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In this study, an attempt has been made to investigate the mass and heat transfer effects in a BLF through a porous medium of an
electrically conducting viscoelastic fluid subject to a transverse magnetic field in the existence of an external electric field, heat
source/sink, and chemical reaction. It has been considered the effects of the electric field, viscous and Joule dissipations,
radiation, and internal heat generation/absorption. Closed-form solutions for the boundary layer equations of viscoelastic,
second-grade, and Walters’ B′ fluid models are considered. The method of the solution includes similarity transformation. The
converted equations of thermal and mass transport are calculated using the optimal homotopy asymptotic method (OHAM).
The solutions of the temperature field for both prescribed surface temperature (PST) and prescribed surface heat flux (PHF) are
found. It is vital to remark that the interaction of the magnetic field is found to be counterproductive in enhancing velocity and
concentration distribution, whereas the presence of chemical reaction, as well as a porous matrix with moderate values of the
magnetic parameter, reduces the temperature and concentration fields at all points of the flow domain.

1. Introduction

The significance of fluid flow over a stretching surface can be
professed for its ever-increasing inexorable applications in
industries and in present-day technology. The applications
of the stretching sheet problem are such as polymer sheet
extrusion from a dye, drawing, thinning and annealing of
copper wires, glass fiber and paper production, and the cool-
ing of a metallic plate in a cooling bath. The production of
these sheets needs that the melt issues from a slit and is
stretched to get the anticipated thickness. The final product
depends on the rate of cooling in the process and the process
of stretching. Sakadis [1] was the first to investigate the BL
manners on a continuous solid surface moving with constant
speed. Crane [2] was the first to attain a stylish analytical
solution to the BL equations for the problem of steady 2D
flow through a stretching surface in an inactive incompress-
ible fluid. The work of Sakadis and Crane was extended and
studied by several authors (Madaki et al. [3], Zheng et al.
[4], Dessie and Kishan [5], and Pal [6]).

The rising need for chemical reaction and hydrometallur-
gical industries needs the study of heat and mass transfer

with chemical reaction. There are several transport processes
that are governed by the combined action of buoyancy forces
due to both thermal and mass diffusion in the presence of
chemical reactions and electric field effects. These processes
occur in the nuclear reactor safety and combustion systems,
solar collectors, metallurgical and chemical engineering, etc.

In real situations, most of the fluids used in engineering
applications are almost non-Newtonian, specifically of the
viscoelastic type than the viscous type. Khan [7], Madhu
and Kishan [8], Babaelahi et al. [9], Raftari and Vajravelu
[10], Goyal and Bhargava [11], and Madhu and Kishan [12]
have investigated the flow of viscoelastic fluid flow under dif-
ferent conditions. Recently, Aliy and Kishan [13] examined
the effect of electric field on MHD viscoelastic nanofluid flow
and heat transfer over a stretching sheet with convective
boundary conditions. They have considered the local nonsi-
milarity method and OHAM to solve the resulting equation.
Jafar et al. [14] studied the MHD boundary layer flow of a
viscoelastic fluid past a nonlinearly stretching sheet in the
presence of a viscous dissipation effect.

Konda et al. [15] investigated the effect of nonuniform
heat source/sink on MHD BLF and melting heat transfer of
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Williamson nanofluid in a porous medium. Hayat et al. [16]
studied the effects of the chemical reaction of an unsteady 3D
flow of the couple stress fluid over a stretching surface.
Gireesha et al. [17] have studied the BLF and heat transfer
of a dusty fluid flow over a stretching sheet in the existence
of nonuniform heat source/sink and radiation. Parsa et al.
[18] investigated the MHD boundary-layer flow over a
stretching surface with internal heat generation or absorp-
tion. The thermal radiation effect was studied by different
researchers (Weidman [19], Abel and Nandeppanavar [20],
and Madaki et al. [21]).

OHAM is an approximate analytical technique that is
directed forward to employ on a different type of problem,
and the presence of any small or large parameters is not
important. Marinca et al. [22] initially introduced the basic
concept of this method in 2008. OHAM reduces the extent
of the computational domain. It is a reliable analytical tech-
nique and has already been successfully applied to various
nonlinear coupled differential equations occurring in science,
engineering, and other fields of study. Marinca and Herisanu
applied OHAM on the different problems (see, [23–25]).
Many researchers applied OHAM to study fluid flow prob-
lems [26–29]. Recently, Gossaye and Kishan [13, 30, 31]
applied the OHAM to the problem arisen from electrical
MHD non-Newtonian fluid flows over a stretching sheet,
and Khan et al. [32] used OHAM for Lane-Emden and
Emden-Fowler initial and boundary value problems.

The novelty of the present study is starred due to the
following aspects.

(i) Inclusion of electric field is justified since, for a
remarkable enhancement in the value of the electric
field, the struggle among fluid particles rises, and
hence, the Lorentz force inclines to speed up the body
forces, and it leads to escalating in the flow velocity
and thicker momentum boundary layer. And also,
we observed that the concentration of the fluid is
affected by a large amount of an electric field.

(ii) The dimensionless ordinary differential equations
with the corresponding boundary conditions are
solved by using the approximate analytic technique
OHAM.

The aim of this paper is to investigate the effect of electric
field and thermal radiation on MHD viscoelastic fluid flow
over a stretching surface through a porous medium with a
heat source/sink. The strongly nonlinear differential
equations are solved using the approximate analytic method
OHAM. The effects of different governing parameters on
velocity, temperature, and concentration profiles are dis-
played graphically and argued extensively. Moreover, the
skin-friction coefficient is also exhibited using a table.

