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In this paper, we investigate the global existence and large time behavior of entropy solutions to one-dimensional unipolar
hydrodynamic model for semiconductors in the form of Euler-Possion equations with time and spacedependent damping in a
bounded interval. Firstly, we prove the existence of entropy solutions through vanishing viscosity method and compensated
compactness framework. Based on the uniform estimates of density, we then prove the entropy solutions converge to the
corresponding unique stationary solution exponentially with time. We generalize the existing results to the variable coefficient
damping case.

1. Introduction

The present paper is concerned with the one-dimensional
isentropic Euler-Possion model for semiconductor devices
with damping:

ρt +mx = 0,

mt +
m2

ρ
+ P ρð Þ

� �
x

= ρE +H x, tð Þm,

Ex = ρ − b xð Þ,

8>>>><
>>>>:

ð1Þ

where space variable x ∈ ½L1, L2�(L1 and L2 are two positive
constants) and time variable t ∈ ½0, TÞðT > 0Þ. Here, ρ ≥ 0,
m, Hðx, tÞ, PðρÞ, and E stand for electron density, electron
current density, damping coefficient, pressure, and electric
filed, respectively. We assume the damping coefficient Hðx,
tÞ is bounded, and the pressure function is given by PðρÞ =
p0ρ

γ, where p0 = θ2/γ and θ = ðγ − 1Þ/2: Here, γ presents
the adiabatic coefficient, and γ > 1 corresponds to the isen-
tropic case. The doping profile bðxÞ ≥ 0 stands for the density

of fixed, positively charged background ions. In this paper,
we assume

b xð Þ ∈ C L1, L2½ �, 0 < b∗ ≤ b xð Þ ≤ b∗, ð2Þ

where b∗ and b∗ are two positive constants. The initial-
boundary value conditions of system (1) are

ρ,mð Þ x, 0ð Þ = ρ0 xð Þ,m0 xð Þð Þ, L1 < x < L2,
m L1, tð Þ =m L2, tð Þ = 0, t ≥ 0,
E L1, tð Þ = E−, t ≥ 0,

ð3Þ

where ρ0ðxÞ satisfiesðL2
L1

ρ0 xð Þ − b xð Þð Þdx = 0: ð4Þ

Firstly, let us survey the related mathematical results. In
1990, Degond andMarkowich [1] firstly proved the existence
and uniqueness of the steady-state to (1) in subsonic case,
which is characterized by a smallness assumption on the cur-
rent flowing through the device. It was proved that the
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existence of local smooth solution to the time-dependent
problem by using Lagrangian mass coordinates in [2]. How-
ever, Chen-Wang in [3] had studied the smooth solution
would blow up in finite time; therefore, it is worthwhile con-
sidering the existence and other properties of weak solutions.
As for weak solutions, Zhang [4] and Marcati-Natalini [5]
proved the global existence of entropy solutions to the
initial-boundary value and Cauchy problems for γ > 1,
respectively. Li [6] and Huang et al. [7] proved the existence
of L∞ entropy solution of (1) with γ = 1 on a bounded inter-
val and the whole space by using a fractional Lax-Friedrichs
scheme. It is worth noting that the L∞ estimates of entropy
solution, especially the estimate of density, in all of the above
works [4–7] depend on time t, which restricted us to consider
their large time behavior further. We refer [8–10] for more
results on this model and topic. In this paper, for 1 < γ ≤ 3
and variable coefficient damping, we shall first verify the
assumption in [11], where the density is assumed to be uni-
formly bounded with respect to space x and time t and then
use the entropy inequality to consider the large time behavior
of the obtained solutions.

Based on the related results in [12–16], we are convinced
that the method developed in this paper can be used to bipo-
lar Euler-Poisson system with time depended damping. We
will investigate this problem in next papers.

To start our main theorem, we define the entropy solu-
tion of system (1) as.

Definition 1. For every T > 0, a pair of bounded measurable
functions vðx, tÞ = ðρðx, tÞ,mðx, tÞ, Eðx, tÞÞ is called a L∞

weak solution of (1) with initial-boundary condition (3) if

ðT
0

ðL2
L1

ρφt +mφxð Þdxdt +
ðL2
L1

ρ0φ x, 0ð Þdx = 0,

ðT
0

ðL2
L1

mφt +
m2

ρ
+ P ρð Þ

� �
φx

� �
dxdt +

ðT
0

ðL2
L1

ρE +H x, tð Þmð Þφdxdt

+
ðL2
L1

m0φ x, 0ð Þdx = 0,

E x, tð Þ =
ðx
L1

ρ − b sð Þð Þds + E−,

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð5Þ

holds for any test function φ ∈ C∞
0 ð½L1, L2� × ½0, TÞÞ, and the

boundary condition is satisfied in the sense of divergence-
measure field [17]. Furthermore, we call the weak solution
ðρ,m, EÞðx, tÞ to be an entropy solution if the entropy
inequality

