-order gKdV equation are attained by employing the new powerful expansion
approach by using the beta-fractional derivative which is used to get many solitary wave solutions by changing various parameters.
The obtained solutions include three classes of soliton wave solutions in terms of hyperbolic function, trigonometric function, and
rational function solutions. The obtained solutions and the exact solutions are shown graphically, highlighting the effects of
nonlinearity. Some of the nonlinear equations arise in fluid dynamics and nonlinear phenomena.

1. Introduction

The differential equation of fractional order is the new form
of classical integer order differential equations. Different
types of differential equations of both ordinary differential
equations (ODEs) and partial differential equations (PDEs)
in various fields of science like fluid mechanics and biological
systems are expressed in fractional forms [1]. There is no any
particular method for accessing the exact type of solutions of
fractional PDEs, but some approximate solutions are deter-
mined by using the Adomian decomposition approach, the
homotopy perturbation approach, and the homotopy analy-
sis approach [2–4]. The analytical method and its various
forms are well known for determining soliton wave-type
solutions of the nonlinear PDEs. With chronology, some
investigators have utilized the new analytical approach on
fractional-type nonlinear PDEs for obtaining the solitary
solutions. This work is related to the fractional order general-
ized Korteweg-de Vries (gKdV) equation [5]; for this, the
fractional form of the gKdV equation [5] is taken as

uαt + F uð Þux + uxxx = 0, 0 ≤ α < 1, 0 < d < 4, F uð Þ = λud + μu2d , λ, μ ∈ R:

ð1Þ

Equation (1) is a fractional form of the classical general-
ized Korteweg-de Vries equation which exists by changing
the 1st-order time derivatives by fractional derivatives.

In the past two decades, the fractional calculus theory
gained great attention and popularity in various fields of
science and engineering due to its demonstrated applica-
tions. These contributions to the fields of sciences and
engineering are based on mathematical analysis. They
cover widely known classical fields such as Abel’s integral
equation and viscoelasticity. They also include the analysis
of feedback amplifiers, the fractional-order Chua-Hartley
systems, electrode-electrolyte interface models, fractional-
order models of neurons, electric conductance of biological
systems, generalized voltage dividers, fitting of experimen-
tal data, capacitor theory, and the fields of special
functions [6–9].

Several robust methods have been used to solve the FDEs,
the fractional differential equations and dynamic systems
containing fractional derivatives. Some of the most impor-
tant methods are Adomian’s decomposition method [10–
12], the exp-function method [13], He’s variational iteration
method [14, 15], the fractional subequation method [16], the
first integral method [17], the homotopy analysis method

[18], the (G′/G)-expansion method [19], the homotopy
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perturbation method [20, 21], the spectral methods [22], and
the transform methods [23]. In [24], the authors presented
two methods, which are the exp(−ϕðξÞ)-expansion method
and the Kudryashov method. In [25], the authors demon-
strated three methods, which are the csch function method,
the tanh-coth method, and the modified simple equation
method. In [26–29], the authors introduced the semi-
inverse variational principle method, the extended
Kudryashov method, the modified simple equation method,
and the expanded trail equation method, respectively. More-
over, the fractional differential equations have been studied
by powerful authors, and their applications were introduced
in sciences and engineering branches [30–32].

One of the well-known equations is the ZK equation, first
obtained as a description of weakly nonlinear ion-acoustic
modes in a strongly magnetized plasma; it is of particular
interest as it is the simplest equation that admits cylindrical
and spherical solitary wave solutions in addition to the planar
KdV soliton solutions [33]. Another powerful analytical
method is called the exp-function method (EFM), which
was first presented by He [34]. EFM has successfully been
applied to many situations. For example, He and Wu [34]
solved the nonlinear wave equations via EFM. Abdou [35]
solved generalized solitonary and periodic solutions for non-
linear partial differential equations by EFM. For further
information, refer to vigorous references in ([35–40]). In
the following years, this proposed method was improved by
many researchers. Yang developed general fractional deriva-
tives, along with theory, methods, and applications, to some
nonlinear fractional differential equations [41]. Recently,
there has been a new fractal nonlinear Burgers’ equation aris-
ing from the acoustic signal propagation studied by Yang
[42]. Also, Yang et al. investigated fundamental solutions of
anomalous equations implemented with the decay exponen-
tial kernel [43]. A new integral transform operator for solving
the heat-diffusion problem has been utilized by Yang [44]. In
[45], Liu et al. probed the group analysis to the time frac-
tional nonlinear wave equation and found many exact solu-
tions. Moreover, Liu et al. worked on the time-fractional
nonlinear diffusion equation [46]. Same authors proposed
the fractional symmetry group method for the time fractional
nonlinear heat conduction equation which usually appears in
mathematics, physics, integrable systems, fluid mechanics,
and nonlinear areas [47]. Furthermore, in the last decade,
many real world problems have been explained using frac-
tional partial differential equations which can be linked to
the following valuable researches: utilizing the q-homotopy
analysis transform method and the fractional natural decom-
position method for the fractional Benney-Lin equation [48];
applying the quasiaffine biframelets to the fractional differen-
tial equations [49]; analyzing the moderate epidemiological
model to describe computer viruses with an arbitrary order
derivative [50]; solving the fractional Kaup-Kupershmidt
equation with the Atangana-Beleanu derivative and the
Caputo-Fabrizio derivative [51]; employing the Riemann-
Liouville integral, the Atangana-Baleanu integral operator,
and the nonlinear Telegraph equation [52]; solving singular
fractional integrodifferential equations with applications to
hematopoietic stem cell modeling [53]; applying the

truncatedM-fractional derivative to fractional differential
equations [54]; applying theðm + 1/G′Þ-expansion method
to the study of the (2 + 1)-dimensional hyperbolic nonlinear
Schrödinger equation [55], the study of unreported cases of
2019-nCOV epidemic outbreaks [56–58], and the study of
the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-
Segur equation [59]; and employing a reliable hybrid numeri-
cal method for a time-dependent vibration model [60]. To
make this paper more self-contained, a general trigonometric,
hyperbolic, and exponential function of the gKdV equation is
constructed with the help of an expansion approach, which is
crucial in obtaining the lump solution of equation (1).