2. Formulation of the Problem

Consider a steady 2D boundary layer flow of an electrically
conducting, viscoelastic fluid past a stretching surface
embedded in a porous medium, the flow being confined to.

Two equal and opposite forces are applied along the axis,
and hence, the surface is stretched, keeping the origin fixed.
Assuming that a uniformmagnetic field of strength is applied
along that produces the magnetic effect in the direction.

The Lorentz force is given by J × B, where J = σðE +V
× BÞ, the Joule current J can be expressed as J = σðE + V ×
BÞ, σ stands for the electrical conductivity, V = ðu, vÞ denotes
the velocity of the fluid, and B = ð0, B0, 0Þ and E = ð0, 0,−E0Þ
are the transverse magnetic field and electric field vectors,
correspondingly. The magnetic field and electric field are
applied perpendicular to the flow, and hence, the Reynolds
number is selected small. The induced magnetic field is insig-
nificant for small magnetic Reynolds number because it is
smaller when compared to the applied magnetic field. Under
the usual BL conventions, the equations of continuity,
momentum, energy, and concentration for the flow of
viscoelastic fluid are:

∂v
∂y

+
∂u
∂x

= 0, ð1Þ

v
∂u
∂y

+ u
∂u
∂x

= υ
∂2u
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0
ρ

+
uv

Kp′

 !
+
k0
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+
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ð2Þ
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+ v
∂T
∂y

� �
ρCp − k

∂2T
∂y2
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∂u
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� �2

= k0
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∂
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ð3Þ

u
∂C
∂x

+ v
∂C
∂y

+ Kc′ C − C∞ð Þ =D
∂2C
∂y2

: ð4Þ

The approximation of Rosseland for thermal radiation
gives qr = −ð4/3Þððσ∗/3k1Þð∂T4/∂yÞÞ. It is assumed that the
temperature variation within the flow is such that may be
expanded in a Taylor series. Expanding T4 about T∞ and
neglecting the higher-order terms, we have T4 = 4TðT∞Þ3
− 3ðT∞Þ4,

∂qr
∂y

= −
16
3

σ∗T3
∞

ρCpk1

∂2T
∂y2

 !
: ð5Þ

Taking the above equation and substituting it into
equation (3), one can get
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u
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ρCp
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+
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∂u
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� �� �
:

ð6Þ

The boundary conditions are

u = uw = ax, v = vw, T = Tw xð Þ = T∞ +A
x
L

� �2
PST caseð Þ,

Hw xð Þ = −k
∂T
∂y

� �
= B

x
L

� �2
PHF caseð Þ,

C = Cw xð Þ = C∞ + a0
x
L

� �2
,mw = −D

∂C
∂y

� �
= a1x

2 as y→ 0,

u = 0,
∂u
∂y

= 0, T → T∞, C→ C∞ as y→∞:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð7Þ

3. Solution of the Flow Field

Equations (1) and (2) disclose self-similar solutions of the
type given below

f =
ψ

υ
ffiffiffiffiffiffiffi
Rex

p , η =
y
x

ffiffiffiffiffiffiffi
Rex

p
, ð8Þ

where f represents the dimensionless stream function, η
denotes the similarity variable, Rex = uwx/υ represents the
local Reynolds number, and ψðx, yÞ symbolizes the stream
function satisfying the continuity equation (1). Substituting
equation (8) in equation (2), we get

f ′′′ + f f ′′ − f ′
� �2

+ Rc 2f ′ f ′′′ − f ′′
� �2

− f f iv
� �

− M +
1
Kp

 !
f ′ +ME1 = 0,

ð9Þ

where Rc = k0a/μ is the viscoelastic parameter,M = σB2
0/ρa is

the magnetic parameter, E1 = E0/uwB0 is the electric field
parameter, and Kp = aKp′/υ is the nondimensional permeabil-
ity parameter.

The BCs are:

f 0ð Þ = f w, f ′ 0ð Þ = 1, f ′ ∞ð Þ = 0, f ′′ ∞ð Þ = 0, ð10Þ

where f w = −vw
ffiffiffiffiffiffiffi
Rex

p
/uw is the suction/injection parameter,

and f w > 0 and f w < 0 represent suction and injection,
respectively.

Now, we apply OHAM to the nonlinear ODE (9) with the
BCs (10) under the following assumption

f = f0 + pf 1 + p2 f2, g = g0 + pg1 + p2g2,

G =G0 + pG1 + p2G2, h = h0 + ph1 + p2h2,

H1 pð Þ = C1p + C2p
2,H2 pð Þ = C3p + C4p

2,

H3 pð Þ = C5p + C6p
2,H4 pð Þ = C7p + C8p

2,

ð11Þ

where the parameter p ∈ ½0, 1�, HiðpÞ, i = 1, 2, 3, 4 is an
auxiliary function which is different from zero, and
Cj, ðj = 1, 2, 3, 4, 5, 6Þ are constants.