ηt + qx ≤ ηm ρE +H x, tð Þð Þ, ð6Þ

satisfies in the sense of distribution for any weak convex
entropy pairs ðηðρ,mÞ, qðρ,mÞÞ:

Definition 2. The stationary solution of problems (1) and (3)
is the smooth solution of

P ~ρð Þx = ~ρ~E,
~Ex = ~ρ − b xð Þ,

(
ð7Þ

with the boundary condition

~E L1ð Þ = ~E L2ð Þ = 0: ð8Þ

Our main results in this paper are as follows.

Theorem 3 (Existence). Let 1 < γ ≤ 3, we assume that the ini-
tial data and the damping coefficient satisfy

0 ≤ ρ0 xð Þ ≤M0, m0 xð Þj j ≤M0ρ0 xð Þ, H x, tð Þj j ≤M1, ð9Þ

for some positive constants M0 and M1. Then, there exists a
global entropy solution ðρ,m, EÞðx, tÞ of the initial-boundary
value problems (1) and (3) satisfying

0 ≤ ρ x, tð Þ ≤ C, m x, tð Þj j ≤ Cρ x, tð Þ, E x, tð Þj j
≤ C, x, tð Þ ∈ L1, L2½ � × 0, T½ Þ, ð10Þ

where C is independent of t.

Remark 4. To get the global existence of the L∞ weak solu-
tion, we only need Hðx, tÞ is bounded. However, to get the
large time behavior of the obtained solution, the uniform
negative upper bound is necessary.

Theorem 5 (Large time behavior). Suppose there exists a pos-
itive constant δ0 > 0, such that the damping coefficient

H x, tð Þ < −δ0 and Ht x, tð Þ > −2b∗, ð11Þ

for any ½L1, L2� ×ℝ+: Denote ðρ,m, EÞðx, tÞ is the global
entropy solution of (1) and (3) obtained in Theorem 3, and ð
~ρ, ~EÞ is the stationary solution; then, it holds that

ðL2
L1

ρ − ~ρð Þ2 E − ~E
� �2 +m2

� �
x, tð Þdx ≤ Ce−Ct , ð12Þ

for some positive constant C.

Remark 6. Theorems 3 and 5 are generalizations of the corre-
sponding theorem of [18], in which the damping coefficient
Hðx, tÞ = −1. Suppose α, β, and λ are three positive con-
stants, then Hðx, tÞ = −α/ð1 + tÞλ − β satisfies all the assump-
tions of Hðx, tÞ in Theorems 3 and 5.
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2. Preliminary and Formulation

We consider the homogeneous system

ρt +mx = 0,

mt +
m2

ρ
+ P ρð Þ

� �
x

= 0:

8><
>: ð13Þ

Firstly, we use r1 and r2 to denote the right eigenvectors
corresponding to the eigenvalues λ1 and λ2. After simple cal-
culation, we have

λ1 =
m
ρ

− θρθ, λ2 =
m
ρ

+ θρθ, θ = γ − 1
2 ,

r1 =
1
λ1

" #
, r2 =

1
λ2

" #
:

ð14Þ

The Riemann invariants ðw, zÞ are given by

w = m
ρ

+ ρθ, z = m
ρ

− ρθ, ð15Þ

satisfying ∇w · r1 = 0 and ∇z · r2 = 0, where ∇ = ð∂ρ, ∂mÞ is
the gradient with respect to U = ðρ,mÞ.

A pair of functions ðη, qÞ: ℝ ×ℝ+ ↦ℝ2 is called an
entropy-entropy flux of system (13) if it satisfies

∇q Uð Þ = ∇η Uð Þ∇
m

m2

ρ
+ P ρð Þ

2
64

3
75: ð16Þ

Furthermore, if for any fixed m/ρ∈ð−∞, +∞Þ, η van-
ishes on the vacuum ρ = 0; then, η is called a weak entropy.
For example, the mechanical energy-energy flux pair

ηe =
m2

2ρ + p0ρ
γ

γ − 1 , qe =
m3

2ρ2 + p0ρ
γ−1

γ − 1 m, ð17Þ

should be a strictly convex entropy pair. We approximate the
equations in (1) by adding artificial viscosity to get the
smooth approximate solutions ðρε,mεÞ, that is,