The pattern of this article is summarized as follows: Sec-
tion 2 gives the details of the initial definitions; Section 3
gives an introduction of the direct truncation method which
is utilized for getting the exact solutions of the gKdV equa-
tion in Section 4; Section 5 gives the numerical simulation
and graph details; and Section 6 gives some conclusions at
the end.

2. Initial Definitions

Definition 1. Definition of β-derivative: suppose φ : ½0 ; 1Þ
→ R, then the β derivative of φ of order α is defined as

Dα
t φð Þ tð Þ = lim

ε→0

φ t + ε t + 1/Γ αð Þð Þ1−α� �
− φ tð Þ

ε
, α ∈ 0, 1ð �, t > 0:

ð2Þ

The following properties and new theorems will be used.

Theorem 2. Suppose α ∈ ð0, 1�; let φ, ω be α-differentiable at
point t. Therefore, we have

Dα
t aφ tð Þ + bω tð Þð Þ = aDα

t φ tð Þð Þ + bDα
t ω tð Þð Þ, for a, b ∈ R,

Dα
t cð Þ = 0, for c ∈ R,

Dα
t φ tð Þω tð Þð Þ = φ tð ÞDα

t ω tð Þð Þ + ω tð ÞDα
t φ tð Þð Þ,

Dα
t

φ tð Þ
ω tð Þ
� �

= φ tð ÞDα
t ω tð Þð Þ − ω tð ÞDα

t φ tð Þð Þ
ω2 tð Þ ,

Dα
t φ tð Þ = t + 1

Γ αð Þ
� �1−α dφ tð Þ

dt
:

ð3Þ

Theorem 3 (see [61–63]). Supposeφ : ½0 ; 1Þ→ R is a function
such that φ is differentiable and also α-differentiable. Assume
ω is a differentiable function defined in the range of φ. There-
fore, we have

Dα
t φoωð Þ tð Þ = t + 1

Γ αð Þ
� �1−α

ω′ tð Þχ′ ω tð Þð Þ, ð4Þ

where a prime denotes the classical derivatives with respect to t.
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3. Methodology

In this section, we give a description of the direct truncation
method and introduce it to a partial differential equation.

For a given partial differential equation

P u, ux, uxx,⋯,Dα
t u,Dα

xu,Dα
xxu,⋯ð Þ = 0, 0 < α ≤ 1: ð5Þ

Using a transformation as

u x, tð Þ = u ϕð Þ,

η = kx + l
α

t + 1
Γ αð Þ

� �α

,
ð6Þ

where k and l are constants to be determined later. We can
rewrite equation (5) in the following nonlinear ODE:

Q u, ku′, k2u′′,⋯, lu′,⋯
� �

= 0, ð7Þ

where the prime denotes the derivative with respect to ϕ. If
possible, we integrate equation (7) term by term one or more
times. This yields constants of integration. For simplicity, the
integration constants can be set to zero. Suppose g has the
following truncation form:

g ϕð Þ = ∑τ
j=0ajξ ϕð Þj
ζ ϕð Þτ , ð8Þ

in which ξðϕÞ and ζðϕÞ are introduced in the following forms:

ξ ϕð Þ = p1F χ ϕð Þð Þ + q1G χ ϕð Þð Þ + r1,
ζ ϕð Þ = p2F χ ϕð Þð Þ + q2G χ ϕð Þð Þ + r2,

u ξð Þ = g ϕð Þ = ∑τ
j=0aj p1F χ ϕð Þð Þ + q1G χ ϕð Þð Þ + r1ð Þj
p2F χ ϕð Þð Þ + q2G χ ϕð Þð Þ + r2ð Þτ ,

ð9Þ

where aj, p1, q1, r1, p2, q2, and r2 are constants to be deter-
mined, χðϕÞ is given, and eitherFandGare functions deter-
mined by an ordinary differential system or F and G are
functions given by direct ansatz such that their derivations
are combinations of F and G, and χðϕÞ is determined by an
ordinary differential equation:

dχ ϕð Þ
dϕ

=H χ ϕð Þð Þ = LF χ ϕð Þð Þ +MG χ ϕð Þð Þ +N , ð10Þ

in which the functionH is also given by a direct ansatz accord-
ing to the context, and the exponent τ is determined by utiliz-
ing the homogeneous balance method in equation (5). The
value τ is determined by equalizing the maximum order non-
linear term and the maximum order partial derivative term
appearing in (7). Ifτis rational, then the appropriate transfor-
mations can be applied to conquer these hurdles. Substituting
(9) and (10) into (8) leads to a polynomial in FðϕÞ and GðϕÞ;
then, we set the coefficients of FiðϕÞGjðϕÞ and the constant
term to zero to get a system of algebraic equations on the
unknown parameters in H together with the unknown num-

bers aj, p1, q1, r1, p2, q2, and r2 for j = 0, 1,⋯, τ. By solving
the system, one can get aj, p1, q1, r1, p2, q2, and r2 and the
unknown parameters in H; then, by solving equation (10) to
getχðϕÞ, the solutions of equation (5) can be obtained.