And also, assume the following

L = f ′ + f ′′,

N = f ′′′ + f f ′′ − f ′
� �2

+ Rc 2f ′ f ′′′ − f ′′
� �2

− f f iv
� �

− M +
1
Kp

 !
f ′ +ME1 − f ′ − f ′′,

ð12Þ

whereN and L are the nonlinear and linear operators, respec-
tively. Hence, the OHAM family of equations is given by

H1 pð Þ − f ′
� �2

+ Rc 2f ′ f ′′′ − f ′′
� �2

− f f iv
� ��

− M +
1
Kp

 !
f ′ +ME1 + f ′′′ + f f ′′

�

− f ′ + f ′′
� �

1 − pð Þ = 0:

ð13Þ

Using the BCs (10) and comparing the coefficients of the
same powers of p-terms, we can get the hypothesis below:

Equating the coefficients of the zero-order equation p0,
we obtain

f0 ′′ + f0 ′ = 0, f0 0ð Þ = f w, f0 ′ 0ð Þ = 1, f0 ′ ∞ð Þ = 0, f0 ′′ ∞ð Þ = 0:
ð14Þ

Equating the coefficients of the first-order equation p1,
we obtain

− f0 ′
� �2

+ Rc 2f0 ′ f0 ′′′ − f0 ′′
� �2

− f0 f0
iv

� ��

− M +
1
Kp

 !
f0 ′ +ME1 + f0 ′′′ + f0 f0 ′′

�
C1 − f1 ′ − f1 ′′

+ f0 ′′ + f0 ′ = 0,
ð15Þ

f1 0ð Þ = 0, f1 ′ 0ð Þ = 0, f1 ′ ∞ð Þ = 0, f1 ′′ ∞ð Þ = 0: ð16Þ
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Equating the second-order equation p2, we obtain

f2 ′′ + f2 ′ = C1 Rc 2f1 ′ f0 ′′′ + 2f0 ′ f1 ′′′ − 2f0 ′′f1 ′′ − f1 f0
iv − f0 f1

iv
� �h

− M +
1
Kp

 !
f1 ′ +ME1 + f1 ′′′ + f1 f0 ′′ + f0 f1 ′′

− 2f0 ′ f1 ′
i
+ f1 ′ + f1 ′′ + C2

� − f0 ′
� �2

+ Rc 2f0 ′ f0 ′′′ − f0 ′′
� �2

− f0 f0
iv

� ��

− M +
1
Kp

 !
f0 ′ +ME1 + f0 ′′′ + f0 f0 ′′

�
,

f2 0ð Þ = 0, f2 ′ 0ð Þ = 0, f2 ′ ∞ð Þ = 0, f2 ′′ ∞ð Þ = 0: ð17Þ

After solving the ODEs (14) and (15) with the corre-
sponding boundary conditions, we obtain

f0 = e−η −1 + eη + eη f wð Þ,

f1 = −
1
Kp

c1e−2η −eη + e2η − eη f wKp + e2η f wKp − eηKpM
	

+ e2ηKpM − eηE1KpM + e2ηE1KpM − KpRc + eηKpRc
− eη f wKpRc + e2η f wKpRc − eηη − eη f wKpη − eηKpMη

− e2ηE1KpMη − eηKpRcη − eη f wKpRcη


:

ð18Þ

We cannot write the third term f2 here because of its
being large. Hence, the solution f ðη, CiÞ in terms of the
parameters can be written as:

f η, Cið Þ = f0 ηð Þ + f1 η, Cið Þ + f2 η, Cið Þ, i = 1, 2: ð19Þ

For equation (19), we define its residual equation in the
form given below

R1 η, Cið Þ = f ′′′ + f f ′′ − f ′
� �2

+ Rc 2f ′ f ′′′ − f ′′
� �2

− f f iv
� �

− M +
1
Kp

 !
f ′ +ME1:

ð20Þ

The unknown convergence parameters C1 andC2 will be
optimally well-known using the conditions given below

∂J1 Cið Þ
∂C1

=
∂J1 Cið Þ
∂C2

= 0, where J1 Cið Þ =
ð0:1
0
R2
1 η, Cið Þdη:

ð21Þ

Taking particular cases when Kp = 100, Rc = 0:5,M = 2,
E1 = 0:1, and f w = 1, the convergence parameters are as
follows

C1 = 0:14227123495837554, C2 = −0:0985828777094099:
ð22Þ

Hence, the approximate analytical solution is given as

f ηð Þ = e−η −1 + 2eηð Þ − 0:28454246991511e−2η

� −0:25 − 2:6eη + 2:85e2η − 3:eηη + 0:1e2ηη
	 

+ 0:666666666666e−3η 0:0012650690185363315ð
− 0:2435248057116105eη − 0:6482617721497719e2η

+ 0:8905215088428458e3η − 0:09108496933461585eηη
− 1:0292483892015603e2ηη − 0:01118281798120787e3ηη
− 0:3597856288717327e2ηη2



:

ð23Þ

The shear stress at the wall is defined as

τw = μ
∂u
∂y

� �
y=0

= μax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

υf ′′ 0ð Þ

s
: ð24Þ

The nondimensional form of skin friction coefficient at
the well is

f ′′ 0ð Þ = −Cf Re1/2x : ð25Þ

4. Heat Transfer Analysis

4.1. Case I: Prescribed Surface Temperature (PST). In the
prescribed surface temperature case, introducing nondimen-
sional quantities as given below

g ηð Þ = T − T∞
Tw − T∞

, Pr =
υ

α
, Ec =

a2L2

ACp
, Rc =

ak0
μ

,Q

=
q

aρCp
, Rd =

16σ∗T3
∞

3kk1
,

ð26Þ

and using equation (7) equation (6) become

Rd + 1ð Þg′′ + Pr f g′ + Q − 2f ′
� �

g + Ec f ′′
� �2��

+ Rcf ′′ f ′ f ′′ − f f ′′′
� �

+ M +
1
Kp

 !
f ′
� �2��

= 0,

ð27Þ

with the BCs given below

g 0ð Þ = 1, g ∞ð Þ = 0: ð28Þ

Now let us apply the OHAM to the nonlinear ODE (27)
using the following assumption
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L = g′ + g, N = Rd + 1ð Þg′′ + Pr