ρt +mx = ερxx,

mt +
m2

ρ
+ P ρð Þ

� �
x

= εmxx + ρE − 2Mερx +H x, tð Þm,

E x, tð Þ =
ðx
L1

ρ − b sð Þð Þds + E−,

8>>>>>><
>>>>>>:

ð18Þ

with initial-boundary value conditions

ρ,mð Þ x, 0ð Þ = ρε0 xð Þ, mε
0 xð Þð Þ = ρ0 xð Þ + ε, m0 xð Þð Þ

∗mε, L1 < x < L2,

m L1, tð Þ =m L2, tð Þ = 0, ρ L1, tð Þ
= ρε0 L1ð Þ, ρ L2, tð Þ = ρε0 L2ð Þ, t ≥ 0,

ð19Þ

where M in (18) is a big enough constant to be determined
later and mε in (19) is the standard mollifier with small
parameter ε.We shall prove that the viscosity solutions of
(18) and (19) are uniformly bounded with respect to time t.

3. Viscosity Solutions and A Priori Estimates

For any fixed ε > 0, we denote the solution of (18) and (19) by
ðρε,mε, EεÞ, since Eεðx, tÞ is uniquely determined by ρεðx, tÞ,
bðxÞ, and E−; then, the system (18) may be seen as one sys-
tem with the unknowns ρε and mε. Regarding the proof of
local existence of approximate solution, the techniques used
in this article are similar to those used in [19]. To extend
the local solution to global one, the key point is to obtain
the uniform upper bound of ρε, ∣mε ∣ and the lower bound
of density ρε. The following theorem gives the uniform
bound of ðρε,mεÞ.

Lemma 7. For any T > 0, let ðρε,mεÞðx, tÞ ∈ C1ð½0, T�, C2½L1,
L2�Þ to be the smooth solution of (18) and (19). Then

0 ≤ ρε x, tð Þ ≤ C, ∣mε x, tð Þ∣ ≤ Cρε x, tð Þ,  ð20Þ

where C is a positive constant independent of time t.

Proof. (For simplicity of notation, the superscript of ρε and
mε will be omitted as ðρ,mÞ.) By the formulas of Riemann
invariants (15), we can decouple the viscous perturbation
equation (18) as

wt + λ2wx = εwxx + 2ε wx −Mð Þ ρx
ρ

− εθ θ + 1ð Þρθ−2ρ2x + E +H x, tð Þm
ρ
,

zt + λ1zx = εzxx + 2ε zx −Mð Þ ρx
ρ

+ εθ θ + 1ð Þρθ−2ρ2x + E +H x, tð Þm
ρ
:

8>><
>>:

ð21Þ

We set the control functions ðφ, ψÞ as

φ =M M + xð Þ,
ψ =M M − xð Þ:

ð22Þ

A direct calculation tells us

φt = 0, φx =M, φxx = 0,
ψt = 0, ψx = −M, ψxx = 0:

ð23Þ
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Define the modified Riemann invariants ð�w, �zÞ as:

�w =w − φ, �z = z + ψ: ð24Þ

Then, inserting the above formulas into (21) yields the
decoupled equations for �w and �z:

�wt + λ2 �wx = ε�wxx + 2ε�wx
ρx
ρ

− εθ θ + 1ð Þρθ−2ρ2x + E − λ2φx +H x, tð Þm
ρ
,

�zt + λ1�zx = ε�zxx + 2ε�zx
ρx
ρ

+ εθ θ + 1ð Þρθ−2ρ2x + E + λ1ψx +H x, tð Þm
ρ
:

8>><
>>:

ð25Þ

We rewrite (25) into

�wt + λ2 − 2ε ρx
ρ

� �
�wx = ε�wxx + a11 �w + a12�z + R1,

�zt + λ1 − 2ε ρx
ρ

� �
�zx = ε�zxx + a21 �w + a22�z + R2,

8>>><
>>>:

ð26Þ

with

a11 = −
1 + θ

2

� �
M + 1

2H x, tð Þ, a12 =
θ − 1
2

� �
M + 1

2H x, tð Þ,

a21 =
θ − 1
2

� �
M + 1

2H x, tð Þ, a22 = −
1 + θ

2

� �
M + 1

2H x, tð Þ,

R1 = −εθ θ + 1ð Þρθ−2ρ2x + E − θM3 −M2x +MH x, tð Þx,
R2 = εθ θ + 1ð Þρθ−2ρ2x + E + θM3 −M2x +MH x, tð Þx:

ð27Þ

In above calculation, we have used the relations:

λ1 =
w + z
2 − θ

w − z
2 , λ2 =

w + z
2 + θ

w − z
2 ,

m
ρ

= w + z
2 :

ð28Þ

Noting 0 < θ ≤ 1, ∣Hðx, tÞ ∣ ≤M1, and choosing M ≥ ð2/
ð1 − θÞÞM1, we have

a12 ≤ 0, a21 ≤ 0: ð29Þ

On the other hand, (27) tells us

R1 ≤ E − θM3 −M2x +MH x, tð Þx,
R2 ≥ E + θM3 −M2x +MH x, tð Þx:

ð30Þ

And use the same calculations in [18], we estimate the
approximate electric fields and obtain

∣E x, tð Þ∣ ≤M2, ð31Þ

where M2 depends only on initial data. Thus, taking M
big enough, we have

R1 ≤M2 − θM3 +MM1L2 ≤ 0,
R2≥−M2 + θM3 −M2L2 −MM1L1 ≥ 0,

ð32Þ

and the initial-boundary value conditions satisfy

�w x, 0ð Þ =w x, 0ð Þ − φ x, 0ð Þ = m0
ρ0

+ ρθ0 −M2 −Mx ≤ 0,

�z x, 0ð Þ = z x, 0ð Þ + ψ x, 0ð Þ = m0
ρ0

− ρθ0 +M2 −Mx ≥ 0,

�w L1, tð Þ ≤ 0, �z L1, tð Þ ≥ 0, �w L2, tð Þ ≤ 0, �z L2, tð Þ ≥ 0:
ð33Þ

Basing on the above discussion, using Lemma 7 of
[18], we have

�w x, tð Þ ≤ 0, �z x, tð Þ ≥ 0, ∀ x, tð Þ ∈ L1, L2½ � × 0, T½ Þ: ð34Þ

Therefore,

w x, tð Þ ≤ φ x, tð Þ ≤M2 +Mx ≤M2 +ML2,
z x, tð Þ≥−ψ x, tð Þ≥−M2 +Mx≥−M2:

ð35Þ

By (35), we have

ρ ≤
w − z
2

� �1/θ
≤

3
2M

2
� �1/θ

, ð36Þ

and Lemma 7 is completed.

From (20), the velocity u =m/ρ is uniformly bounded,
i.e., ∣u ∣ <C. Then, following the same way of [20], we could
obtain

ρ x, tð Þ ≥ δ t, εð Þ > 0: ð37Þ

Based on the local existence of smooth solution, the uni-
form upper estimates (Lemma 7) and the lower bound esti-
mate of density (37), we derive the following lemma.

Lemma 8. For any time T > 0, there exists a unique global
classical solution ðρε,mεÞðx, tÞ ∈ C1ð½0, T�, C2½L1, L2�Þ to the
initial-boundary value problems (18) and (19) satisfying

0 ≤ δ t, εð Þ ≤ ρε x, tð Þ ≤ C, ∣mε x, tð Þ∣ ≤ Cρε x, tð Þ, 
ð38Þ

where C is independent of ε and T .

Through Lemma 8 and the compensated compactness
framework theory established in [19, 21–23], we can prove
that there has a subsequence of ðρε,mεÞ (still denoted by
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ðρε,mεÞ), so that

ρE ,mE
� �

⟶ ρ,mð Þ, in Lploc L1, L2½ � × 0, T½ Þð Þ ð39Þ

Furthermore, it is clear for us that ðρ,mÞ is an entropy
solution of initial-boundary value problems (1) and (3).
We complete the proof of Theorem 3.

4. Large Time Behavior of Weak Solutions

This section is devoted to the proof of Theorem 5. Firstly, for
stationary solution, from the result in [24], we have the fol-
lowing argument:

Lemma 9. Under the assumption (2) of bðxÞ, there exists a
unique solution ð~ρ, ~EÞ to problems (7) and (8) satisfying

0 < b∗ ≤ ~ρ xð Þ ≤ b∗, ~ρ′ xð Þ�� �� ≤ C, ~ρ′′ xð Þ�� �� ≤ C, x ∈ L1, L2½ �,
ð40Þ

where C only depends on γ, b∗ and b∗.