4. Traveling Wave Solution Fractional Order
Form of Generalized KdV Equation

The given section deals with the application of a new powerful
expansion technique by determining the traveling wave form
solutions of the fractional order generalized KdV equation:

uαt + F uð Þux + uxxx = 0, F uð Þ = λud + μu2d , λ, μ ≠ 0, ð11Þ

by applying the aforementioned method. By using the frac-
tional beta complex transform η = kx + ðl/αÞðt + ð1/ΓðαÞÞÞα,
equation (11) is reduced to the following ODE:

lu′ + λud + μu2d
� �

ku′ + k3u‴ = 0: ð12Þ

Integrating equation (12) once and setting the constant of
integration equal to zero results in

lu + kλ
d + 1 u

d+1 + kμ
d + 1 u

2d+1 + k3u″ = 0: ð13Þ

Balancing u″ and u2d+1 by employing the homogenous
principle, we get

M + 2 = 2d + 1ð ÞM, ⇒M = 1
d
: ð14Þ

To get a closed form solution, we use the transformation

u ηð Þ = v ηð Þ 1/dð Þ: ð15Þ

Substituting (15) into equation (13), we get

lv2 + kλ
d + 1 v

3 + kμ
2d + 1 v

4 + k3

d
1 − d
d

v′2 + vv″
� �

= 0: ð16Þ

Balancing vv″ and v4, we get

2M + 2 = 4M, ⇒M = 1: ð17Þ

Case I. Then, the exact solution will be as

v ηð Þ = e2χ ϕð Þa1p1 + eχ ϕð Þa1q1 + a1r1 + a0
p2e

2χ ϕð Þ + q2e
χ ϕð Þ + r2

: ð18Þ

Inserting (18) into equation (16), we obtain the below
relation
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d2 d + 1ð Þ 2d + 1ð Þ p2e
2χ ϕð Þ + q2e

χ ϕð Þ + r2
� �4� �−1

〠
11

n=0
Cn exp

� nχ ϕð Þð Þ = 0,
ð19Þ

where Cnð0 ≤ n ≤ 11Þ are polynomial statements in terms of
a0, a1, p1, p2, q1, q2, r1, and r2. Hence, solving the resulting
system Cn = 0ð0 ≤ n ≤ 11Þ simultaneously, we acquire the
following sets of parameters of solutions.

Set I.

L = 0,
M = 0,

N = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = λ2 2d + 1ð Þk
μ d3 + 5 d2 + 8 d + 4
	 
 ,

a0 = −
r2λ 2d + 1ð Þ

d + 2ð Þμ ,

a1 = 0,
p1 = p1,
p2 = p2,
q1 = q1,
q2 = 0,
r1 = r1,
r2 = r2:

ð20Þ

We, therefore, gained the following generalized solitary
solution:

u1 ϕð Þ = −
r2λ 2d + 1ð Þ

d + 2ð Þμ p2e
2χ ϕð Þ + r2

	 

 ! 1/dð Þ

,

χ ϕð Þ = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ϕ + Cð Þ,

ð21Þ

in which

ϕ = kx + λ2 2d + 1ð Þk
μα d3 + 5 d2 + 8 d + 4
	 
 t + 1

Γ αð Þ
� �α

: ð22Þ

Set II.

L = 0,
M = 0,

N =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = λ2 2d + 1ð Þk
μ d3 + 5 d2 + 8 d + 4
	 
 ,

a0 = −
r2λ 2d + 1ð Þ

d + 2ð Þμ ,

a1 = 0,
p1 = p1,
p2 = 0,
q1 = q1,
q2 = q2,
r1 = r1,
r2 = r2:

ð23Þ

We, therefore, gained the following generalized solitary
solution:

u2 ϕð Þ = −
r2λ 2d + 1ð Þ

d + 2ð Þμ q2e
χ ϕð Þ + r2

	 

 ! 1/dð Þ

,

χ ϕð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ϕ + Cð Þ,

ð24Þ

in which

ϕ = kx + λ2 2d + 1ð Þk
μα d3 + 5 d2 + 8 d + 4
	 
 t + 1

Γ αð Þ
� �α

: ð25Þ

Set III.

L = 0,
M =M,
N =N ,

k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð ÞN ,

l = λ3 2d + 1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

d

μ2 d + 1ð Þ d3 + 5 d2 + 8 d + 4
	 


d + 2ð ÞN ,

a0 = −
Mq2 −Np2ð Þλ 2d + 1ð Þr1

N d + 2ð Þμp1
,

a1 =
Mq2 −Np2ð Þλ 2d + 1ð Þr1

N d + 2ð Þμ p1
,

p1 = p1,
p2 = p2,
q1 = 0,
q2 = q2,
r1 = r1,
r2 = 0:

ð26Þ
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We, therefore, gained the following generalized solitary
solution:

u3 ϕð Þ = Mq2 −Np2ð Þλ 2d + 1ð Þeχ ϕð Þ

N d + 2ð Þμ eχ ϕð Þp2 + q2
	 


 ! 1/dð Þ
,

χ ϕð Þ =N ϕ + Cð Þ + ln N
1 −M exp N ϕ + Cð Þð Þ
� �

,

ð27Þ

in which

ϕ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð ÞN x

+ λ3 2d + 1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

d

μ2α d + 1ð Þ d3 + 5 d2 + 8 d + 4
	 


d + 2ð ÞN

� t + 1
Γ αð Þ

� �α

:

ð28Þ

Set IV.