� f g′ + Q − 2f ′
� �

g + Ec f ′′
� �2

+ Rcf ′′ f ′ f ′′ − f f ′′′
� ���

+ M +
1
Kp

 !
f ′
� �2��

− g′ + g
� �

,

ð29Þ

whereN and L are the nonlinear and linear operators, respec-
tively. Hence, the OHAM family of equations is given by

g′ + g
� �

1 − pð Þ =H2 pð Þ Rd + 1ð Þg′′ + Pr f g′ + Q − 2f ′
� �

g
��

+ Ec f ′′
� �2

+ Rcf ′′ f ′ f ′′ − f f ′′′
� ��

+ M +
1
Kp

 !
f ′
� �2���

:

ð30Þ

Using the BCs (7) and comparing the coefficients of the
same powers of p-terms in the above equation, one can have
the following:

Equating the coefficients of the zero-order equation p0,
we obtain

g0 ′ + g0 = 0, g0 0ð Þ = 1, g0 ∞ð Þ = 0: ð31Þ

Equating the coefficients of the first-order equation p1,
we get

g1 ′ + g1 = g0 ′ + g0 + C3 Rd + 1ð Þg0 ′′ + Pr f0g0 ′ + Q − 2f0 ′
� �

g0
��

+ Ec Rcf0 ′′ f0 ′ f0 ′′ − f0 f0 ′′′
� �

+ M +
1
Kp

 !
f0′
� �2 

+ f0′
′

� �2!��
, g1 0ð Þ = 0, g1 ∞ð Þ = 0:

ð32Þ

Equating the coefficients of the second-order equation p2,
we get

g2 ′ + g2 = g1 ′ + g1 + C3

� Rd + 1ð Þg1 ′′ + Pr f1g0 ′ + f0g1 ′ + Q − 2f1 ′
� �

g1

��

+ Ec

Rcf0 ′′ f1 ′ f0 ′′ + f0 ′ f1 ′′ − f1 f0 ′′′ − f0 f1 ′′′
� �

+ 2f1 ′′f0 ′′

2 M +
1
Kp

 !
f1 ′ f0 ′ + Rcf1 ′′ f0 ′ f0 ′′ − f0 f0 ′′′

� �
0
BBBB@

1
CCCCA
��

+ C4 Rd + 1ð Þg0 ′′ + Pr f0g0 ′ + Q − 2f0 ′
� �

g0

��

+ Ec Rcf0 ′′ f0 ′ f0 ′′ − f0 f0 ′′′
� �

+ M +
1
Kp

 !
f0′
� �2 

+ f0′
′

� �2!��
,

ð33Þ

g2ð0Þ = 0.and g2ð∞Þ = 0.

After solving the ODEs (31), (34), and (36) with the cor-
responding boundary conditions, we obtain

g0 = e−η, ð34Þ

g1 =
1

2Kp
C3e

−3η −2eηEcPr + 2e2ηEcPr + 2eηKp Pr − 2e2ηKp Pr
	

− 2eηEcKp Pr + 2e2ηEcKp Pr − 2eηEcKpM Pr
+ 2e2ηEcKpM Pr + EcKpPrRc − 2eηEcf wKpPrRc
+ 2e2ηEcf wKpPrRc + 2e2ηKpη − 2e2ηKp Pr η
− 2e2η f wKp Pr η + 2e2ηKp Pr Qη + 2e2ηKpRdη
− e2ηEcKpPrRc



:

ð35Þ

We cannot write the third-term g2 here because of it
being large. Hence, the solution gðη, CiÞ in terms of the
parameters can be written as:

g η, Cið Þ = g0 ηð Þ + g1 η, Cið Þ + g2 η, Cið Þ, i = 1, 2, 3, 4: ð36Þ

For equation (36), we define its residual equation in the
form

R2 η, Cið Þ = Rd + 1ð Þg′′ + Pr f g′ + Q − 2f ′
� �

g
�

+ Ec Rcf ′′ f ′ f ′′ − f f ′′′
� �

+ M +
1
Kp

 ! 

� f ′
� �2

+ f ′′
� �2!�

:

ð37Þ

The unknown convergence parameters C3 andC4 can be
optimally obtained from the following expressed conditions
given below

∂J2 Cið Þ
∂C1

=
∂J2 Cið Þ
∂C2

=
∂J2 Cið Þ
∂C3

=
∂J2 Cið Þ
∂C4

= 0, where J2 Cið Þ

=
ð0:1
0
R2
2 η, Cið Þdη:

ð38Þ

In the particular case when Rc = Kp = 0:5, E1 = Ec = 0:1,
f w = 1,M = Pr = 2,Q = Rd = 0:2, one can obtain the results
of the convergence parameters. Hence, the values are calcu-
lated and obtained below

C1 = 0:14227123495837554, C2 = −0:0985828777094099,

C3 = 0:33085325050763764, C4 = −0:17615393227116716:
ð39Þ
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After substituting all the parameters, we get

g ηð Þ = e−η + e−3η 0:016542662525381883 + 0:2977679254568738eηð
− 0:31431058798225564e2η − 0:7940478012183303e2ηη



+ 0:3333333333333333e−4η

� −0:018007022418104122 + 0:09855963046417679eηð
− 1:262581048766744e2η + 1:1820284407206736e3η

− 1:2401935466956018e2ηη − 0:08408331700268e3ηη
+ 0:9175253256056694e3ηη2



:

ð40Þ

The local Nusselt number for PST case is given by

Nux Re−1/2x = −g′ 0ð Þ: ð41Þ

4.2. Case II: Prescribed Heat Flux (PHF). In the prescribed
heat flux case, introducing the similarity variable T = T∞ +
GðηÞðBx2/kL2Þ ffiffiffiffiffiffiffi

υ/a
p

and using equation (7), equation (6)
becomes

Rd + 1ð ÞG′′ + Pr f G′ + Q − 2f ′
� �

G + Ec f ′′
� �2

+ Rcf ′′
��

� f ′ f ′′ − f f ′′′
� �

+ M +
1
Kp

 !
f ′
� �2��

= 0,

ð42Þ

with the boundary conditions

G′ 0ð Þ = −1, G ∞ð Þ = 0: ð43Þ

Now, let us apply the OHAM to the nonlinear ODE (42)
using the following assumption

L = G + G′, N = Rd + 1ð ÞG′′ + Pr f G′ + Q − 2f ′
� �

G + Ec
�

� f ′′
� �2

+ Rcf ′′ f ′ f ′′ − f f ′′′
� ��

+ M +
1
Kp

 !
f ′
� �2��

− G′ +G
� �

,

ð44Þ

whereN and L are the nonlinear and linear operators, respec-
tively. Hence, the OHAM family of equations is given by

G′ + G
� �

1 − pð Þ =H3 pð Þ Rd + 1ð ÞG′′ + Pr f G′ + Q − 2f ′
� �

G
��

+ Ec f ′′
� �2

+ Rcf ′′ f ′ f ′′ − f f ′′′
� ��

+ M +
1
Kp

 !
f ′
� �2���

:

ð45Þ

Using the BCs (7) and comparing the coefficients of the
same powers of p-terms in the above equation, one can have
the following:

Equating the coefficients of the zero-order equation p0,
we obtain

G0 ′ + G0 = 0, G0 ′ 0ð Þ = −1, G0 ∞ð Þ = 0: ð46Þ

Equating the coefficients of the first-order equation p1,
we get

G1 ′ +G1 =G0 ′ +G0 + C5 Rd + 1ð ÞG0 ′′ + Pr f0G0 ′ + Q − 2f0 ′
� �

G0

��

+ Ec Rcf0 ′′ f0 ′ f0 ′′ − f0 f0 ′′′
� �

+ M +
1
Kp

 !
f0′
� �2 

+ f0′
′

� �2!��
, G1 ′ 0ð Þ = 0,G1 ∞ð Þ = 0:

ð47Þ

Equating the coefficients of the second-order equation p2,
we get

G2 ′ +G2 =G1 ′ +G1 + C5

� Rd + 1ð ÞG1 ′′ + Pr f1G0 ′ + f0G1 ′ + Q − 2f1 ′
� �

G1

��

+ Ec

Rcf0 ′′ f1 ′ f0 ′′ + f0 ′ f1 ′′ − f1 f0 ′′′ − f0 f1 ′′′
� �

+ 2f1 ′′f0 ′′

2 M +
1
Kp

 !
f1 ′ f0 ′ + Rcf1 ′′ f0 ′ f0 ′′ − f0 f0 ′′′

� �
0
BBBB@

1
CCCCA
��

+ C6 Rd + 1ð ÞG0 ′′ + Pr f0G0 ′ + Q − 2f0 ′
� �

G0

��

+ Ec Rcf0 ′′ f0 ′ f0 ′′ − f0 f0 ′′′
� �

+ M +
1
Kp

 !
f0′
� �2

+ f0′
′

� �2 !��
,

ð48Þ

G2′ð0Þ = 0 and G2ð∞Þ = 0.
After solving the ODEs (46), (47), and (48) with the

corresponding boundary conditions, we obtain

G0 = e−η,

G1 =
1

2Kp
C5e

−3η 2e2ηKp − 2eηEcPr + 4e2ηEcPr + 2eηKp Pr
	

− 6e2ηKp Pr − 2eηEcKp Pr + 4e2ηEcKp Pr
− 2e2η f wKp Pr − 2eηEcKpM Pr + 4e2ηEcKpM Pr
+ EcKpPrRc − 3e2ηEcKpPrRc − 2eηEcf wKpPrRc
+ 4e2ηEcf wKpPrRc + 2e2ηKpRd + 2e2ηKpη

− 2e2ηKp Pr η − 2e2η f wKp Pr η + 2e2ηKp Pr Qη
+ 2e2ηKpRdη



+ 2e2ηKp Pr Q:

ð49Þ

We cannot write the third term G2 here because of it
being large. Hence, the solution Gðη, CiÞ in terms of the
parameters can be written as:

G η, Cið Þ =G0 ηð Þ + G1 η, Cið Þ +G2 η, Cið Þ, i = 1, 2, 5, 6: ð50Þ

For equation (50), we define its residual equation in the
form
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R3 η, Cið Þ = Rd + 1ð ÞG′′ + Pr f G′ + Q − 2f ′
� �

G
�

+ Ec Rcf ′′ f ′ f ′′ − f f ′′′
� �

+ M +
1
Kp

 ! 