Now, we shall derive that the entropy solution ðρ,m, EÞ
acquired in Theorem 3 converges strongly to the correspond-
ing stationary solution ð~ρ, ~EÞ in the norm of L2 with expo-
nential decay rate. From (7) and (8), we see that

ðL2
L1

~ρ xð Þ − b xð Þð Þdx =
ðL2
L1

~Exdx = ~E L2ð Þ − ~E L1ð Þ = 0: ð41Þ

Give the definition of the new function as follows

y x, tð Þ = −
ðx
L1

ρ s, tð Þ − ~ρ sð Þð Þds

= − E − ~E
� �

, x, tð Þ ∈ L1, L2½ � × 0,∞½ Þ:
ð42Þ

Obviously, we observe that

yx = − ρ − ~ρð Þ, yt =m, y L1ð Þ = y L2ð Þ: ð43Þ

From (1) and (7), we have

ytt +
m2

ρ

� �
x

+ p ρð Þ − p ~ρð Þð Þx −H x, tð Þyt = −~ρy − ~Eyx + yyx:

ð44Þ

Multiplying y with (44) and integrating from L1 to L2, we

have

d
dt

ðL2
L1

yyt −
1
2 y

2H
� �

dx +
ðL2
L1

1
2 y

2Htdx

+
ðL2
L1

P ρð Þ − P ~ρð Þð Þ ρ − ~ρð Þ + ~ρ −
~Ex

2

 !
y2dx

≤
ðL2
L1

y2t dx +
ðL2
L1

y2t
ρ
yxdx =

ðL2
L1

~ρ

ρ
y2t dx:

ð45Þ

Lemma 7 of [25] tells us there exist two nonnegative con-
stants ~C1 and ~C2 such that

~C2 ρ − ~ρð Þ2 ≥ P ρð Þ − P ~ρð Þð Þ ρ − ~ρð Þ ≥ ~C1 ρ − ~ρð Þ2 = ~C1y
2
x:

ð46Þ

Putting (46) into (45), we have

d
dt

ðL2
L1

yyt −
1
2 y

2H
� �

dx +
ðL2
L1

1
2 y

2Htdx

+ ~C1

ðL2
L1

y2xdx +
ðL2
L1

b∗y
2dx ≤

ðL2
L1

~ρ

ρ
y2t dx:

ð47Þ

Additionally, denote the relative entropy-entropy flux by

η∗ = ηe −
p0~ρ

γ

γ − 1 −
p0γ
γ − 1 ~ρ

γ−1 ρ − ~ρð Þ,

q∗ = qe −
p0γ
γ − 1 ~ρ

γ−1m:

ð48Þ

From the entropy inequality (16), we have the following
inequality holds in the sense of distribution:

η∗t + q∗x = ηet + qex −
p0γ
γ − 1 ~ρ

γ−1 ρ − ~ρð Þt −
p0γ
γ − 1 ~ργ−1m

� �
x

≤mE + Hm2

ρ
−

p0γ
γ − 1 ~ρ

γ−1 ρ − ~ρð Þt −
p0γ
γ − 1 ~ργ−1m

� �
x

=mE + Hm2

ρ
− p0γ~ρ

γ−2yt~ρx:

ð49Þ

We notice that

mE =m~E +m E − ~E
� �

= yt~E − yyt

= P ~ρð Þx
~ρ

yt − yyt = p0γ~ρ
γ−2yt~ρx − yyt ,

ð50Þ

and use the theory of divergence-measure fields [17] to arrive
at

d
dt

ðL2
L1

η∗ +
1
2 y

2
� �

dx −
ðL2
L1

Hy2t
ρ

dx ≤ 0: ð51Þ

Let Λ sufficiently big so that Λ > b∗/δ0 + ∥ρ∥L∞ + 1.
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Multiply (51) by Λ and add the result to (47), we have

d
dt

ðL2
L1

Λη∗ +
Λy2

2 + yyt −
y2

2 H
� �

dx

+
ðL2
L1

1
2Ht + b∗

� �
y2 + ~C1y

2
x +

−ΛH − ~ρ

ρ
y2t

	 

dx ≤ 0:

ð52Þ

Since

−ΛH − ~ρ > b∗

δ0
+∥ρ∥L∞

� �
δ0 − b∗ > ∥ρ∥L∞δ0, ð53Þ

then there exists ~C3 > 0 such that

d
dt

ðL2
L1

Λη∗ +
Λy2

2 + yyt −
y2

2 H
� �

dx

+ ~C3

ðL2
L1

y2 + y2x +
y2t
ρ

� �
dx ≤ 0:

ð54Þ

Since ∥ρðx, tÞ∥L∞ ≤ C and

η∗ ~ y2x +
y2t
ρ
, ð55Þ

we can directly conclude that

Λη∗ +
Λy2

2 + yyt −
y2

2 H ~ y2 + y2x +
y2t
ρ
: ð56Þ

Now from (54), the Gronwall inequality implies Theorem 5.
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