We, therefore, gained the following generalized solitary
solution:

L = 0,
M =M,

N = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = λ2 2d + 1ð Þk
μ d3 + 5 d2 + 8 d + 4
	 
 ,

r1 = r1,
r2 = r2,

a0 =
4M2d3k2μr2 + 20M2d2k2μr2 + 32M2dk2μr2 + 16M2k2μr2 + 2d3λ2p2 + d2λ2p2
	 


r1
d + 2ð Þμd2λp1

,

p1 = p1,
p2 = p2,
q1 = 0,

a1 = −
4M2d3k2μr2 + 20M2d2k2μr2 + 32M2dk2μr2 + 16M2k2μr2 + 2d3λ2p2 + d2λ2p2

d + 2ð Þμd2λp1
,

q2 = 4 r2M d + 2ð Þkμ d + 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
:

ð29Þ

u4 ϕð Þ = −
1
2

4M2k2μr2 d + 1ð Þ d + 2ð Þ2 + d2λ2p2 2d + 1ð Þ	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

e2χ ϕð Þ

μ2 d + 1ð Þd d + 2ð Þ 1/2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd p2e2χ ϕð Þ + r2
	 


/μ d + 1ð Þ
� �

+ 2r2Mkeχ ϕð Þ d + 2ð Þ
� � , ð30Þ
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in which

χ ϕð Þ =N ϕ + Cð Þ + ln N
1 −M exp N ϕ + Cð Þð Þ
� �

,

ϕ = kx + λ2 2d + 1ð Þk
αμ d3 + 5 d2 + 8 d + 4
	 
 t + 1

Γ αð Þ
� �α

:

ð31Þ

Set V.

We, therefore, gained the following generalized solitary
solution:

L = 0,
M =M,
N =N ,
k = k,

l = −
N2k3

d2
,

a0 =
2Md2r2 −Nd2q2 + 6Mdr2 − 3Ndq2 + 4Mr2 − 2Nq2
	 


Nk2r1
q1d

2λ
,

a1 = −
2Md2r2 −Nd2q2 + 6Mdr2 − 3Ndq2 + 4Mr2 − 2Nq2
	 


Nk2

q1d
2λ

,

p1 =
Mq1
N

,
q1 = q1,
q2 = q2,
r1 = r1,
r2 = r2,

p2 =
4Mk2μr2 d + 1ð Þ d + 2ð Þ2 Mr2 −Nq2ð Þ + q2

2 N2d3k2μ + 5N2d2k2μ + 8N2dk2μ + 4N2k2μ + 2d3λ2 + d2λ2
	 

4d2λ2r2 2d + 1ð Þ

:

ð32Þ

u5 ϕð Þ

= − 4 d + 2ð Þ d + 1ð Þ 2Mr2 −Nq2ð Þk2λ 2d + 1ð Þr2eχ ϕð Þ Meχ ϕð Þ +N
	 
	 


e2χ ϕð Þ 4M2d3k2μr22 − 4MNd3k2μq2r2 +N2d3k2μq2
2 + 20M2d2k2μr22 − 20MNd2k2μq2r2 + 5N2d2k2μq2

2 + 32M2dk2μr22 − 32MNdk2μq2r2 + 8N2dk2μq2
2 + 16M2k2μr22 − 16MNk2μq2r2 + 4N2k2μq2

2 + 2d3λ2q22 + d2λ2q2
2	 


+ 4q2eχ ϕð Þd2λ2r2 2d + 1ð Þ + 4d2λ2r22 2d + 1ð Þ

( ) 1/dð Þ
,

ð33Þ
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in which

χ ϕð Þ =N ϕ + Cð Þ + ln N
1 −M exp N ϕ + Cð Þð Þ
� �

,

ϕ = kx −
N2k3

αd2
t + 1

Γ αð Þ
� �α

:

ð34Þ

Set VI.

L = 0,

M = −
2d + 1ð Þdλ p1

q1k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

d + 2ð Þ
,

N =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = kλ2 2d + 1ð Þ
d + 1ð Þμ d + 2ð Þ2 ,

a0 =
λq2 2d + 1ð Þr1
μq1 d + 2ð Þ ,

a1 = −
λq2 2d + 1ð Þ
μq1 d + 2ð Þ ,

p1 = p1,
p2 = p2,
q1 = q1,
q2 = q2,
r1 = r1,
r2 = 0:

ð35Þ

We, therefore, gained the following generalized solitary
solution:

u6 ϕð Þ = −
λq2 2d + 1ð Þ eχ ϕð Þp1 + q1

	 

μq1 d + 2ð Þ eχ ϕð Þp2 + q2

	 

( ) 1/dð Þ

, ð36Þ

in which

χ ϕð Þ =N ϕ + Cð Þ + ln N
1 −M exp N ϕ + Cð Þð Þ
� �

,

ϕ = kx + kλ2 2d + 1ð Þ
α d + 1ð Þμ d + 2ð Þ2

t + 1
Γ αð Þ

� �α

:

ð37Þ

Set VII.