� f ′
� �2

+ f ′′
� �2!�

:

ð51Þ

The unknown convergence parameters C3 andC4 can be
optimally obtained from the following expressed conditions
given below

∂J3 Cið Þ
∂C1

=
∂J3 Cið Þ
∂C2

=
∂J3 Cið Þ
∂C5

=
∂J3 Cið Þ
∂C6

= 0, where J3 Cið Þ =
ð0:1
0
R2
3 η, Cið Þdη:

ð52Þ

In a particular case when Rc = Kp = 0:5, E1 = Ec = 0:1,
f w = 1,M = Pr = 2,Q = Rd = 0:2, one can obtain the results
of the convergence parameters. Hence, the values are calcu-
lated and obtained below

C1 = 0:14227123495837554, C2 = −0:0985828777094099,

C5 = 0:10515520472075117, C6 = 0:006461970319935396:
ð53Þ

After substituting all the parameters, we get

G ηð Þ = e−η + e−3η 0:005257760236037559ð
+ 0:09463968424867605eη − 0:45742514053526756e2η

− 0:2523724913298028e2ηη


+ 0:3333333333333333e−4η

� −0:0033498458336746195 + 0:029901242487034338eηð
+ 0:16239147539668197e2η − 0:5480934455483598e3η

− 0:05241128156726507e2ηη − 0:09459486906132786e3ηη
+ 0:08656147506726386e3ηη2



:

ð54Þ

The local Nusselt number for the PHF case is given by

Nux Re−1/2x =
1

G 0ð Þ : ð55Þ

5. Mass Transfer Analysis

Introducing the similarity variables C − C∞ = hðηÞða1x2/DÞffiffiffiffiffiffiffi
υ/a

p
and using equation (7) in equation (4), we obtain the

following

h′′ + Sc f h′ − f ′h − Kch
� �

= 0, ð56Þ

with boundary condition

h′ 0ð Þ = −1, h ∞ð Þ = 0: ð57Þ

Now, let us apply the OHAM to the nonlinear ODE (56)
using the following assumption

L = h′ + h,N = h′′ + Sc f h′ − f ′h −Kch
� �

− h + h′
� �

,

ð58Þ

where L and N stands for the linear and nonlinear oper-
ators. Consequently, the OHAM family of equations is writ-
ten as

h′ + h
� �

1 − pð Þ =H4 pð Þ h′′ + Sc f h′ − f ′h −Kch
� �� �

:

ð59Þ

Using the BCs (7) and comparing the coefficients of the
same powers of p-terms, one can have the following:

Equating the coefficients of the zero-order equation p0,
one can obtain

h0 ′ + h0 = 0, h0 ′ 0ð Þ = −1, h0 ∞ð Þ = 0: ð60Þ

Equating the coefficients of the first-order equation p1,
we get

h1 ′ + h1 = h0 ′ + h0 + C7 h0 ′′ + Sc f0h0 ′ − f0 ′h0 −Kch0
� �� �

,

ð61Þ

h1 ′ 0ð Þ = 0, h1 ∞ð Þ = 0: ð62Þ

Equating the coefficients of the second-order equation p2,
we get

1.0

0.8

0.6

0.4

0.2

0.0

f′ 
(𝜂

)

𝜂

fw = –1, 0, 1

Kp = 100

Kp = 0.5

0 1 2 3 4 75 6

Figure 1: Velocity profiles (second-grade fluid) for different values
of f w when M = 0:5 andRc = 1.
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h2 ′ + h2 = h1 ′ + h1 + C7 h1 ′′ + Sc f0h1 ′ + f1h0 ′ − f1 ′h0
��

− f0 ′h1 −Kch1
��

+ C8 h0 ′′ + Sc f0h0 ′ − f0 ′h0
��

−Kch0
��

, h2 ′ 0ð Þ = 0, h2 ∞ð Þ = 0::

ð63Þ

After solving the ODEs (60), (61), and (63) with the
corresponding boundary conditions, we obtain

h0 = e−η:

h1 = −C7e
−η −1 + Sc + f wSc + KcScð Þ 1 + ηð Þ:

ð64Þ

We cannot write the third term h2 here because of it
being large. Hence, the solution hðη, CiÞ in terms of the
parameters can be written as:

h η, Cið Þ = h0 ηð Þ + h1 η, Cið Þ + h2 η, Cið Þ, i = 1, 2, 7, 8: ð65Þ

For equation (65), we define its residual equation in the
form

R4 η, Cið Þ = h′′ + Sc f h′ − f ′h −Kch
� �

: ð66Þ

The unknown convergence parameters C3 andC4 can be
optimally obtained from the following expressed conditions
given below

∂J4 Cið Þ
∂C1

=
∂J4 Cið Þ
∂C2

=
∂J4 Cið Þ
∂C7

=
∂J4 Cið Þ
∂C8

= 0, where J4 Cið Þ =
ð0:1
0
R2
4 η, Cið Þdη:

ð67Þ

In the particular case when Rc = Kp = 0:5, E1 = Sc = 0:1,
f w = Kc = 1,M = 2, one can obtain the results of the conver-
gence parameters. Hence, the values are calculated as

C1 = 0:14227123495837554, C2 = −0:0985828777094099,

C7 = 1:0547354705428924, C8 = 0:7632828804603283:
ð68Þ

After substituting all the parameters, we get the approxi-
mate analytic solution as given below

h ηð Þ = e−η + 0:7383148293800247e−η 1 + ηð Þ + e−3η

� −0:0037514629487135163 + 0:16790779466661795eηð
+ 0:17398430721442748e2η + 0:4985455077015227e2ηη
+ 0:2710538084617421e2ηη2



:

ð69Þ

1.0

0.8

0.6

0.4

0.2

0.0
0 1 2 3 4 5

Kp = 100

Kp = 0.5

Rc = –0.2, 0. 0.2f′ 
(𝜂

)

𝜂

Figure 2: Velocity profiles for dissimilar values of Rc when M = 1
and f w = 0.
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Figure 3: Velocity profile for dissimilar values of M when
Rc = 0:2, f w = E1 = 0.
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Figure 4: Velocity profile for different values of E1 when Rc = 0:5,
M = 1, andKp = 100.
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Figure 5: Temperature profiles for various values of Rcwhen Pr = 3,M = Rd = 1, Ec = E1 = 0:1,Q = 0 and f w = 0: (a) g in the PST case and (b)
G in the PHF case.
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Figure 6: Temperature profiles for various values of Ecwith Pr = 2,M = 1, Rc = 0:5, E1 = 0:1,Q = 0:2 and Rd = 1: (a) g in the PST case and (b)
G in the PHF case.
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Figure 7: Temperature profiles for Rc = 0:5, E1 = 0:1,M = 1, Kp = 100,Q = 0:2, Ec = 0:6, and Pr = 2: (a) PST case and (b) PHF case.
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The local Sherwood number can be expressed as

Shx Re−1/2x = −h′ 0ð Þ: ð70Þ

6. Result and Discussion

In the course of the discussion, the following aspects are
highlighted:

(i) Effect of electric field and permeability of the
medium on flow characteristics

(ii) Effect of diffusion species as well as the first-order
chemical reaction

(iii) Relative response of two viscoelastic models to tem-
perature and velocity distribution in the existence of
uniform porous matrix

(iv) The dimensionless ODEs (9), (27), (36), and (56)
with the corresponding boundary conditions are
solved by using the approximate analytic technique
OHAM

It is important to note that Rc > 0, Rc < 0, Rc = 0
represent second grade, Walters B′, and viscous fluids,
respectively.

Figure 1 displays the velocity distribution of second-
grade fluid for suction (f w > 0), injection (f w < 0), and
impermeable plate (f w = 0) in the presence (Kp = 0:5) and
absence (Kp = 100) of the porous matrix. The porous
medium (Kp = 0:5) lessens the primary velocity at all points
as a result of resistive force accessible by the porous medium
which results in thinning of BL. Further, it is motivating to
note that the suction at the plate decreases the velocity. Con-
sequently, it is decided that the combined effect of porous

Q = –2, –1, 0, 0.5, 1

0 1 2 3 654
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0.8
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Q = –2, –1, 0, 0.5, 1

0 1 2 3 654
𝜂
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0.4

0.6

0.8

1.0

1.2

G
 (𝜂

)

Kp = 0.5
Kp = 100

(b)

Figure 8: Temperature profiles for various values of Q with Pr = 2,M = Rd = 1, Ec = E1 = 0:1 and Rc = 0:5, and f w = 0: (a) g in the PST case
and (b) G in the PHF case.
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Figure 9: Temperature profiles for various values of M when Rc = 0:5, E1 = Ec = 0:1, f w = 0, Pr = 2 and Q = Rd = 0:2: (a) g in the PST case
and (b) G in the PHF case.
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matrix and suction is encouraging the thinning of BL which
favors the stability of the flow.

Figure 2 displays the velocity profiles for Walters B′ðRc
= −0:2Þ viscous (Rc = 0) and second-grade flow (Rc = 0:2).
It is perceived that velocity achieves low value in the case of
Walters’ B′ model, in the presence of a porous medium. Vis-
coelastic flows are disposed to instabilities as a result of
nonlinearity in the constitutive equations. Instabilities are
mainly driven by the fluid normal stresses (elasticity) or by
the nature of the boundary conditions. Therefore, the elastic
property ofWalters’ flowmodel in combination with the per-
meability of the porous medium reduces the BL thickness
and hence decreases the instability.

The variation of the velocity field for various values ofM
is illustrated in Figure 3. One can easily understand from the
figure that the velocity significantly declines with a rise in the
values of M in the absence of an electric field (ðE1 = 0Þ). It is
clear that the magnetic field depends on the Lorentz force,
which is stronger for a greater magnetic field. Due to the

nonexistence of an electric field, the Lorentz force raises the
frictional force, which acts as a delaying force that opposes
the viscoelastic fluid flow.

The effect of E1 on f ′ðηÞ is portrayed in Figure 4. As the
magnitudes of E1 boost up, the velocity BL rises nearer to the
stretching plate. For remarkable enhancement in the value of
E1, the struggle among the fluid particles rises, and hence, the
Lorentz force inclines to speed up the body forces, and it
leads to escalating in the flow velocity and thicker momen-
tum boundary layer. The electric field has the same impact
for the case of injection and suction as demonstrated in the
figure.

Figures 5(a) and 5(b) display the temperature distribu-
tion in cases of PST and PHF cases, respectively, without suc-
tion/ injection. The effect of elasticity of the fluid subject to
the present study on temperature distribution is opposite to
that of the viscoelastic parameter that is the temperature
declines at all points, and this is further contributed by the
Walters B′ model. Both the cases of PHF and PST show a
similar effect.

Figures 6(a) and 6(b) demonstrate the effects of the
Eckert number for second-grade fluid in the presence of suc-
tion/injection in both PST and PHF cases. The dissipation of
energy of the flow pattern is measured by the Eckert number.
It is seen that an increase in Ec increases the temperature and
hence increases the thermal BL thickness. This leads to a
reduction in the rate of heat transfer from the plate surface.

0 1 2 3 4 5 6 7
𝜂

h 
(𝜂
) Kc = 0, 0.5, 1

fw = –1

fw = 1

2.0

1.5

1.0

0.5

0.0

Figure 11: Concentration profile for various values of Kc when Rc
= 0:5, E1 = 0:1,M = 2, Sc = 0:6 and Kp = 100.
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Figure 12: Concentration profile for various values of E1 when Rc
= 0:5, Kc = 1, f w = 0,M = 2, Sc = 0:2 and Kp = 100.