L = 0,
M =M,
N =N ,

k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð ÞN ,

l = λ3 2d + 1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

d

μ2 d + 1ð Þ d3 + 5 d2 + 8 d + 4
	 


d + 2ð ÞN ,

a0 = −
Mq1r2 +Np1r2 −Nq1q2ð Þλ 2d + 1ð Þr1

N d + 2ð Þμq12
,

a1 =
Mq1r2 +Np1r2 −Nq1q2ð Þλ 2d + 1ð Þ

N d + 2ð Þμ q12
,

p1 = p1,

p2 = −
p1 p1r2 − q1q2ð Þ

q1
2 ,

q1 = q1,
q2 = q2,
r1 = r1,
r2 = r2:

ð38Þ

We, therefore, gained the following generalized solitary
solution:

u7 ϕð Þ = −
Mq1r2 +Np1r2 −Nq1q2ð Þλ 2d + 1ð Þeχ ϕð Þ

eχ ϕð Þp1r2 − q2eχ ϕð Þq1 − q1r2
	 


N d + 2ð Þμ

( ) 1/dð Þ
,

ð39Þ

in which

χ ϕð Þ =N ϕ + Cð Þ + ln N
1 −M exp N ϕ + Cð Þð Þ
� �

,

ϕ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð ÞN x

+ λ3 2d + 1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

d

αμ2 d + 1ð Þ d3 + 5 d2 + 8 d + 4
	 


d + 2ð ÞN

� t + 1
Γ αð Þ

� �α

:

ð40Þ

Set VIII.
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L = 0,
M = 0,

N =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = kλ2 2d + 1ð Þ
d + 1ð Þμ d + 2ð Þ2

,

a0 = −
dμa1r1 + 2dλr2 + 2μa1r1 + λr2

d + 2ð Þμ ,

a1 = a1,
p1 = 0,
p2 = 0,
q1 = 0,
q2 = q2,
r1 = r1,
r2 = r2:

ð41Þ

We, therefore, gained the following generalized solitary
solution:

u8 ϕð Þ = −
r2λ 2d + 1ð Þ

d + 2ð Þμ q2eχ ϕð Þ + r2
	 


( ) 1/dð Þ
, ð42Þ

in which

χ ϕð Þ =N ϕ + Cð Þ,

ϕ = kx + kλ2 2d + 1ð Þ
α d + 1ð Þμ d + 2ð Þ2

t + 1
Γ αð Þ

� �α

:
ð43Þ

Set IX.

L = 0,
M = 0,

N =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = kλ2 2d + 1ð Þ
d + 1ð Þμ d + 2ð Þ2

,

a0 = −
r2λ 2d + 1ð Þ

d + 2ð Þμ ,

a1 = 0,
p1 = p1,
p2 = 0,
q1 = q1,

q2 = q2,

r1 = r1,

r2 = r2: ð44Þ

We, therefore, gained the following generalized solitary
solution:

u9 ϕð Þ = a1q1eχ ϕð Þμd + 2a1q1eχ ϕð Þμ − 2dλr2 − λr2
d + 2ð Þμr2

� � 1/dð Þ
,

ð45Þ

in which

χ ϕð Þ =N ϕ + Cð Þ,

ϕ = kx + kλ2 2d + 1ð Þ
α d + 1ð Þμ d + 2ð Þ2 t + 1

Γ αð Þ
� �α

:
ð46Þ

Set X.

L = 0,

M =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ 2d2 + 3d + 1
	 
q

a1q1d

2d2 + 3d + 1
	 


r2k
,

N = dλ 2d2 + 3d + 1
	 


d + 2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ 2d2 + 3d + 1
	 
q

k d + 1ð Þ
,

k = k,

l = kλ2 2d + 1ð Þ
d + 1ð Þμ d + 2ð Þ2 ,

a0 = −
dμa1r1 + 2dλr2 + 2μa1r1 + λr2

d + 2ð Þμ ,

a1 = a1,
p1 = 0,
p2 = 0,
q1 = q1,
q2 = q2,
r1 = r1,
r2 = r2:

ð47Þ

We, therefore, gained the following generalized solitary
solution:

u10 ϕð Þ = a1q1eχ ϕð Þμd + 2a1q1eχ ϕð Þμ − 2dλr2 − λr2
d + 2ð Þμ q2eχ ϕð Þ + r2

	 

( ) 1/dð Þ

,

ð48Þ
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in which

χ ϕð Þ =N ϕ + Cð Þ + ln N
1 −M exp N ϕ + Cð Þð Þ
� �

,

ϕ = kx + kλ2 2d + 1ð Þ
α d + 1ð Þμ d + 2ð Þ2

t + 1
Γ αð Þ

� �α

:

ð49Þ

Set XI.