Table 1: Comparison of the values of f ′′ð0Þ when E1 = f w = 0 and
Kp = 100.

M Rc Nayak et al. [33] Present result

1 -0.5 -2.00499 -2.00328365944

0.5 -0.5 -1.73781 -1.73779734058

1 0.5 -1.15758 -1.14375034720

1 1 -1.00250 -1.00098308049

0.5 1 -0.86891 -0.86969982367

0.5 0.5 -1.00333 -1.00284187010

Sc = 0.1, 0.3, 0.5
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Figure 10: Concentration profile for various values of Sc when Rc
= 0:5, E1 = 0:1,M = 2, Kc = 1 and Kp = 100.
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The same effect is observed in the case of injection and
suction.

Figures 7(a) and 7(b) describe the effect of the radiation
parameter in the case of second-grade fluid. It is perceived
that an increase in Rd increases the temperature of the fluid
layer and the processes get accelerated in both cases of
suction and injection. The rise in temperature with an
increase in radiation parameter causes growth in tempera-
ture gradient of the wall in both PST and PHF cases.

Figures 8(a) and 8(b) display the outcome of the internal
heat generation/absorption parameter Q on the temperature
distribution gðηÞ (PST) and GðηÞ (PHF) in the case of
second-grade fluid. This displays that a rise in heat source
strength (Q > 0) increases the temperature. This is because
of the generation of the heat in thermal BL which causes
the temperature to escalate. In the same way, the heat sink
causes temperature absorption resulting in a decline in tem-
perature. The outcome holds good for both PHF and PST.
The role of a porous matrix is to accelerate/decelerate the
process in case of source/sink, respectively.

From Figures 9(a) and 9(b), it is observed that the impact
of the magnetic field parameterM is to raise the temperature
profile with the increase in the magnetic field in the presence
as well as in the absence of porous matrix. Physically, apply-
ing the magnetic field heats up the fluid and thus lessens the
heat transfer rates from the wall causing rises in fluid temper-
ature distributions.

Figure 10 exhibits the graph of concentration profiles for
various values of Schmidt number Sc for the case of suction
and injection. We observed that the concentration declines
with a rise in the Schmidt number Sc for both cases. Thus,
for higher values of the Schmidt number, the concentration
of chemically reactive species is larger and lower for small
values of Sc. Figure 11 displayed the influence of the chemical
reaction parameter Kc for the case of suction and injection.
The concentration profile hðηÞ decreases with an increment
of chemical reaction parameter. From Figure 12, we observed
that the fluid concentration decreases for a large amount of
an electric field parameter E1 . The rate of mass transfer at
sheet increases because of an increment in the value of the
electric field.

We examined the skin friction coefficient f ′′ð0Þ with the
aid of a table. Table 1 is computed to validate the present ana-
lytic solution in a limiting case. It is observed that the present
limiting results have a good match with the previously
published results.

7. Conclusions

In this paper, we investigated the impact of electric field, heat
source/sink, and chemical reaction on the MHD boundary
layer flow of non-Newtonian fluid over a stretching surface.
By using similarity transformations, the governing PDEs
were converted into the dimensionless ordinary differential
equations. We solved the transformed equations analytically
using OHAM. The graphical illustrations of our results from
the influence of relevant parameters on temperature, concen-
tration, and velocity profiles are argued in depth. Some of the

specific conclusions which have been derived from the study
can be concluded as follows:

(i) The optimal homotopy asymptotic method is clear,
effective, reliable, and efficient

(ii) Controlling and adjusting the convergence of the
series solution using the convergence parameters
are very simple

(iii) Porous matrix performing as an insulator to the
vertical surface averts energy loss because of free
convection which in turn improves the velocity

(iv) The existence of porous matrix and elasticity of the
fluid overwhelms the resistive force of the magnetic
field, and hence, the velocity rises due to the pres-
ence of both

(v) The occurrence of elasticity also leads to rising the
temperature at all points regardless of the presen-
ce/absence of porous matrix

(vi) The slow rate of thermal diffusion in the existence
of the magnetic field and porous matrix causes
thinning of the thermal BL thickness

(vii) The variation in temperature is more sensitive on
the account of heat flux

(viii) The existence of chemical reaction and porous
matrix with moderate values of the magnetic
parameter in case of heavier species lessens the
concentration level

Nomenclature

Kp: Permeability parameter
M: Magnetic parameter
B0: Magnetic field strength
Q: Heat source/sink parameter
T0: Temperature of the field
P: Pressure nondimensional time
qr : Radiative heat flux
Rd: Radiation parameter
Ec: Eckert number
Cf : Skin friction coefficient
k0: Modulus of the viscoelastic fluid
mw: Rate of mass flux
K1: Mean absorption coefficient
k: Thermal conductivity
Rc: Viscoelastic parameter
Pr: Prandtl number
Sc: Schmidt number
T : Nondimensional temperature
D: Molecular diffusivity
Cp: Specific heat
qw: Wall heat flux
E1: Electric field parameter
T1: Temperature far from sheet
Tw: Wall temperature
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Kc: Chemical reaction parameter
A, B, E0, E1: Constants.

Greek Letters

α: Thermal diffusivity
σ: Electrical conductivity
υ: Kinematics viscosity
ρ: Density of the fluid
σ∗: Stefan–Boltzmann constant
τw: Wall shear stress.

Abbreviation

BLF: Boundary layer flow
OHAM: Optimal homotopy asymptotic method
2D: Two dimensional
MHD: Magnetohydrodynamic
BC: Boundary condition
BL: Boundary layer
3D: Three dimensional
ODE: Ordinary differential equation.
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