L = 0,
M = 0,

N =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2 d + 1ð Þp

λ d
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = kλ2 2d + 1ð Þ
d + 1ð Þμ d + 2ð Þ2

,

a0 = −
dμa1r1 + 2dλr2 + 2μa1r1 + λr2

d + 2ð Þμ ,

a1 = a1,
p1 = 0,
p2 = p2,
q1 = q1,

q2 = −
d2μ2a1

2q1
2 + 4dμ2a12q12 + 4d2λ2p2r2 + 4μ2a12q12 + 4dλ2p2r2 + λ2p2r2

μ 2d2 + 5d + 2
	 


a1q1λ
,

r1 = r1,
r2 = r2:

ð50Þ

We, therefore, gained the following generalized solitary
solution:

u11 ϕð Þ = λ q1a1 2d + 1ð Þ
2eχ ϕð Þdλp2 − dμa1q1 + eχ ϕð Þλp2 − 2μa1q1

� � 1/dð Þ
, ð51Þ

in which

χ ϕð Þ =N ϕ + Cð Þ,

ϕ = kx + kλ2 2 d + 1ð Þ
α d + 1ð Þμ d + 2ð Þ2 t + 1

Γ αð Þ
� �α

:
ð52Þ

Set XII.

L = 0,

M = −
1
4

q2dλ 2d + 1ð Þ
r2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

d + 2ð Þ
,

N = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

μ d + 1ð Þ ,

k = k,

l = kλ2 2d + 1ð Þ
d + 1ð Þμ d + 2ð Þ2

,

a0 = −
dμa1r1 + 2dλr2 + 2μa1r1 + λr2

d + 2ð Þμ ,

a1 = a1,

p1 = −
1
4

2d + 1ð Þq22λ
d + 2ð Þa1r2μ

,p2 = p2,

q1 = −
q2λ 2d + 1ð Þ
d + 2ð Þa1μ

,

q2 = q2,

r1 = r1,

r2 = r2: ð53Þ

We, therefore, gained the following generalized solitary
solution:

u12 ϕð Þ

= −
1
4
λ 2q22e2χ ϕð Þd + q2

2e2χ ϕð Þ + 8q2eχ ϕð Þr2d + 4q2eχ ϕð Þr2 + 8dr22 + 4r22
	 


p2e2χ ϕð Þ + q2eχ ϕð Þ + r2
	 


d + 2ð Þr2μ

( ) 1/dð Þ
,

ð54Þ

in which

χ ϕð Þ =N ϕ + Cð Þ + ln N
1 −M exp N ϕ + Cð Þð Þ
� �

,

ϕ = kx + kλ2 2 d + 1ð Þ
α d + 1ð Þμ d + 2ð Þ2 t + 1

Γ αð Þ
� �α

:

ð55Þ

Case II. Then the exact solution will be as

v ηð Þ = sinh χ ϕð Þð Þa1p1 + cosh χ ϕð Þð Þa1q1 + a1r1 + a0
p2 sinh χ ϕð Þð Þ + q2 cosh χ ϕð Þð Þ + r2

:

ð56Þ

Inserting (56) into equation (16), we obtain

d2 d + 1ð Þ 2d + 1ð Þ p2 sinh χ ϕð Þð Þ + q2 cosh χ ϕð Þð Þ + r2ð Þ4	 
−1
� 〠
i+j=6

Cij sinhi χ ϕð Þð Þ cosh j χ ϕð Þð Þ = 0,

ð57Þ

where Cijði + j = 6, 0 ≤ i, j ≤ 6Þ are polynomial statements in
terms of a0, a1, p1, p2, q1, q2, r1, and r2. Hence, solving the
resulting system Cij = 0ði + j = 6, 0 ≤ i, j ≤ 6Þ simultaneously,
we acquire the following sets of parameters of solutions.
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Set I.

L = 0,
M = 0,

N = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = λ2 2d + 1ð Þk
μ d3 + 5 d2 + 8 d + 4
	 
 ,

a0 = −
r2λ 2d + 1ð Þ

d + 2ð Þμ ,

a1 = 0,
p1 = p1,
p2 = q2,
q1 = q1,
q2 = q2,
r1 = r1,
r2 = r2:

ð58Þ

We, therefore, gained the following generalized solitary
solution:

u1 ϕð Þ = −
λ 2d + 1ð Þr2

μ d + 2ð Þ q2 sinh χ ϕð Þð Þ + q2 cosh χ ϕð Þð Þ + r2ð Þ
� � 1/dð Þ

,

χ ϕð Þ = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ϕ + Cð Þ,

ð59Þ

in which

ϕ = kx + λ2 2d + 1ð Þk
μα d3 + 5 d2 + 8 d + 4
	 
 t + 1

Γ αð Þ
� �α

: ð60Þ

Set II.

L = 0,
M = 0,

N =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = λ2 2d + 1ð Þk
μ d3 + 5 d2 + 8 d + 4
	 
 ,

a0 = −
r2λ 2d + 1ð Þ

d + 2ð Þμ ,

a1 = 0,

p1 = p1,

p2 = −q2,

q1 = q1,

q2 = q2,

r1 = r1,

r2 = r2: ð61Þ

We, therefore, gained the following generalized solitary
solution:

u2 ϕð Þ = λ 2d + 1ð Þr2
μ d + 2ð Þ q2 sinh χ ϕð Þð Þ − q2 cosh χ ϕð Þð Þ − r2ð Þ
� � 1/dð Þ

,

χ ϕð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ϕ + Cð Þ,

ð62Þ

in which

ϕ = kx + λ2 2d + 1ð Þk
μα d3 + 5 d2 + 8 d + 4
	 
 t + 1

Γ αð Þ
� �α

: ð63Þ

Set III.

L = 0,
M = 0,

N = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = λ2 2d + 1ð Þk
μ d3 + 5 d2 + 8 d + 4
	 
 ,

a0 =
1
2
λ 2dp2 + 2dq2 + p2 + q2ð Þr1

q1 d + 2ð Þμ ,

a1 = −
1
2
λ 2dp2 + 2 dq2 + p2 + q2ð Þ

q1 d + 2ð Þμ ,

p1 = q1,
p2 = p2,
q1 = q1,
q2 = q2,
r1 = r1,
r2 = 0:

ð64Þ

We, therefore, gained the following generalized solitary
solution:

u3 ϕð Þ = −
1
2
λ 2dp2 + 2dq2 + p2 + q2ð Þ sinh χ ϕð Þð Þ + cosh χ ϕð Þð Þð Þ

μ d + 2ð Þ p2 sinh χ ϕð Þð Þ + q2 cosh χ ϕð Þð Þð Þ
� � 1/dð Þ

,

χ ϕð Þ = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ϕ + Cð Þ,

ð65Þ

in which
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ϕ = kx + λ2 2d + 1ð Þk
μα d3 + 5 d2 + 8 d + 4
	 
 t + 1

Γ αð Þ
� �α

: ð66Þ

Set IV.

L = 0,
M = 0,

N = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = λ2 2d + 1ð Þk
μ d3 + 5 d2 + 8 d + 4
	 
 ,

a0 =
1
2
λ 2dp2 − 2dq2 + p2 − q2ð Þr1

q1 d + 2ð Þμ ,

a1 = −
1
2
λ 2dp2 − 2dq2 + p2 − q2ð Þ

q1 d + 2ð Þμ ,

p1 = −q1,
p2 = p2,
q1 = q1,
q2 = q2,
r1 = r1,
r2 = 0:

ð67Þ

We, therefore, gained the following generalized solitary
solution:

u4 ϕð Þ = −
1
2
λ 2dp2 − 2dq2 + p2 − q2ð Þ sinh χ ϕð Þð Þ − cosh χ ϕð Þð Þð Þ

μ d + 2ð Þ p2 sinh χ ϕð Þð Þ + q2 cosh χ ϕð Þð Þð Þ
� � 1/dð Þ

,

χ ϕð Þ = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ϕ + Cð Þ,

ð68Þ

in which

ϕ = kx + λ2 2d + 1ð Þk
μα d3 + 5 d2 + 8 d + 4
	 
 t + 1

Γ αð Þ
� �α

: ð69Þ

Set V.

L = 0,
M = 0,

N = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = λ2 2d + 1ð Þk
μ d3 + 5 d2 + 8 d + 4
	 
 ,

a0 = −
1
2
q2λ 2d + 1ð Þr1
μp1 d + 2ð Þ ,

a1 =
1
2
q2λ 2d + 1ð Þ
μp1 d + 2ð Þ ,

p1 = p1,

p2 = 0,

q1 = −p1,

q2 = q2,

r1 = r1,

r2 = 0: ð70Þ

We, therefore, gained the following generalized solitary
solution:

u5 ϕð Þ = 1
2

2d + 1ð Þλ sinh χ ϕð Þð Þ − cosh χ ϕð Þð Þð Þ
μ d + 2ð Þ cosh χ ϕð Þð Þ

� � 1/dð Þ
,

χ ϕð Þ = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ϕ + Cð Þ,

ð71Þ

in which

ϕ = kx + λ2 2d + 1ð Þk
μα d3 + 5 d2 + 8 d + 4
	 
 t + 1

Γ αð Þ
� �α

:

ð72Þ

Set VI.

L = 0,
M = 0,

N = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = λ2 2d + 1ð Þk
μ d3 + 5 d2 + 8 d + 4
	 
 ,

a0 =
1
2
q2λ 2d + 1ð Þr1
μp1 d + 2ð Þ ,

a1 = −
1
2
q2λ 2 d + 1ð Þ
μp1 d + 2ð Þ ,

p1 = p1,
p2 = 0,
q1 = p1,
q2 = q2,
r1 = r1,
r2 = 0:

ð73Þ
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Figure 1: The 3D plot of (21) at d = 0:2, μ = −1, p2 = 1:5, r2 = 2, λ = 2:2, and k = 3 when (a) α = 0:25, (b) α = 0:5, (c) α = 0:85, and (d) α = 0:99.
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Figure 2: The 3D plot of (27) at d = 0:2,μ = −1, p2 = 1:5, q2 = 2, λ = 2:2,M = −3, N = 2, and k = 3 when (a) α = 0:25, (b) α = 0:5, (c) α = 0:85,
and (d) α = 0:99.
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Figure 3: The 3D plot of (45) at d = 2, μ = −1, a1 = 1:5, q1 = 0:2, r2 = 2, λ = 2:2, M = −3, N = 2, and k = 3 when (a) α = 0:25, (b) α = 0:5, (c)
α = 0:85, and (d) α = 0:99.
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Figure 4: The 3D plot of (59) at d = 0:2, μ = −1, q2 = 1:5, r2 = 2, λ = 2:2, M = 3, N = 2, and k = 3 when (a) α = 0:25, (b) α = 0:5, (c) α = 0:85,
and (d) α = 0:99.
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Figure 5: The 3D plot of (65) at d = 0:2, μ = −1, p2 = 1:5, q2 = 2, λ = 2:2, M = 3, N = 2, and k = 3 when (a) α = 0:25, (b) α = 0:5, (c) α = 0:85,
and (d) α = 0:99.
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Figure 6: The 3D plot of (80) at d = 0:2, μ = −1, r2 = 1:5, q2 = 2, λ = 2:2, M = 3, N = 2, and k = 3, when (a) α = 0:25, (b) α = 0:5, (c) α = 0:85,
and (d) α = 0:99.
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We, therefore, gained the following generalized solitary
solution:

u6 ϕð Þ = −
1
2

2d + 1ð Þλ sinh χ ϕð Þð Þ + cosh χ ϕð Þð Þð Þ
μ d + 2ð Þ cosh χ ϕð Þð Þ

� � 1/dð Þ
,

χ ϕð Þ = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ϕ + Cð Þ,

ð74Þ

in which

ϕ = kx + λ2 2d + 1ð Þk
μα d3 + 5 d2 + 8 d + 4
	 
 t + 1

Γ αð Þ
� �α

:

ð75Þ

Set VII.

L = 0,
M = 0,

N = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = λ2 2d + 1ð Þk
μ d3 + 5 d2 + 8 d + 4
	 
 ,

a0 =
1
2
q2λ 2d + 1ð Þr1

μp1
,

a1 = −
1
2
q2λ 2d + 1ð Þ

μp1
,

p1 = p1,
p2 = d + 1ð Þq2,
q1 = p1,
q2 = q2,
r1 = r1,
r2 = 0:

ð76Þ

We, therefore, gained the following generalized solitary
solution:

u7 ϕð Þ = −
1
2

2d + 1ð Þλ sinh χ ϕð Þð Þ + cosh χ ϕð Þð Þð Þ
μ sinh χ ϕð Þð Þd + sinh χ ϕð Þð Þ + cosh χ ϕð Þð Þð Þ

� � 1/dð Þ
,

χ ϕð Þ = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2 d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ϕ + Cð Þ,

ð77Þ

in which

ϕ = kx + λ2 2d + 1ð Þk
μα d3 + 5 d2 + 8 d + 4
	 
 t + 1

Γ αð Þ
� �α

:

ð78Þ

Set VIII.

L = 0,
M = 0,

N = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ,

k = k,

l = λ2 2d + 1ð Þk
μ d3 + 5 d2 + 8 d + 4
	 
 ,

a0 = −
1
2
q2λ 2d + 1ð Þr1

μp1
,

a1 =
1
2
q2λ 2d + 1ð Þ

μp1
,

p1 = p1,
p2 = − d + 1ð Þq2,
q1 = −p1,
q2 = q2

r1 = r1,
r2 = 0:

ð79Þ

We, therefore, gained the following generalized solitary
solution:

u8 ϕð Þ = −
1
2

2d + 1ð Þλ sinh χ ϕð Þð Þ − cosh χ ϕð Þð Þð Þ
μ sinh χ ϕð Þð Þd + sinh χ ϕð Þð Þ − cosh χ ϕð Þð Þð Þ

� � 1/dð Þ
,

χ ϕð Þ = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ d + 1ð Þ 2d + 1ð Þp

λd
μ d + 1ð Þ d + 2ð Þk ϕ + Cð Þ

ð80Þ

in which

ϕ = kx + λ2 2d + 1ð Þk
μα d3 + 5 d2 + 8 d + 4
	 
 t + 1

Γ αð Þ
� �α

:

ð81Þ

5. Graphical Representation

The graphical description of derived soliton and other solu-
tions have been expressed in the mentioned figures by allot-
ting the different values of the parameters. The 3D plots for
some solutions of the considered equation for four fractional
order cases α = 0:25, 0:5, 0:85, and 0:99 have been shown.
When all obtained exact solutions for the fractional
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generalized Korteweg-de Vries equation are examined, the
exact solution (32) is similar to the solution of Sahadevan
and Bakkyaraj [64], the solution of Li et al. [65] (48), and
the solution of Akbulut and Tascan [66] (74) in the literature.
There are other obtained exact solutions that are not
included in the literature, and it can be said that they are
new exact solutions obtained by the new version trial equa-
tion method. The results are new, interesting, and have a
great impact in the field of nonlinear sciences where the
(2 + 1)-dimensional KdV equation will be used for the
dynamics of nonlinear solitons and other solutions. Also,
two- and three-dimensional graphics of the obtained solution
functions are illustrated in Figures 1–6 which demonstrate
suitable parametric choices.

6. Conclusion

We used the direct truncation method to find the explicit
solution of the fractional generalized Korteweg-de Vries
equation, comparing it with the known results in the litera-
ture, and we were able to get some novel solitary wave solu-
tions, including bright, dark, kink, and periodic solitons.
Numerical simulation has been performed by utilizing the
Maple software. The solution of each PDE is always utilized
for understanding the system and various phenomena
described by it. The new analytical expansion method is help-
ful for obtaining the solutions in the form of hyperbolic and
ergometric forms which are exact and helpful in understand-
ing its fractional forms. It is not hard to see that the general
solution is an algebraically localized wave decayed in all space
directions and existing at all times. Finally, a transformation
is used to draw soliton solutions of equation (1) using the
Maple software. The 3D plot for some solutions of the con-
sidered equation for four fractional order cases α = 0:25, 0:5
, 0:85, and 0:99 are shown in Figures 1–6. Finally, we show
some graphs to explain these solutions. So, this gives the effi-
cient applications of the new analytical expansion for the
fractional PDEs. In future works with the generalized expan-
sion function based on combined functions, we next aim at
the fractional generalized KdV equation or nonlinear wave
equations, which possess more terms and higher nonlinearity
than the standard equations.
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